Download Gesturally-Controlled Digital Audio Effects
This paper presents a detailed analysis of the acoustic effects of the movements of single-reed instrument performers for specific recording conditions. These effects are shown to be mostly resulting from the difference between the time of arrival of the direct sound and that of the first reflection, creating a sort of phasing or flanging effect. Contrary to the case of commercial flangers – where delay values are set by a LFO (low frequency oscillator) waveform – the amount of delay in a recording of an acoustic instrument is a function of the position of the instrument with respect to the microphone. We show that for standard recordings of a clarinet, continuous delay variations from 2 to 5 ms are possible, producing a naturally controlled effect.
Download Examining Design Goals of Digital Musical Instruments
This paper describes the adaptation of an existing model of human information processing for the categorization of digital musical instruments in terms of performance context and behavior. It further presents a visualization intended to aid the analysis of existing DMIs and the design of new devices. Three new interfaces constructed by the authors are examined within this framework to illustrate its utility.
Download Virtual Auditory Myography of Timpani-playing Avatars
Music performance is highly related to instrumentalists’ movements and one of the biggest challenges is the identification and understanding of gesture strategies according to the plethora of musical nuances (dynamics, tempo, etc..) available to performers. During these past few years, a novel approach has been elaborated, consisting in studying movement strategies through auditory rendering. In this paper, we focus on the auditory analysis of timpani (percussion) gestures. We present a novel interface combining movement simulation and sonification as a means of enhancing the auditory analysis of timpani gestures. We further report the results from an evaluation of this interface, where we study the contributions of sonification to the multimodal display.