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ABSTRACT

In this study, we investigate the feasibility of utilizing state-
of-the-art perceptual image metrics for evaluating audio signals by
representing them as spectrograms. The encouraging outcome of
the proposed approach is based on the similarity between the neu-
ral mechanisms in the auditory and visual pathways. Furthermore,
we customise one of the metrics which has a psychoacoustically
plausible architecture to account for the peculiarities of sound sig-
nals. We evaluate the effectiveness of our proposed metric and sev-
eral baseline metrics using a music dataset, with promising results
in terms of the correlation between the metrics and the perceived
quality of audio as rated by human evaluators.

1. INTRODUCTION

Perceptual assessment of the quality of audio signals has been
explored to varying degrees for different kinds of audio content.
Whilst there exist several tools to understand speech quality [1],
the evaluation of music is rarely explored and comes in the form
of software hidden behind commercial licences [2]. More gener-
ally, practitioners rely either on traditional physical measures of
the audio signal, e.g., signal-to-noise ratio (SNR), or more recent
deep learning-based metrics that involve noninterpretable models
to capture statistics of the degradation [3]. The picture is quite dif-
ferent in the visual modality, where many more perceptual models
have been developed over the years for these purposes – and well-
curated datasets are readily available [4, 5].

It is well-known that the auditory and visual processing path-
ways share similar attributes. For example, divisive normalisation,
a form of local gain control, is a well explored phenomenon that
is encountered when studying neurons in the brain [6, 7]. Specifi-
cally in vision, divisive normalisation has been shown to factorise
the probability density function of natural images [8]. In audio the
same phenomenon has been shown to minimise the dependencies
between between natural sound stimuli responses to filters of cer-
tain frequencies [7]. Other behaviours such as signal adaptation
can also be observed in both modalities [9]. Many of these ideas
form the basis of the design of image quality metrics, but, as they
are also observed in auditory statistics or psychophysical tests, we
argue they should be included in the design of audio quality met-
rics.
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The algorithmic parallelism and interaction between neural
pathways implies that audio signals can alter the perception of vi-
sual stimuli [10], and examples of this (audio-to-vision) correla-
tion are present even in pop music [11]. Here we take the opposite
(vision-to-audio) approach: what you hear is what you see.

We draw inspiration from state-of-the-art image quality met-
rics to bridge the gap with their audio counterparts, which are not
so successful at predicting perceived quality, for example, when
evaluating neural audio synthesis [12]. Although raw audio takes a
very different form to images, well-studied transformations can be
used to align the two modalities. For example, spectrograms rep-
resent audio signals using image-like 2D matrices, where each col-
umn represents a time window and each row is a frequency band.
As such, spectrograms encode the audio signal similar to wavelet
decompositions that are often used in image metrics [8, 13]. We
can then use these representations to exploit the literature on im-
age quality metrics (IQMs) to estimate audio quality. Importantly,
whilst the structure and semantics of spectrograms are different to
images, the underlying principles are similar, e.g. the importance
of amplitude (brightness) and local differences (contrast).

The paper is organised as follows: firstly, we show that popu-
lar IQMs can outperform metrics specifically designed for audio.
Secondly we show that fine-tuning a traditional IQM based on di-
visive normalisation, which is also seen in auditory processing, can
further improve results. We also provide the intuition behind what
this tuned metric is capturing about the properties of audio.

2. QUALITY METRICS

Quality metrics aim to replicate the distance between two exam-
ples perceived by a human. This usually involves projecting the
raw data to a perceptually meaningful space and computing a dis-
tance, or computing and comparing statistical descriptors of the
examples. Below we will detail a number of audio and image qual-
ity metrics used throughout the paper.

