Download Comparison of Germanium Bipolar Junction Transistor Models for Real-time Circuit Simulation
The Ebers-Moll model has been widely used to represent Bipolar Junction Transistors (BJTs) in Virtual Analogue (VA) circuits. An investigation into the validity of this model is presented in which the Ebers-Moll model is compared to BJT models of higher complexity, introducing the Gummel-Poon model to the VA field. A comparison is performed using two complementary approaches: on fit to measurements taken directly from BJTs, and on application to physical circuit models. Targeted parameter extraction strategies are proposed for each model. There are two case studies, both famous vintage guitar effects featuring germanium BJTs. Results demonstrate the effects of incorporating additional complexity into the component model, weighing the trade-off between differences in the output and computational cost.
Download An Explorative String-bridge-plate Model with Tunable Parameters
The virtual exploration of the domain of mechano-acoustically produced sound and music is a long-held aspiration of physical modelling. A physics-based algorithm developed for this purpose combined with an interface can be referred to as a virtual-acoustic instrument; its design, formulation, implementation, and control are subject to a mix of technical and aesthetic criteria, including sonic complexity, versatility, modal accuracy, and computational efficiency. This paper reports on the development of one such system, based on simulating the vibrations of a string and a plate coupled via a (nonlinear) bridge element. Attention is given to formulating and implementing the numerical algorithm such that any of its parameters can be adjusted in real-time, thus facilitating musician-friendly exploration of the parameter space and offering novel possibilities regarding gestural control. Simulation results are presented exemplifying the sonic potential of the string-bridgeplate model (including bridge rattling and buzzing), and details regarding efficiency, real-time implementation and control interface development are discussed.
Download Modal Based Tanpura Simulation: Combining Tension Modulation and Distributed Bridge Interaction
Techniques for the simulation of the tanpura have advanced significantly in recent years allowing numerically stable inclusion of bridge contact. In this paper tension modulation is added to a tanpura model containing a stiff lossy string, distributed bridge contact and the thread. The model is proven to be unconditionally stable and the numerical solver used has a unique solution as a result of choices made in the discretisation process. Effects due to the distribution of the bridge contact forces by comparison to a single point bridge and of introducing the tension modulation are studied in simulations. This model is intended for use in furthering the understanding of the physics of the tanpura and for informing the development of algorithms for sound synthesis of the tanpura and similar stringed instruments.