For their low and constant computational cost, non-iterative methods for the solution of differential problems are gaining popularity
in virtual analog provided their stability properties and accuracy
level afford their use at no exaggerate temporal oversampling. At
least in some application case studies, one recent family of noniterative schemes has shown promise to outperform methods that
achieve accurate results at the cost of iterating several times while
converging to the numerical solution. Here, this family is contextualized and studied against known classes of non-iterative methods.
The results from these studies foster a more general discussion
about the possibilities, role and prospective use of non-iterative
methods in virtual analog.