2.1. Image Quality Metrics

Traditional IQMs fall into two categories; structural similarity,
comparing descriptions of image statistics, and visibility of errors,
which aims to measure how visible the distortions are to humans.
Multi-Scale Structural SIMilarity (MS-SSIM) [14] is based on the
former and compares three descriptors (luminance, contrast and
structure) at various scales. Normalised Laplacian Pyramid Dis-
tance (NLPD) [15], based on the visibility of errors, is inspired by
the biological processing in the visual system. Coincidentally, this
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Figure 1: Architecture for one stage k of the Normalised Lapla-
cian Pyramid model, where x(k) is the input at stage k, L(ω) is a
convolution with a low-pass filter, [2 ↓] is a downsample of factor
two, [2 ↑] is an upsample of factor two, x(k+1) is the input image
at stage (k + 1), P (k)(ω) is s scale-specific filter for normalising
the image with respect to the local amplitude, σ(k) is scale-specific
constant and y(k) is the output at scale k. Figure taken from [15].

processing is also present in the auditory system and we will use
this to fine-tune NLPD to audio (sec. 3).

2.2. Audio Quality Metrics

Audio quality metrics have typically been designed for evaluating
audio coding and source separation artifacts [16]. Here, we com-
pare three recent metrics. Fréchet Audio Distance (FAD) [17] is a
reference-free metric for evaluating generated audio based on the
Fréchet Inception Distance (FID) commonly used in images [18].
FAD uses embeddings from the VGGish model [19] to measure
the distance between previously learned clean studio quality mu-
sic and a given audio clip. Virtual Speech Quality Objective Lis-
tener (ViSQOL) [20] is a full-reference metric based on the Neural
Similarity Measure (NSIM) [21] between spectrograms. NSIM is
similar to SSIM, using the luminance and structure terms but drop-
ping the contrast term. Additionally it uses a support vector regres-
sion model to map the NSIM scores more closely to Mean Opinion
Scores. The discriminator output of a Generative Adversarial Net-
work (GAN) can also be used to predict perceptual ratings [3].

3. NORMALISED LAPLACIAN PYRAMID DISTANCE

NLPD is our example case for adapting existing image metrics
to audio. The Laplacian Pyramid is well known in image cod-
ing [22]. The signal is encoded by applying a low-pass filter and
then subtracting this from the original image multiple times at var-
ious scales, creating low entropy versions of the signal. The Nor-
malised Laplacian Pyramid (NLP) extends this with a local nor-
malisation on the output of each pyramid level [15]. These two
steps are similar to the early stages of the visual and auditory sys-
tems where linear filtering and local normalisation are present [7,
13, 9]. The distance in this new domain is referred to as NLPD [15,
23], correlates well with human perception, and reduces redun-
dancy in agreement with the efficient coding hypothesis [8].

An overview of the architecture is detailed in Fig. 1. Given
two images, x1 and x2, we compute the outputs y

(k)
1 and y

(k)
2 at

every stage of the pyramid k, and sum the differences:

NLPD(x1, x2) =
1

N

N∑
k=1

1√
N

(k)
s

||y(k)
1 − y

(k)
2 ||2 (1)

where N is the number of stages in the pyramid, and N
(k)
s is the

number of coefficients at stage k.

4. EXPERIMENTS

4.1. Data

We use the Perceived Music Quality Dataset from [3]. It consists
of 4-second audio clips across 13 genres, with 5 songs per genre
and 3 clips per song, totalling 195 reference clips. These reference
clips are degraded in four ways: waveshape distortion, low pass
filtering, limiting and additive noise, resulting in 975 clips. We
divide this into an 80-20 train-test split, in which the test set con-
tains all 3 clips for the last song in each genre. Each clip has an
associated perceptual quality rating on a scale from 1 to 5 These
ratings were gathered using Amazon Mechanical Turk using a no-
reference paradigm. Each clip was rated by at least 5 participants
and the median value was taken.

For the SSIM, NLPD, and Mean Square Error (MSE) metrics
the audio clips are downmixed into mono and converted into mel
spectrograms. The audio is downsampled from 48kHz to 16050Hz
with 512 mel-bands, a window size of 2048, and a hop-length of
64, resulting in spectrograms of size 512×1024. For NLPD we use
6 pyramidal layers, with inputs being halved in size for each layer
down to 16 × 32. The SSIM ratings are calculated using Pytorch
MS-SSIM1. For ViSQOL and FAD, the clips are downmixed into
mono and converted from 32-bit to 16-bit WAV files. Ratings are
calculated using the ViSQOL2 and FAD3 packages.

