Download Computationally Efficient Hammond Organ Synthesis
The Hammond organ is an early electronic musical instrument, which was popular in the 1960s and 1970s. This paper proposes computationally efficient models for the Hammond organ and its rotating speaker system, the Leslie. Organ tones are generated using additive synthesis with appropriate features, such as a typical fast attack and decay envelope for the weighted sum of the harmonics and a small amplitude modulation simulating the construction inaccuracies of tone wheels. The key click is realized by adding the sixth harmonic modulated by an additional envelope to the original organ tone. For the Leslie speaker modeling we propose a new approach, which is based on time-varying spectral delay filters producing the Doppler effect. The resulting virtual organ, which is conceptually easy, has a pleasing sound and is computationally efficient to implement.
Download Modeling of the Carbon Microphone Nonlinearity for a Vintage Telephone Sound Effect
The telephone sound effect is widely used in music, television and the film industry. This paper presents a digital model of the carbon microphone nonlinearity which can be used to produce a vintage telephone sound effect. The model is constructed based on measurements taken from a real carbon microphone. The proposed model is a modified version of the sandwich model previously used for nonlinear telephone handset modeling. Each distortion component can be modeled individually based on the desired features. The computational efficiency can be increased by lumping the spectral processing of the individual distortion components together. The model incorporates a filtered noise source to model the self-induced noise generated by the carbon microphones. The model has also an input level depended noise generator for additional sound quality degradation. The proposed model can be used in various ways in the digital modeling of the vintage telephone sound.
Download Automated Calibration of a Parametric Spring Reverb Model
The calibration of a digital spring reverberator model is crucial for the authenticity and quality of the sound produced by the model. In this paper, an automated calibration of the model parameters is proposed, by analysing the spectrogram, the energy decay curve, the spectrum, and the autocorrelation of the time signal and spectrogram. A visual inspection of the spectrograms as well as a comparison of sound samples proves the approach to be successful for estimating the parameters of reverberators with one, two and three springs. This indicates that the proposed method is a viable alternative to manual calibration of spring reverberator models.
Download Vector Phaseshaping Synthesis
This paper introduces the Vector Phaseshaping (VPS) synthesis technique, which extends the classic Phase Distortion method by providing flexible means to distort the phase of a sinusoidal oscillator. This is achieved by describing the phase distortion function using one or more breakpoint vectors, which are then manipulated in two dimensions to produce waveshape modulation at control and audio rates. The synthesis parameters and their effects are explained, and the spectral description of the method is derived. Certain synthesis parameter combinations result in audible aliasing, which can be reduced with a novel aliasing suppression algorithm described in the paper. The extension is capable of producing a variety of interesting harmonic and inharmonic spectra, including for instance, formant peaks, while the two-dimensional form of the control parameters is expressive and is well suited for interactive applications.