Download Interpolation Filters for Antiderivative Antialiasing
Aliasing is an inherent problem in nonlinear digital audio processing which results in undesirable audible artefacts. Antiderivative antialiasing has proved to be an effective approach to mitigate aliasing distortion, and is based on continuous-time convolution of a linearly interpolated distorted signal with antialiasing filter kernels. However, the performance of this method is determined by the properties of interpolation filter. In this work, cubic interpolation kernels for antiderivative antialiasing are considered. For memoryless nonlinearities, aliasing reduction is improved employing cubic interpolation. For stateful systems, numerical simulation and stability analysis with respect to different interpolation kernels remain in favour of linear interpolation.
Download Anti-Aliasing of Neural Distortion Effects via Model Fine Tuning
Neural networks have become ubiquitous with guitar distortion effects modelling in recent years. Despite their ability to yield perceptually convincing models, they are susceptible to frequency aliasing when driven by high frequency and high gain inputs. Nonlinear activation functions create both the desired harmonic distortion and unwanted aliasing distortion as the bandwidth of the signal is expanded beyond the Nyquist frequency. Here, we present a method for reducing aliasing in neural models via a teacher-student fine tuning approach, where the teacher is a pretrained model with its weights frozen, and the student is a copy of this with learnable parameters. The student is fine-tuned against an aliasing-free dataset generated by passing sinusoids through the original model and removing non-harmonic components from the output spectra. Our results show that this method significantly suppresses aliasing for both long-short-term-memory networks (LSTM) and temporal convolutional networks (TCN). In the majority of our case studies, the reduction in aliasing was greater than that achieved by two times oversampling. One side-effect of the proposed method is that harmonic distortion components are also affected. This adverse effect was found to be modeldependent, with the LSTM models giving the best balance between anti-aliasing and preserving the perceived similarity to an analog reference device.
Download Non-Iterative Schemes for the Simulation of Nonlinear Audio Circuits
In this work, a number of numerical schemes are presented in the context of virtual-analog simulation. The schemes are linearlyimplicit in character, and hence directly solvable without iterative methods. Schemes of increasing order of accuracy are constructed, and convergence and stability conditions are proven formally. The schemes are able to handle stiff problems very efficiently, because of their fast update, and can be run at higher sample rates to reduce aliasing. The cases of the diode clipper and ring modulator are investigated in detail, including several numerical examples.
Download Applications of Port Hamiltonian Methods to Non-Iterative Stable Simulations of the Korg35 and Moog 4-Pole Vcf
This paper presents an application of the port Hamiltonian formalism to the nonlinear simulation of the OTA-based Korg35 filter circuit and the Moog 4-pole ladder filter circuit. Lyapunov analysis is used with their state-space representations to guarantee zero-input stability over the range of parameters consistent with the actual circuits. A zero-input stable non-iterative discrete-time scheme based on a discrete gradient and a change of state variables is shown along with numerical simulations. Simulations show behavior consistent with the actual operation of the circuits, e.g., self-oscillation, and are found to be stable and have lower computational cost compared to iterative methods.