Download Distributed Single-Reed Modeling Based on Energy Quadratization and Approximate Modal Expansion Recently, energy quadratization and modal expansion have become popular methods for developing efficient physics-based
sound synthesis algorithms. These methods have been primarily
used to derive explicit schemes modeling the collision between
a string and a fixed barrier. In this paper, these techniques are
applied to a similar problem: modeling a distributed mouthpiece
lay-reed-lip interaction in a woodwind instrument. The proposed
model aims to provide a more accurate representation of how a musician’s embouchure affects the reed’s dynamics. The mouthpiece
and lip are modeled as distributed static and dynamic viscoelastic
barriers, respectively. The reed is modeled using an approximate
modal expansion derived via the Rayleigh-Ritz method. The reed
system is then acoustically coupled to a measured input impedance
response of a saxophone. Numerical experiments are presented.