Download Physical Modelling of a Wah-wah Effect Pedal as a Case Study for Application of the Nodal DK Method to Circuits with Variable Parts
The nodal DK method is a systematic way to derive a non-linear state-space system as a physical model for an electrical circuit. Unfortunately, calculating the system coefficients requires inversion of a relatively large matrix. This becomes a problem when the system changes over time, requiring continuous recomputation of the coefficients. In this paper, we present an extension of the DK method to more efficiently handle variable circuit elements. The method is exemplified with the Dunlop Crybaby wah-wah effect pedal, as the continuous change of the potentiometer position is an extremely important aspect of the wah-wah effect.
Download Analysis and Simulation of an Analog Guitar Compressor
The digital modeling of guitar effect units requires a high physical similarity between the model and the analog reference. The famous MXR DynaComp is used to sustain the guitar sound. In this work its complex circuit is analyzed and simulated by using state-space representations. The equations for the calculation of important parameters within the circuit are derived in detail and a mathematical description of the operational transconductance amplifier is given. In addition the digital model is compared to the original unit.
Download A Physically-motivated Triode Model for Circuit Simulations
A new model for triodes of type 12AX7 is presented, featuring simple and continuously differentiable equations. The description is physically-motivated and enables a good replication of the grid current. Free parameters in the equations are fitted to reference data originated from measurements of practical triodes. It is shown, that the equations are able to characterize the properties of real tubes in good accordance. Results of the model itself and when embedded in an amplifier simulation are presented and align well.
Download Realtime system for backing vocal harmonization
A system for the synthesis of backing vocals by pitch shifting of a lead vocal signal is presented. The harmonization of the backing vocals is based on the chords which are retrieved from an accompanying instrument. The system operates completely autonomous without the need to provide the key of the performed song. This simplifies the handling of the harmonization effect. The system is designed to have realtime capability to be used as live sound effect.