Download Automatic Segmentation of the Temporal Evolution of Isolated Acoustic Musical Instruments Sounds Using Spectro-Temporal Cues
The automatic segmentation of isolated musical instrument sounds according to the temporal evolution is not a trivial task. It requires a model capable of capturing regions such as the attack, decay, sustain and release accurately for many types of instruments with different modes of excitation. The traditional ADSR amplitude envelope model does not apply universally to acoustic musical instrument sounds with different excitation methods because it uses strictly amplitude information and supposes all sounds manifest the same temporal evolution. We present an automatic segmentation technique based on a more realistic model of the temporal evolution of many types of acoustic musical instruments that incorporates both temporal and spectrotemporal cues. The method allows a robust and more perceptually relevant automatic segmentation of the isolated sounds of many musical instruments that fit the model.
Download Independent Manipulation of High-Level Spectral Envelope Shape Features for Sound Morphing by Means of Evolutionary Computation
The aim of sound morphing is to obtain a sound that falls perceptually between two (or more) sounds. Ideally, we want to morph perceptually relevant features of sounds and be able to independently manipulate them. In this work we present a method to obtain perceptually intermediate spectral envelopes guided by highlevel spectral shape descriptors and a technique that employs evolutionary computation to independently manipulate the timbral features captured by the descriptors. High-level descriptors are measures of the acoustic correlates of salient timbre dimensions derived from perceptual studies, such that the manipulation of the descriptors corresponds to potentially interesting timbral variations.