Table 1: Spearman correlation between human ratings and var-
ious metrics. NLPD [15] and (MS-)SSIM [14] are image qual-
ity metrics, whilst ViSQOL [20], FAD [17] and GAN [3] are au-
dio quality metrics. We report the correlation for each degrada-
tion type separately as well as for all degradations simultaneously.
GAN results are taken from the respective paper [3].

Metric Waveshape Lowpass Limiter Noise All

MSE 0.469 -0.049 0.378 0.641 0.483
NLPD 0.468 0.012 0.339 0.681 0.633
SSIM -0.450 -0.175 -0.356 -0.629 -0.656
MS-SSIM -0.468 -0.045 -0.323 -0.654 -0.648
ViSQOL -0.142 0.191 -0.316 -0.629 -0.232
FAD 0.386 -0.083 0.316 0.550 0.593
GAN* 0.349 0.222 0.120 0.359 0.426

4.2. NLPD Optimisation

To fine-tune NLPD to audio we optimise the filters P (k)(ω) and
the constant σ(k) in the divisive normalisation stages. There are
two possible methods; statistically [15] or perceptually [13]. We
use 5x5 filters in both cases.

Optimising statistically consists of calculating average pixel
values of the band-passed spectrograms z separately for each layer
k. The divisive normalisation filters are learned as weights pj that
transform the weighted sum of pixel values in the neighbourhood

1https://github.com/VainF/pytorch-msssim
2https://github.com/google/visqol
3–/google-research/google-research/tree/master/frechet_audio_distance
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surrounding each pixel to approximate the centre pixel, j:

f
(k)
C (zNi) = σ(k) +

∑
j∈Ni

p
(k)
j

∣∣∣z(k)j

∣∣∣ (2)

where Ni defines the neighbourhood (filter size) to be considered.
The constant σ(k) is the mean absolute value of z for each layer:

σ(k) =
1

N
(k)
s

N
(k)
s∑

i=1

∣∣∣z(k)i

∣∣∣ (3)

where Ns is the number of coefficients at stage k, i.e. dimensions
of z. The weights are optimised with Eq. 4. We optimise over
the reference spectrograms contained in the training set only, using
ADAM optimiser, learning rate 0.01, batch size of 1 for 10 epochs.

p̂(k) = argmin
p

N
(k)
s∑

i=1

(∣∣∣z(k)i

∣∣∣− fC
(
z
(k)
Ni

))2

(4)

Optimising perceptually consists of maximising the Pearson’s cor-
relation between the NLPD and the human ratings of each refer-
ence audio clip and a degraded version of the clip. The filters are
initialised to be the image NLPD values, and σ(k) is initialised
with Eq .3. We use ADAM optimiser to maximise the Pearson
correlation with a learning rate of 0.001 for 100 epochs, where
each batch only contains one degradation. We use Pearson as the
training objective instead of Spearman’s, assuming approximately
linear rankings, as the sorting operation has undefined gradients.

Table 2: Spearman correlations for variations of the NLPD. Orig-
inal: filters fit statistically to natural images [15]. No DN: NLP
with no divisive normalisation stage. P (ω) = 1: divisive normal-
isation filters are all ones. Statistical: filters optimised to predict
the center pixel given its neighbours. Perceptual: model optimised
to maximise correlation with human ratings.

Metric Waveshape Lowpass Limiter Noise All

Original 0.468 0.012 0.339 0.681 0.633
No DN 0.412 -0.052 0.336 0.670 0.617
P (ω) = 1 0.457 -0.022 0.380 0.669 0.629
Statistical 0.432 -0.033 0.356 0.660 0.619
Perceptual 0.430 0.035 0.347 0.637 0.643

5. RESULTS AND DISCUSSION

5.1. Main findings

Table 1 shows correlations between humans and perceptual qual-
ity metrics. Surprisingly, IQMs perform better than AQMs for all
degradations other than the low pass filter. However, the limiter
and low pass filter had much weaker p-values so these correla-
tions could be due to chance. We think this is partly because the
amount of degradation applied in those cases was not high enough
compared to the waveshaping and noise degradations. This is in-
dicated by the degraded audio being judged as better quality than
the reference in some pairs.

