Beat-Marker Location using a Probabilistic Framework and Linear Discriminant Analysis

Geoffroy Peeters
DAFx-2009 - Como
This paper deals with the problem of beat-tracking in an audiofile. Considering time-variable tempo and meter estimation as input, we study two beat-tracking approaches. The first one is based on an adaptation of a method used in speech processing for locating the Glottal Closure Instants. The results obtained with this first approach allow us to derive a set of requirements for a robust approach. This second approach is based on a probabilistic framework. In this approach the beat-tracking problem is formulated as an “inverse” Viterbi decoding problem in which we decode times over beat-numbers according to observation and transition probabilities. A beat-template is used to derive the observation probabilities from the signal. For this task, we propose the use of a machine-learning method, the Linear Discriminant Analysis, to estimate the most discriminative beat-template. We finally propose a set of measures to evaluate the performances of a beattracking algorithm and perform a large-scale evaluation of the two approaches on four different test-sets.
Download