Download Accurate Reverberation Time Control in Feedback Delay Networks
The reverberation time is one of the most prominent acoustical qualities of a physical room. Therefore, it is crucial that artificial reverberation algorithms match a specified target reverberation time accurately. In feedback delay networks, a popular framework for modeling room acoustics, the reverberation time is determined by combining delay and attenuation filters such that the frequencydependent attenuation response is proportional to the delay length and by this complying to a global attenuation-per-second. However, only few details are available on the attenuation filter design as the approximation errors of the filter design are often regarded negligible. In this work, we demonstrate that the error of the filter approximation propagates in a non-linear fashion to the resulting reverberation time possibly causing large deviation from the specified target. For the special case of a proportional graphic equalizer, we propose a non-linear least squares solution and demonstrate the improved accuracy with a Monte Carlo simulation.
Download Optimized Velvet-Noise Decorrelator
Decorrelation of audio signals is a critical step for spatial sound reproduction on multichannel configurations. Correlated signals yield a focused phantom source between the reproduction loudspeakers and may produce undesirable comb-filtering artifacts when the signal reaches the listener with small phase differences. Decorrelation techniques reduce such artifacts and extend the spatial auditory image by randomizing the phase of a signal while minimizing the spectral coloration. This paper proposes a method to optimize the decorrelation properties of a sparse noise sequence, called velvet noise, to generate short sparse FIR decorrelation filters. The sparsity allows a highly efficient time-domain convolution. The listening test results demonstrate that the proposed optimization method can yield effective and colorless decorrelation filters. In comparison to a white noise sequence, the filters obtained using the proposed method preserve better the spectrum of a signal and produce good quality broadband decorrelation while using 76% fewer operations for the convolution. Satisfactory results can be achieved with an even lower impulse density which decreases the computational cost by 88%.