Download Fade-in Control for Feedback Delay Networks
In virtual acoustics, it is common to simulate the early part of a Room Impulse Response using approaches from geometrical acoustics and the late part using Feedback Delay Networks (FDNs). In order to transition from the early to the late part, it is useful to slowly fade-in the FDN response. We propose two methods to control the fade-in, one based on double decays and the other based on modal beating. We use modal analysis to explain the two concepts for incorporating this fade-in behaviour entirely within the IIR structure of a multiple input multiple output FDN. We present design equations, which allow for placing the fade-in time at an arbitrary point within its derived limit.
Download Dark Velvet Noise
This paper proposes dark velvet noise (DVN) as an extension of the original velvet noise with a lowpass spectrum. The lowpass spectrum is achieved by allowing each pulse in the sparse sequence to have a randomized pulse width. The cutoff frequency is controlled by the density of the sequence. The modulated pulse-width can be implemented efficiently utilizing a discrete set of recursive running-sum filters, one for each unique pulse width. DVN may be used in reverberation algorithms. Typical room reverberation has a frequency-dependent decay, where the high frequencies decay faster than the low ones. A similar effect is achieved by lowering the density and increasing the pulse-width of DVN in time, thereby making the DVN suitable for artificial reverberation.