Download Computation of Nonlinear Filter Networks Containing Delay-Free Paths
A method for solving filter networks made of linear and nonlinear filters is presented. The method is valid independently of the presence of delay-free paths in the network, provided that the nonlinearities in the system respect certain (weak) hypotheses verified by a wide class of real components: in particular, that the contribution to the output due to the memory of the nonlinear blocks can be extracted from each nonlinearity separately. The method translates into a general procedure for computing the filter network, hence it can serve as a testbed for offline testing of complex audio systems and as a starting point toward further code optimizations aimed at achieving real time.
Download The Mellin Pizzicator
In this paper an application of the Mellin transform to the digital audio effects will be presented. Namely, low-pass and band-pass like filtering in the Mellin domain will be described and used for obtaining some kind of pizzicato effect on audio samples (musical instruments, but not only). The pluck and damp effects will be obtained using filtering in Mellin domain only. The algorithm used for implementing the Mellin (scale) transform has been presented in DAFx’04 [1].
Download Acoustic rendering of particle‐based simulation of liquids in motion
This paper presents an approach to the synthesis of acoustic emission due to liquids in motion. First, the models for the liquid motion description, based on a particle-based fluid dynamics representation, and for the acoustic emission are described, along with the criteria for the control of the audio algorithms through the parameters of the particles system. Then, the experimental results are discussed for a configuration representing the falling of a liquid volume into an underlying rigid container.
Download Physics-Based and Spike-Guided Tools for Sound Design
In this paper we present graphical tools and parameters search algorithms for the timbre space exploration and design of complex sounds generated by physical modeling synthesis. The tools are built around a sparse representation of sounds based on Gammatone functions and provide the designer with both a graphical and an auditory insight. The auditory representation of a number of reference sounds, located as landmarks in a 2D sound design space, provides the designer with an effective aid to direct his search for new sounds. The sonic landmarks can either be synthetic sounds chosen by the user or be automatically derived by using clever parameter search and clustering algorithms. The proposed probabilistic method in this paper makes use of the sparse representations to model the distance between sparsely represented sounds. A subsequent optimization model minimizes those distances to estimate the optimal parameters, which generate the landmark sounds on the given auditory landscape.
Download Reverberation still in business: Thickening and Propagating micro-textures in physics-based sound modeling
Artificial reverberation is usually introduced, as a digital audio effect, to give a sense of enclosing architectural space. In this paper we argue about the effectiveness and usefulness of diffusive reverberators in physically-inspired sound synthesis. Examples are given for the synthesis of textural sounds, as they emerge from solid mechanical interactions, as well as from aerodynamic and liquid phenomena.