Download Doppler Simulation and the Leslie
An efficient algorithm for simulating the Doppler effect using interpolating and de-interpolating delay lines is described. The Doppler simulator is used to simulate a rotating horn to achieve the Leslie effect. Measurements of a horn from a real Leslie are used to calibrate angle-dependent digital filters which simulate the changing, angle-dependent, frequency response of the rotating horn.
Download A simple, accurate wall loss filter for acoustic tubes
This research presents a uniform approximation to the formulas of Benade and Keefe for the propagation constant of a cylindrical tube, valid for all tube radii and frequencies in the audio range. Based on this approximation, a simple expression is presented for a filter which closely matches the thermoviscous loss filter of a tube of specified length and radius at a given sampling rate. The form of this filter and the simplicity of coefficient calculation make it particularly suitable for real-time music applications where it may be desirable to have tube parameters such as length and radius vary during performance.
Download The Feathered Clarinet Reed
In this research, a method previously In this research, a method previouslyapplied appliedtotoimprove improve a digital simulation of the avian syrinx is adapted to the geometry of the clarinet reed. The clarinet model is studied with particular attention to the case when the reed beats again the lay of the mouthpiece, closing off air flow to the bore once each period. In place of the standard reed table which gives steady-state volume flow as a function of constant pressure difference across the reed, a more realistic dynamic volume flow model is proposed. The differential equation governing volume flow dynamics is seen to have a singularity at the point of reed closure, where both the volume flow and reed channel area become zero. The feathered clarinet reed refers to the method, first used in the syrinx, to smooth or feather the volume flow cutoff in a closing valve. The feathered valve eliminates the singularity and reduces artifacts in the simulated clarinet output.
Download Sound synthesis using an allpass filter chain with audio‐rate coefficient modulation
This paper describes a sound synthesis technique that modulates the coefficients of allpass filter chains using audio-rate frequencies. It was found that modulating a single allpass filter section produces a feedback AM–like spectrum, and that its bandwidth is extended and further processed by non-sinusoidal FM when the sections are cascaded. The cascade length parameter provides dynamic bandwidth control to prevent upper range aliasing artifacts, and the amount of spectral content within that band can be controlled using a modulation index parameter. The technique is capable of synthesizing rich and evolving timbres, including those resembling classic virtual analog waveforms. It can also be used as an audio effect with pitch-tracked input sources. Software and sound examples are available at
Download Alias-free Virtual Analog Oscillators Using a Feedback Delay Loop
The rich spectra of classic waveforms (sawtooth, square and triangular) are obtained by discontinuities in the waveforms or their derivatives. At the same time, the discontinuities lead to aliasing when the waveforms are digitally generated. To remove or reduce the aliasing, researchers have proposed various methods, mostly based on limiting bandwidth or smoothing the waveforms. This paper introduces a new approach to generate the virtual analog oscillators with no aliasing. The approach relies on generating an impulse train using a feedback delay loop, often used for the physical modeling of musical instruments. Classic waveforms are then derived from the impulse train with a leaky integrator. Although the output generated by this method is not exactly periodic, it perceptually sounds harmonic. While additional processing is required for time-varying pitch shifting, resulting in some high-frequency attenuation when the pitch changes, the proposed method is computationally more efficient than other algorithms and the high-frequency attenuation can be also adjusted.
Download Pitch glide analysis and synthesis from Recorded Tones
Pitch glide is an important effect that occurs in nearly all plucked string instruments. In essence, large amplitude waves traveling on a string during the note onset increases the string tension above its nominal value, and therefore cause the pitch to temporarily increase. Measurements are presented showing an exponential relaxation of all the partial frequencies to their nominal values with a time-constant related to the decay rate of transverse waves propagating on the string. This exponential pitch trajectory is supported by a simple physical model in which the increased tension is somewhat counterbalanced by the increased length of the string. Finally, a method for synthesizing the plucked string via a novel hybrid digital waveguide-modal synthesis model is presented with implementation details for time-varying resonators.
Download Digital Simulation of “Brassiness” and Amplitude-Dependent Propagation Speed in Wind Instruments
The speed of sound in air increases with pressure, causing pressure peaks to travel faster than troughs, and leading to a sharpening of the propagating pressure waveform. Here, this nonlinear effect is explored, and its application to brass instrument synthesis and its use as an audio effect are described. Acoustic measurements on tubes and brass instruments are presented showing significant spectral enrichment, sometimes referred to as “brassiness.” The effect may be implemented as an amplitudedependent delay, distributed across a cascade of incremental delays. A bidirectional waveguide, having a pressure-dependent delay, appropriate for musical instrument synthesis, is presented. A computationally efficient lumped-element processor is also presented. Example brass instrument recordings, originally played softly, are spectrally enriched or “brassified” to simulate a fortissimo playing level.
Download Modeling Methods for the Highly Dispersive Slinky Spring: A Novel Musical Toy
The ’Slinky’ spring is a popular and beloved toy for many children. Like its smaller relatives, used in spring reverberation units, it can produce interesting sonic behaviors. We explore the behavior of the ’Slinky’ spring via measurement, and discover that its sonic characteristics are notably different to those of smaller springs. We discuss methods of modeling the behavior of a Slinky via the use of finite-difference techniques and digital waveguides. We then apply these models in different structures to build a number of interesting tools for computer-based music production.
Download Uniform Noise Sequences for Nonlinear System Identification
Noise-based nonlinear system identification techniques using Hammerstein and Wiener forms have found wide application in biological system modeling, and been applied to modeling nonlinear audio processors such as the ring modulator. These methods apply noise to the system, and project the system output onto a set of orthogonal polynomials to reveal parameters of the model. Though Gaussian sequences are invariably used to drive the unknown system, it seems clear that the statistics of the input will affect the model estimate. Motivated by the limited input and output ranges supported by analog systems, in this work, the use of an input noise sequence having a uniform distribution is explored. In addition, an error measure indicating harmonic distortion modeling accuracy is introduced. Simulation results identifying Hammerstein and Wiener systems show that the uniform and Gaussian distributions perform differently, with the uniform distribution generally producing more accurate harmonic responses. Finally, uniform noise and Gaussian noise are used to model a saturating low-pass circuit similar to that of the Tube Screamer, with the uniform distribution providing a modest improvement in noise response error.
Download Wave Digital Filter Adaptors for Arbitrary Topologies and Multiport Linear Elements
We present a Modified-Nodal-Analysis-derived method for developing Wave Digital Filter (WDF) adaptors corresponding to complicated (non-series/parallel) topologies that may include multiport linear elements (e.g. controlled sources and transformers). A second method resolves noncomputable (non-tree-like) arrangements of series/parallel adaptors. As with the familiar 3-port series and parallel adaptors, one port of each derived adaptor may be rendered reflection-free, making it acceptable for inclusion in a standard WDF tree. With these techniques, the class of acceptable reference circuits for WDF modeling is greatly expanded. This is demonstrated by case studies on circuits which were previously intractable with WDF methods: the Bassman tone stack and Tube Screamer tone/volume stage.