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ABSTRACT

This paper is concerned with the design of efficient and control-
lable filters for sound synthesis purposes, in the context of the
generation of sounds radiated by nonlinear sources. These filters
are coupled and generate tonal components in an interdependent
way, and are intended to emulate realistic perceptually salient ef-
fects in musical instruments in an efficient manner. Control of
energy transfer between the filters is realized by defining a ma-
trix containing the coupling terms. The generation of prototypical
sounds corresponding to nonlinear sources with the filter bank is
presented. In particular, examples are proposed to generate sounds
corresponding to impacts on thin structures and to the perturbation
of the vibration of objects when it collides with an other object.
The different sound examples presented in the paper and avail-
able for listening on the accompanying site tend to show that a
simple control of the input parameters allows to generate sounds
whose evocation is coherent, and that the addition of random pro-
cesses allows to significantly improve the realism of the generated
sounds.

1. INTRODUCTION

Modal synthesis operates according to the decomposition of the
complex dynamic behavior of a vibrating object into contributions
from modes, each oscillating independently at a single frequency.
This approach, applicable to linear and time-invariant systems, is
widely used and forms the basis for various physical modelling
synthesis software packages [1] [2] and is closely related to sound
synthesis methodologies employing filter banks [3] [4] [5].

For vibrating objects incorporating nonlinear effects, the modal
interpretation must be generalized to include energy transfer be-
tween different modes (among other things such as e.g. frequency
shifting of modes over time). It may cause the delayed and sus-
tained appearance of tonal components that cannot be generated
by linear filtering. This complex phenomenon, widely studied for
the typical case of thin plates and shells [6] [7], can be modelled
and solved under certain conditions. The numerical solution of the
Föppl-von Kármán system [8, 9] that governs the underlying dy-
namics of nonlinear thin plates at moderate vibration amplitudes
yields realistic and convincing sound synthesis [10], but at heavy
computational cost. Ducceschi and Touzé [11] propose the modal
resolution of the system with the offline calculation of coupling
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coefficients. They manage under certain approximations to signif-
icantly reduce the computation time without being able to achieve
real-time sound synthesis (about 8 times real-time on a CPU) [12].
Another typical case of coupling between modes induced by non-
linear phenomena concerns collisions in musical instruments [13]
and has been the subject of various studies, including on modal in-
teractions [14]. Computational cost for synthesis can also be heavy
in such cases.

For synthesis purposes, and particularly if real-time perfor-
mance is the ultimate aim, it can be useful to depart from strict
physical models, and examine modal interactions from a percep-
tual point of view. Skare and Abel [15] perform real-time modal
synthesis of crash cymbals with a GPU-accelerated modal filter-
bank. Their method consists in identifying the modal parameters
(including a rough approximation of the couplings) on recorded
sounds, although the energy transfer mechanism is unspecified.

In this paper, we design coupled filters based on the design
proposed by Mathews and Smith [16] and adapted by Skare and
Abel [15] to incorporate energy transfer. In particular, we propose
an equivalence between the power of the signal corresponding to
a tonal component and the energy of a vibration mode from an
equivalent physical system to ensure energy conservation during
transfers. Inter-modal energy transfer is encoded in a matrix con-
taining all the coupling coefficients. The aim of this paper is not to
propose a synthesis model performing an accurate simulation of a
physical system. Instead, we seek to develop a framework allow-
ing direct modelling of sounds targeted to the way they are per-
ceived. This results in an efficient way to generate sounds evoking
nonlinear sources and can yield real-time event-driven synthesis of
sounds in virtual or augmented reality environments, a particularly
active field of research [17] [18].

Some background on modal synthesis and linear filtering is
given in Section 2. Then, the coupling between the filters is pre-
sented in Sec.3, the stability of the filters is discussed in Sec.3.2,
and the definition of the matrix containing the coupling terms is
proposed in Sec.4. Various example systems used to generate pro-
totypical sounds are presented in Sec.5. Sound examples are avail-
able online at the following address [19].

2. MODAL SYNTHESIS AND LINEAR FILTERING

The modal resolution of a linear partial differential equations (PDE)
system describing the vibrations of a resonant object is well-described
in various texts [20]. Solutions are of the following form for the
displacement w depending on a spatial coordinate r and time t:

w(r, t) = wh(r, t)︸ ︷︷ ︸
homogeneous solution

+ wp(r, t)︸ ︷︷ ︸
particular solution

, (1)
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where

wh(r, t) =

∞∑
i=1

e−αit [Ai cos(ωit+ φi)]ϕi(r) (2a)

wp(r, t) =

∞∑
i=1

(gi(t) ∗ hi(t))ϕi(r), (2b)

Here, ∗ represents a convolution operation, and the impulse re-
sponse hi(t) of the following form:

hi(t) =
1

ωi
e−αit sin(ωit) (3)

the function ϕi(r) is the ith mode’s shape or basis function, ωi

and αi are the angular frequency and the damping coefficient of
the ith mode, respectively. The constants Ai and φi derive from
the initial conditions and gi(t) is the modal excitation (projection
of an excitation source g(r, t) onto the modal basis functions).

