Download Towards Transient Restoration in Score-informed Audio Decomposition
Our goal is to improve the perceptual quality of transient signal components extracted in the context of music source separation. Many state-of-the-art techniques are based on applying a suitable decomposition to the magnitude of the Short-Time Fourier Transform (STFT) of the mixture signal. The phase information required for the reconstruction of individual component signals is usually taken from the mixture, resulting in a complex-valued, modified STFT (MSTFT). There are different methods for reconstructing a time-domain signal whose STFT approximates the target MSTFT. Due to phase inconsistencies, these reconstructed signals are likely to contain artifacts such as pre-echos preceding transient components. In this paper, we propose a simple, yet effective extension of the iterative signal reconstruction procedure by Griffin and Lim to remedy this problem. In a first experiment, under laboratory conditions, we show that our method considerably attenuates pre-echos while still showing similar convergence properties as the original approach. A second, more realistic experiment involving score-informed audio decomposition shows that the proposed method still yields improvements, although to a lesser extent, under non-idealized conditions.
Download NMF Toolbox: Music Processing Applications of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a family of methods widely used for information retrieval across domains including text, images, and audio. Within music processing, NMF has been used for tasks such as transcription, source separation, and structure analysis. Prior work has shown that initialization and constrained update rules can drastically improve the chances of NMF converging to a musically meaningful solution. Along these lines we present the NMF toolbox, containing MATLAB and Python implementations of conceptually distinct NMF variants—in particular, this paper gives an overview for two algorithms. The first variant, called nonnegative matrix factor deconvolution (NMFD), extends the original NMF algorithm to the convolutive case, enforcing the temporal order of spectral templates. The second variant, called diagonal NMF, supports the development of sparse diagonal structures in the activation matrix. Our toolbox contains several demo applications and code examples to illustrate its potential and functionality. By providing MATLAB and Python code on a documentation website under a GNU-GPL license, as well as including illustrative examples, our aim is to foster research and education in the field of music processing.