Download Real-Time Black-Box Modelling With Recurrent Neural Networks
This paper proposes to use a recurrent neural network for black-box modelling of nonlinear audio systems, such as tube amplifiers and distortion pedals. As a recurrent unit structure, we test both Long Short-Term Memory and a Gated Recurrent Unit. We compare the proposed neural network with a WaveNet-style deep neural network, which has been suggested previously for tube amplifier modelling. The neural networks are trained with several minutes of guitar and bass recordings, which have been passed through the devices to be modelled. A real-time audio plugin implementing the proposed networks has been developed in the JUCE framework. It is shown that the recurrent neural networks achieve similar accuracy to the WaveNet model, while requiring significantly less processing power to run. The Long Short-Term Memory recurrent unit is also found to outperform the Gated Recurrent Unit overall. The proposed neural network is an important step forward in computationally efficient yet accurate emulation of tube amplifiers and distortion pedals.
Download Improved Reverberation Time Control for Feedback Delay Networks
Artificial reverberation algorithms generally imitate the frequency-dependent decay of sound in a room quite inaccurately. Previous research suggests that a 5% error in the reverberation time (T60) can be audible. In this work, we propose to use an accurate graphic equalizer as the attenuation filter in a Feedback Delay Network reverberator. We use a modified octave graphic equalizer with a cascade structure and insert a high-shelf filter to control the gain at the high end of the audio range. One such equalizer is placed at the end of each delay line of the Feedback Delay Network. The gains of the equalizer are optimized using a new weighting function that acknowledges nonlinear error propagation from filter magnitude response to reverberation time values. Our experiments show that in real-world cases, the target T60 curve can be reproduced in a perceptually accurate manner at standard octave center frequencies. However, for an extreme test case in which the T60 varies dramatically between neighboring octave bands, the error still exceeds the limit of the just noticeable difference but is smaller than that obtained with previous methods. This work leads to more realistic artificial reverberation.
Download Neural Third-Octave Graphic Equalizer
This paper proposes to speed up the design of a third-order graphic equalizer by training a neural network to imitate its gain optimization. Instead of using the neural network to learn to design the graphic equalizer by optimizing its magnitude response, we present the network only with example command gains and the corresponding optimized gains, which are obtained with a previously proposed least-squares-based method. We presented this idea recently for the octave graphic equalizer with 10 band filters and extend it here to the third-octave case. Instead of a network with a single hidden layer, which we previously used, this task appears to require two hidden layers. This paper shows that good results can be reached with a neural network having 62 and 31 units in the first and the second hidden layer, respectively. After the training, the resulting network can quickly and accurately design a third-order graphic equalizer with a maximum error of 1.2 dB. The computing of the filter gains is over 350 times faster with the neural network than with the original optimization method. The method is easy to apply, and may thus lead to widespread use of accurate digital graphic equalizers.