One may note that the modal model does not necessarily de-
rive from the solution of partial differential equations. The modal
parameters may be identified directly from experimental measure-
ments (recording) or from numerical simulations.

A straightforward approach to numerical solution at a sam-
ple rate fs in Hz is to use recursive filters with an exponentially-
damped sinusoidal impulse response (IIR). The filter proposed by
Mathews and Smith [16] has this property. The implementation of
this filter consists in calculating, for each time step n, the imag-
inary part of a complex number z(n) whose rotation speed in
the complex plane is constant and corresponds to the angular fre-
quency ω of the exponentially damped sinusoid:

y(n) = Im(z(n)) where z(n+1) = Zz(n)+u(n) (4)

with u(n) the source of the filter, and Z the constant modification
of the phase and modulus in one time step:

Z = e−α/fsejω/fs = X + jY (5)

with X = e−α/fs cos(ω/fs) and Y = e−α/fs sin(ω/fs).
The recurrence equation on the complex sequence z(n) is com-

puted by the following system including a recurrence equation for
the real part x(n) = Re(z(n)) and a recurrence equation for the
imaginary part y(n) = Im(z(n)), which is the output of the filter:

x(n+ 1) = Re(z(n+ 1)) = Xx(n)− Y y(n) + u(n)

y(n+ 1) = Im(z(n+ 1)) = Y x(n) +Xy(n)
(6)

for a real source u(n) ∈ R.

3. COUPLING BETWEEN THE FILTERS

3.1. Principle and implementation

Consider N filters defined as in the previous section in parallel
and we wish to couple them. We note zi(n) the complex sequence
corresponding to the ith filter, with xi(n) its real part and yi(n)
its imaginary part (corresponding to the output signal of the filter).
The source for the ith filter, corresponding to the projection of the
source of the filter bank u(n) onto the ith modal basis function, is
noted ui(n).

The mechanical energy corresponding to the vibration of a
mode is proportional to the square of the amplitude of the displace-
ment. From a signal point of view, the square of the amplitude

of a tonal component corresponds to twice the power of the sig-
nal. Postulating a linear relation between the displacement of the
structure and the sound produced, we have chosen to model the
energy transfers between the modes by power transfers between
the filters [21]. If we only look at the power evolutions linked to
the energy transfers (by postulating a null source), we write the
following recurrence relation on the powers of the output signals
of the different filters Pi:

Pi(n+ 1) =

Pi(n) + Ti(n)︸ ︷︷ ︸
transfer

 e−2αi/fs︸ ︷︷ ︸
losses

(7)

with
Pi(n+ 1) ≥ 0 ⇔ Pi(n) + Ti(n) ≥ 0, (8)

and Pi(n) the power of the tonal component:

Pi(n) =
|zi(n)|2

2
=

1

2
(xi(n)

2 + yi(n)
2) (9)

xi(n), yi(n) ∈ R.

Thus, we can express the variation of the modulus of zi(n)
due to energy transfer between two time steps:

|zi(n+ 1)| =
√

|zi(n)|2 + 2Ti(n) e
−αi/fe (10)

We can define an amplitude ratio between the modulus for two
consecutive time steps if |zi(n)| ̸= 0:

|zi(n+ 1)|
|zi(n)|

=

√
1 +

2Ti(n)

|zi(n)|2︸ ︷︷ ︸
transfer

e−αi/fe︸ ︷︷ ︸
losses

(11)

Thus, we can modify the recurrence equation defined in the
previous section (see Eq.(4)) by incorporating the modulus vari-
ations due to energy transfers. It gives the following recurrence
relation for zi, including the source and phase variations:

zi(n+1) =

{ √
2Ti(n)Zi + ui(n) if zi(n) = 0√
1 + 2Ti(n)

|zi(n)|2Zizi(n) + ui(n) else

(12)
with Zi = e−αi/fsejωi/fs = Xi + jYi, as defined in Eq(5). One
can note that Ti(n) > 0 if zi(n) = 0 (see Eq.(8)). This implies
that the term

√
2Ti(n) is real in the first part of Eq.(12).

Finally, we can write the system of equations for the imple-
mentation of the filters (see Figure 1 for a representation in block
diagram):

xi(n+ 1) = Re(zi(n+ 1)) = Xix̃i(n)− Yiỹi(n) + ui(n)

yi(n+ 1) = Im(zi(n+ 1)) = Yix̃i(n) +Xiỹi(n)

(13)

with

x̃i(n) =

{ √
2Ti(n) if zi(n) = 0√
1 + 2Ti(n)

|zi(n)|2 xi(n) else

ỹi(n) =

{
0 if zi(n) = 0√

1 + 2Ti(n)

|zi(n)|2 yi(n) else

(14)
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In this way, power can be transferred among the different fil-
ters without affecting the phases. The coupling intervenes in the
calculation of the transfer terms Ti(n) which ultimately involve
the other filters (see Figures 1 and 2).
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Figure 1: Block diagram of a filter for the generation of the signal
corresponding to a vibration mode. u corresponds to the source
entering this particular filter and the block Ti corresponds to the
calculation involving the states of other filters (coupling term).

