Download Generalised Prior Subspace Analysis for Polyphonic Pitch Transcription A reformulation of Prior Subspace Analysis (PSA) is presented, which restates the problem as that of fitting an undercomplete signal dictionary to a spectrogram. Further, a generalization of PSA is derived which allows the transcription of polyphonic pitched instruments. This involves the translation of a single frequency prior subspace of a note to approximate other notes, overcoming the problem of needing a separate basis function for each note played by an instrument. Examples are then demonstrated which show the utility of the generalised PSA algorithm for the purposes of polyphonic pitch transcription.
Download Sub-Band Independent Subspace Analysis for Drum Transcription While Independent Subspace Analysis provides a means of separating sound sources from a single channel signal, making it an effective tool for drum transcription, it does have a number of problems. Not least of these is that the amount of information required to allow separation of sound sources varies from signal to signal. To overcome this indeterminacy and improve the robustness of transcription an extension of Independent Subspace Analysis to include sub-band processing is proposed. The use of this approach is demonstrated by its application in a simple drum transcription algorithm.
Download Independent subspace analysis using locally linear embedding While Independent Subspace Analysis provides a means of blindly separating sound sources from a single channel signal, it does have a number of problems. In particular the amount of information required for separation of sources varies with the signal. This is as a result of the variance-based nature of Principal Component Analysis, which is used for dimensional reduction in the Independent Subspace Analysis algorithm. In an attempt to overcome this problem the use of a non-variance based dimensional reduction method, Locally Linear Embedding, is proposed. Locally Linear Embedding is a geometry based dimensional reduction technique. The use of this approach is demonstrated by its application to single channel source separation, and its merits discussed.
Download Sound Source Separation: Azimuth Discrimination and Resynthesis In this paper we present a novel sound source separation algorithm which requires no prior knowledge, no learning, assisted or otherwise, and performs the task of separation based purely on azimuth discrimination within the stereo field. The algorithm exploits the use of the pan pot as a means to achieve image localisation within stereophonic recordings. As such, only an interaural intensity difference exists between left and right channels for a single source. We use gain scaling and phase cancellation techniques to expose frequency dependent nulls across the azimuth domain, from which source separation and resynthesis is carried out. We present results obtained from real recordings, and show that for musical recordings, the algorithm improves upon the output quality of current source separation schemes.
Download Shifted NMF with Group Sparsity for Clustering NMF Basis Functions Recently, Non-negative Matrix Factorisation (NMF) has found application in separation of individual sound sources. NMF decomposes the spectrogram of an audio mixture into an additive parts based representation where the parts typically correspond to individual notes or chords. However, there is a need to cluster the NMF basis functions to their sources. Although, many attempts have been made to improve the clustering of the basis functions to sources, much research is still required in this area. Recently, Shifted Non-negative Matrix Factorisation (SNMF) was used to cluster these basis functions. To this end, we propose that the incorporation of group sparsity to the Shifted NMF based methods may benefit the clustering algorithms. We have tested this on SNMF algorithms with improved separation quality. Results show that this gives improved clustering of pitched basis functions over previous methods.