Download A Frequency Domain Adaptive Algorithm for Wave Separation
We propose a frequency domain adaptive algorithm for wave separation in wind instruments. Forward and backward travelling waves are obtained from the signals acquired by two microphones placed along the tube, while the separation filter is adapted from the information given by a third microphone. Working in the frequency domain has a series of advantages, among which are the ease of design of the propagation filter and its differentiation with respect to its parameters. Although the adaptive algorithm was developed as a first step for the estimation of playing parameters in wind instruments it can also be used, without any modifications, for other applications such as in-air direction of arrival (DOA) estimation. Preliminary results on these applications will also be presented.
Download Inverting the Clarinet
Physical-modelling based sound resynthesis is considered by estimating physical model parameters for a clarinet-like system. Having as a starting point the pressure and flow signals in the mouthpiece, a two-stage optimisation routine is employed, in order to estimate a set of physical model parameters that can be used to resynthesise the original sound. Tested on numerically generated signals, the presented inverse-modelling method can almost entirely resynthesise the input sound. For signals measured under real playing conditions, captured by three microphones embedded in the instrument bore, the pressure can be successfully reproduced, while uncertainties in the fluid dynamical behaviour reveal that further model refinement is needed to reproduce the flow in the mouthpiece.
Download Modal Representation of the Resonant Body within a Finite Difference Framework for Simulation of String Instruments
This paper investigates numerical simulation of a string coupled transversely to a resonant body. Starting from a complete nite difference formulation, a second model is derived in which the body is represented in modal form. The main advantage of this hybrid form is that the body model is scalable, i.e. the computational complexity can be adjusted to the available processing power. Numerical results are calculated and discussed for simplied models in the form of string-string coupling and string-plate coupling.