Download Alias-free Virtual Analog Oscillators Using a Feedback Delay Loop
The rich spectra of classic waveforms (sawtooth, square and triangular) are obtained by discontinuities in the waveforms or their derivatives. At the same time, the discontinuities lead to aliasing when the waveforms are digitally generated. To remove or reduce the aliasing, researchers have proposed various methods, mostly based on limiting bandwidth or smoothing the waveforms. This paper introduces a new approach to generate the virtual analog oscillators with no aliasing. The approach relies on generating an impulse train using a feedback delay loop, often used for the physical modeling of musical instruments. Classic waveforms are then derived from the impulse train with a leaky integrator. Although the output generated by this method is not exactly periodic, it perceptually sounds harmonic. While additional processing is required for time-varying pitch shifting, resulting in some high-frequency attenuation when the pitch changes, the proposed method is computationally more efficient than other algorithms and the high-frequency attenuation can be also adjusted.
Download On Minimizing the Look-Up Table Size in Quasi-Bandlimited Classical Waveform Oscillators
In quasi-bandlimited classical waveform oscillators, the aliasing distortion present in a trivially sampled waveform can be reduced in the digital domain by applying a tabulated correction function. This paper presents an approach that applies the correction function in the differentiated domain by synthesizing a bandlimited impulse train (BLIT) that is integrated to obtain the desired bandlimited waveform. The ideal correction function of the BLIT method is infinitely long and in practice needs to be windowed. In order to obtain a good alias-reduction performance, long tables are typically required. It is shown that when a short look-up table is used, a windowed ideal correction function does not provide the best performance in terms of minimizing aliasing audibility. Instead, audibly improved alias-reduction performance can be obtained using a look-up table that has a parametric control over the low-order generations of aliasing. Some practical parametric look-up table designs are discussed in this paper, and their use and alias-reduction performance are exemplified. The look-up table designs discussed in this paper providing the best alias-reduction performance are parametric window functions and least-squares optimized multiband FIR filter designs.