Table 2 shows results for adapting NLPD to audio using five
different divisive normalisation strategies: 1. using filters from
NLPD optimised statistically on natural images (as in Table 1), 2.

with no divisive normalisation, 3. setting the filters in the divisive
normalisation to one (for equal contribution of all the neighbours),
4. fitting the model statistically on spectrograms (where no per-
ceptual information is used), and 5. maximising the correlation be-
tween spectrograms and the opinion of humans. The perceptually
trained divisive normalisation has the highest correlation when all
degradations are tested simultaneously, and other strategies trained
on spectrograms increase correlation for the low pass and limiter
degradations. For waveshape and noise, the forms of divisive nor-
malisation using spectrograms decrease the correlation compared
to training on natural images. The relationship between the degra-
dations tested and the form of divisive normalisation used could be
further explored as this process may effectively be reducing certain
degradations, i.e. enhancing the signal.

Fig. 2 shows the learned divisive normalisation filters at dif-
ferent layers of the NLPD for 3 optimisation strategies. For the
first four layers, the statistical spectrogram model focuses almost
exclusively within the central frequency band, particularly at the
time steps immediately before and after the central bin. This is
similar to later layers of the model fit to natural images but dif-
ferent from early layers, where both directions are important. The
later layers of the statistical spectrogram model look across bands
but only within a single timestep in a manner completely unlike
the image model. This may reflect the pattern of repeating har-
monics in spectrogram signals. This may only be captured at later
layers as early layers have a higher resolution, i.e. there are more
frequency bands between harmonics. Using larger filters at early
layers may help to capture this. The fact that the model only uses
the central timestep at later layers may reflect the way that later
layers are effectively averaging across longer time windows. As
such, the signal will vary less smoothly between time bins and so
will be less predictive of the central value. Larger time filters may
start to capture rhythmic information. In contrast, the perceptual
spectrogram filters consider both time and frequency simultane-
ously, like early layers of the image model, with layers exhibiting
more smoothing behaviour in general. This may indicate that per-
ceptually trained models may be better at capturing degradations
that effect lower energy regions than statistical models.

5.2. Further Work

We have identified a need for a greater number of publicly avail-
able datasets of perceptual quality in audio with a larger variety
of sounds and degradation types. The scores in the GAN and
ViSQOL papers were collected according to the ITU-T P.800 rec-
ommendation (for telephone conversations). However, according
to ITU-R BS.1534-1 this proved insufficient for evaluating audio
signals of broadcast quality. Instead the "MUlti Stimulus test with
Hidden Reference and Anchor" is the recommended grading pro-
cedure, as is used in [12]. The non-adaptive psychophysical Two
Alternate Forced Choice (2AFC) paradigm, as used in IQMs [4, 5]
would also be suitable. Preliminary tests should be performed to
ensure the range of degradation is similar across degradation types.
Tests should also scale degradation amounts to avoid improving
the perceptual quality above the reference. A task training pro-
cedure or better task descriptions could also improve rating qual-
ity, as according to [3], participants were asked "How do you rate
the audio quality of this music segment?" where "quality" is left
largely up to participants to interpret. Such a dataset would allow
for a more reliable comparison with contemporary [24, 25] and fu-
ture AQMs. We also plan to investigate how divisive normalisation
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Figure 2: Divisive normalisation filters learnt different optimisation strategies. Each column is a different layer in the pyramid, k. The top
row (image) is the implementation of NLPD used for images, the second row (statistical) is statistically fit to audio spectrograms (Eq. 4),
and the final row (perceptual) are filters resulting from fitting NLPD to perceptual judgements on audio.

may be better tailored to audio, such as by using separate filters for
time and frequency. We intend to use these metrics as a loss func-
tion in generative modelling, so that such models generate audio
samples that sound more realistic with fewer perceived distortions.
We also want to investigate the degree to which navigating through
latent spaces of models trained with perceptual metrics aligns with
human expectations of how the generated audio should change.
We believe this should help with explainability, trust and control
over the outputs of generative audio models.
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