Download Audio synthesis by bitwise logical modulation
The synthesis of rich audio spectra requires usually complex source waveforms, a large number of simple source components, or increased algorithmic complexity. This paper describes an implementation, which shows that simple elementary bitwise logical operations (OR, AND, XOR) possess power to produce such spectra. Applying these operations to two sinusoidal audio oscillators produced wide variety of new harmonically related sonic material. The synthesis method is efficient to implement and easily controllable, but it is not generally band-limited.
Download Dispersion modulation using allpass filters
Dispersion is a physical phenomenon that makes sound waves more or less inharmonic. Most physical sound synthesis models consider dispersion as a constant property that does not change during the course of a musical event. However, these models would be more expressive without such a restriction. This paper describes a dispersion amount parameter for precise control over inharmonicity, and then experiments with control and audio rate modulation of that parameter. In this research we found that inharmonicity of a plucked string could be smoothly controlled in real-time, and that novel sonic material could be synthesized when the modulation rate was raised into audio range. Instability of the string model with certain parameter values was considered to be problematic.
Download Five Variations on a Feedback Theme
This is a study on a set of feedback amplitude modulation oscillator equations. It is based on a very simple and inexpensive algorithm which is capable of generating a complex spectrum from a sinusoidal input. We examine the original and five variations on it, discussing the details of each synthesis method. These include the addition of extra delay terms, waveshaping of the feedback signal, further heterodyning and increasing the loop delay. In complement, we provide a software implementation of these algorithms as a practical example of their application and as demonstration of their potential for synthesis instrument design.
Download Sound synthesis using an allpass filter chain with audio‐rate coefficient modulation
This paper describes a sound synthesis technique that modulates the coefficients of allpass filter chains using audio-rate frequencies. It was found that modulating a single allpass filter section produces a feedback AM–like spectrum, and that its bandwidth is extended and further processed by non-sinusoidal FM when the sections are cascaded. The cascade length parameter provides dynamic bandwidth control to prevent upper range aliasing artifacts, and the amount of spectral content within that band can be controlled using a modulation index parameter. The technique is capable of synthesizing rich and evolving timbres, including those resembling classic virtual analog waveforms. It can also be used as an audio effect with pitch-tracked input sources. Software and sound examples are available at
Download Vector Phaseshaping Synthesis
This paper introduces the Vector Phaseshaping (VPS) synthesis technique, which extends the classic Phase Distortion method by providing flexible means to distort the phase of a sinusoidal oscillator. This is achieved by describing the phase distortion function using one or more breakpoint vectors, which are then manipulated in two dimensions to produce waveshape modulation at control and audio rates. The synthesis parameters and their effects are explained, and the spectral description of the method is derived. Certain synthesis parameter combinations result in audible aliasing, which can be reduced with a novel aliasing suppression algorithm described in the paper. The extension is capable of producing a variety of interesting harmonic and inharmonic spectra, including for instance, formant peaks, while the two-dimensional form of the control parameters is expressive and is well suited for interactive applications.
Download Virtual Analog Oscillator Hard Synchronisation: Fourier series and an efficient implementation
This paper investigates a number of digital methods to produce the Analog subtractive synthesis effect of ‘Hard Synchronisation.’ While the original effect is produced by an explicit waveform phase reset, other approaches are given that produce an equivalent output. In particular, based on measurements taken from a real-analog synthesizer, a comb filtering model is proposed. This description ties in with earlier work but here an explicit structure is provided. This filter-based approach is then shown to be far more computationally efficient than the synchronisation by phase reset. This efficiency is at a minor cost as it is shown that it has a minimal impact on the sonic accuracy.
Download Examining the Oscillator Waveform Animation Effect
An enhancing effect that can be applied to analogue oscillators in subtractive synthesizers is termed Animation, which is an efficient way to create a sound of many closely detuned oscillators playing in unison. This is often referred to as a supersaw oscillator. This paper first explains the operating principle of this effect using a combination of additive and frequency modulation synthesis. The Fourier series will be derived and results will be presented to demonstrate its accuracy. This will then provide new insights into how other more general waveform animation processors can be designed.