Download RoomWeaver: A Digital Waveguide Mesh Based Room Acoustics Research Tool
RoomWeaver is a Digital Waveguide Mesh (DWM) based Integrated Development Environment (IDE) style research tool, similar in appearance and functionality to other current acoustics software. The premise of RoomWeaver is to ease the development and application of DWM models for virtual acoustic spaces. This paper demonstrates the basic functionality of RoomWeaver’s 3D modelling and Room Impulse Response (RIR) generation capabilities. A case study is presented to show how new DWM types can be quickly developed and easily tested using RoomWeaver’s built in plug-in architecture through the implementation of a hybrid-type mesh. This hybrid mesh is comprised of efficient, yet geometrically inflexible, finite difference DWM elements and the geometrically versatile, but slow, wave-based DWM elements. The two types of DWM are interfaced using a KW-pipe and this hybrid model exhibits a significant increase in execution speed and a smaller memory footprint than standard wave-based DWM models and allows nontrivial geometries to be successfully modelled.
Download Acoustical Simulations of the Human Vocal Tract Using the 1D and 2D Digital Waveguide Software Model
This paper details software under development that uses the digital waveguide physical model to represent the sound creation mechanism and environment associated with the production of speech, specifically the human vocal tract. Focus is directed towards a comparison between the existing 1D waveguide method, on which several studies have already been conducted, and the developing 2D waveguide mesh method. The construction of the two models and the application of the tract geometry is examined, in addition, the inclusion of dynamic articulatory variations to increase the ability of such systems to create natural sounding speech is discussed. Results obtained from each suggest that the 2D model is capable of producing similarly accurate vowel spectra to that already accomplished with the 1D version, although speech-like sounds created with the 2D mesh appear to exhibit greater realism.