Download An Efficient Phasiness Reduction Technique for Moderate Audio Time-Scale Modification
Phase vocoder approaches to time-scale modification of audio introduce a reverberant/phasy artifact into the time-scaled output due to a loss in phase coherence between short-time Fourier transform (STFT) bins. Recent improvements to the phase vocoder have reduced the presence of this artifact, however, it remains a problem. A method of time-scaling is presented that results in a further reduction in phasiness, for moderate time-scale factors, by taking advantage of some flexibility that exists in the choice of phase required so as to maintain horizontal phase coherence between related STFT bins. Furthermore, the approach leads to a reduction in computational load within the range of time-scaling factors for which phasiness is reduced.
Download Single-Note Ornamentation Transcription for the Irish Tin Whistle Based on Onset Detection
Ornamentation plays a very important role in Irish Traditional music, giving more expression to the music by altering or embellishing small pieces of a melody. Single-note ornamentation, such as cuts and strikes, are the most common type in Irish Traditional music and are played by articulating the note pitch during the onset stage. A technique for transcribing single note ornamentation for the tin whistle based on onset detection is presented. This method focuses on the characteristics of the tin whistle within Irish traditional music, customising a time-frequency based representation for detecting the instant when new notes played using single-note ornamentation start and release.
Download Sound Source Separation: Azimuth Discrimination and Resynthesis
In this paper we present a novel sound source separation algorithm which requires no prior knowledge, no learning, assisted or otherwise, and performs the task of separation based purely on azimuth discrimination within the stereo field. The algorithm exploits the use of the pan pot as a means to achieve image localisation within stereophonic recordings. As such, only an interaural intensity difference exists between left and right channels for a single source. We use gain scaling and phase cancellation techniques to expose frequency dependent nulls across the azimuth domain, from which source separation and resynthesis is carried out. We present results obtained from real recordings, and show that for musical recordings, the algorithm improves upon the output quality of current source separation schemes.