Download Differentiable White-Box Virtual Analog Modeling
Component-wise circuit modeling, also known as “white-box” modeling, is a well established and much discussed technique in virtual analog modeling. This approach is generally limited in accuracy by lack of access to the exact component values present in a real example of the circuit. In this paper we show how this problem can be addressed by implementing the white-box model in a differentiable form, and allowing approximate component values to be learned from raw input–output audio measured from a real device.
Download On the Equivalence of Integrator- and Differentiator-Based Continuous- and Discrete-Time Systems
The article performs a generic comparison of integrator- and differentiator based continuous-time systems as well as their discretetime models, aiming to answer the reoccurring question in the music DSP community of whether there are any benefits in using differentiators instead of conventionally employed integrators. It is found that both kinds of models are practically equivalent, but there are certain reservations about differentiator based models.
Download Combining Zeroth and First-Order Analysis With Lagrange Polynomials to Reduce Artefacts in Live Concatenative Granulation
This paper presents a technique addressing signal discontinuity and concatenation artefacts in real-time granular processing with rectangular windowing. By combining zero-crossing synchronicity, first-order derivative analysis, and Lagrange polynomials, we can generate streams of uncorrelated and non-overlapping sonic fragments with minimal low-order derivatives discontinuities. The resulting open-source algorithm, implemented in the Faust language, provides a versatile real-time software for dynamical looping, wavetable oscillation, and granulation with reduced artefacts due to rectangular windowing and no artefacts from overlap-add-to-one techniques commonly deployed in granular processing.