Download Nonlinear modeling of a guitar loudspeaker cabinet
Distortion is a desirable effect for sound coloration in electric guitar amplifiers and effect processors. At high sound levels, particularly at low frequencies, the loudspeakers used in classic style cabinets are also a source of distortion. This paper presents a case study of measurements and digital modeling of a typical guitar loudspeaker as a real-time audio effect. It demonstrates the complexity of the driver behavior, which cannot be efficiently modeled in true physical detail. A model with linear transfer functions and static nonlinearity characteristics to approximate the measured behavior is derived based upon physical arguments. An efficient method to simulate radiation directivity is also proposed.
Download Passive Admittance Matrix Modeling for Guitar Synthesis
In physics-based sound synthesis, it is generally possible to incorporate a mechanical or acoustical immittance (admittance or impedance) in the form of a digital filter. Examples include modeling of the termination of a string or a tube. However, when digital filters are fitted to measured immittance data, care has to be taken that the resulting filter corresponds to a passive mechanical or acoustical system, otherwise the stability of the instrument model is at risk. In previous work, we have presented a simple method for designing and realizing inherently passive scalar admittances, by composing the admittance as a linear combination of positive real (PR) functions with nonnegative weights. In this paper the method is extended to multidimensional admittances (admittance matrices). The admittance matrix is synthesized as a sum of PR scalar transfer functions (second-order filters) multiplied by positive semidefinite matrices. For wave-based modeling, such as digital waveguides (DWGs) or wave digital filters (WDFs), the admittance matrix is converted to a reflectance filter. The filter structure is retained during conversion, resulting in a numerically robust implementation. As an example, a dual-polarization guitar string model based on the DWG approach is connected to the reflectance model parameterized from guitar bridge admittance measurements.