Download Simulating guitar distortion circuits using wave digital and nonlinear state-space formulations
This work extends previous research on numerical solution of nonlinear systems in musical acoustics to the realm of nonlinear musical circuits. Wave digital principles and nonlinear state-space simulators provide two alternative approaches explored in this work. These methods are used to simulate voltage amplification stages typically used in guitar distortion or amplifier circuits. Block level analysis of the entire circuit suggests a strategy based upon the nonlinear filter composition technique for connecting amplifier stages while accounting for the way these stages interact. Formulations are given for the bright switch, the diode clipper, a transistor amplifier, and a triode amplifier.
Download Nonlinear modeling of a guitar loudspeaker cabinet
Distortion is a desirable effect for sound coloration in electric guitar amplifiers and effect processors. At high sound levels, particularly at low frequencies, the loudspeakers used in classic style cabinets are also a source of distortion. This paper presents a case study of measurements and digital modeling of a typical guitar loudspeaker as a real-time audio effect. It demonstrates the complexity of the driver behavior, which cannot be efficiently modeled in true physical detail. A model with linear transfer functions and static nonlinearity characteristics to approximate the measured behavior is derived based upon physical arguments. An efficient method to simulate radiation directivity is also proposed.