3.2. Energy and stability

A sufficient condition for the stability of the filter bank is to impose
a non-positivity constraint for the transfer terms:

N∑
i=1

Ti(n) ≤ 0 (15)

This condition impedes the creation of energy during transfer be-
tween modes for an equivalent physical system.

Also, the sum is bounded by the condition defined in Eq.(8) (a
filter cannot transfer more power than it possesses):

N∑
i=1

Ti(n) ≥ −
N∑
i=1

Pi(n) (16)

One can note that it is possible to consider a less restrictive
stability condition that binds the transfer term to be lower than the
power decrease due to losses:

N∑
i=1

(Pi(n) + Ti(n)) e−2αi/fs ≤
N∑
i=1

Pi(n)

⇔
N∑
i=1

Ti(n) e
−2αi/fs ≤

N∑
i=1

Pi(n)
(
1− e−2αi/fs

)
(17)

However, this condition cancels the effect of dissipation and is not
consistent with an equivalent physical system. We prefer to con-
sider the condition presented Eq.(15) for the rest of the document.

4. DISTRIBUTION MATRIX

This section presents a formalism for the calculation and control of
the coupling between filters. The challenge is to arrive at a model

Coupled filters

u(n)

  Filter associated to mode  N

z-1

H
i

T
i

  Filter associated to mode 1

.

.

.

s(n)

Figure 2: Schematic representation of the coupled filter bank. the
double arrow connecting the two boxes represents the coupling be-
tween the filters through the transfer vector t. The output of the fil-
ter bank is the sum of the outputs of the filters s(n) =

∑N
i=1 yi(n)

simple enough to be controllable (i.e., to be able to predict the
sound outcome of a manipulation of the parameters) and complete
enough to allow the matching of modal trajectories to a range of
nonlinear phenomena.

Now define the column vectors p(n) = [P1(n), . . . , PN (n)]T

and t(n) = [T1(n), . . . , TN (n)]T . The power transfers between
the tonal components t(n) at a given time step n are defined as:

t(n) = M [p(n)− τ ]+ . (18)

Here, [·]+ indicates the “positive part of", i.e., [ζ]+ = 1
2
(ζ + |ζ|).

An N × 1 column vector τ containing the thresholds τi, i =
1, . . . , N at which transfers are activated for each tonal compo-
nent has also been introduced here.

Thus, the calculation of the transfer terms is performed by the
matrix product of an N × N redistribution matrix M with the
vector resulting from the positive part of the difference between
the power of each frequency component p(n) and the associated
threshold τ . In other words, the transfer terms Ti(n) are propor-
tional to the excess power above the corresponding threshold and
the terms of the matrix M define the proportions distributed and
received by each other component. Note that this relation is not
an immediate consequence of a physical model but is a heuristic
means of capturing salient phenoemna in a physical system. Our
focus is on the design of a synthesis process with a predictable
sound outcome rather than on the simulation of a physical system.

To respect the stability condition Eq.(15), we set the sum of
all values of a given column of the matrix M to be lower or equal
to zero. If Mij is the i,jth entry of M, then

N∑
i=1

Mij ≤ 0 ∀ j ⇒
N∑
i=1

Ti(n) ≤ 0 (19)
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The diagonal entries Mjj of the matrix M define the proportion
of power of the jth mode that will be redistributed to other modes
and the other terms of the column Mij define the quantity that the
ith mode will receive from this redistribution.

An efficient way to define the coefficients of the matrix is to
use the following expression:

Mij = ηλ
aij∑N
i=1 aij

− λδij (20)

Where aij is a coefficient weighting the redistribution from the jth
mode to the ith mode. In this formulation, the stability of the filter
bank is ensured for arbitrary aij , provided that at least one value
per column is non-zero and that 0 ≤ η ≤ 1. η corresponds to the
efficiency of the transfers (η = 1 ⇒

∑
Ti(n) = 0). λ is the

proportion of power above threshold transferred to other modes
at each time step (0 ≤ λ ≤ 1). The values of the off-diagonal
elements Mij of the matrix M are the proportion of energy trans-
ferred by the mode j that will be received by the mode i.

The ith transfer term Ti(n) can be expressed as follows:

Ti(n) = ηλ

N∑
j=1

[
aij∑N
i=1 aij

(Pj(n)− τj)

]
︸ ︷︷ ︸

positive contribution Ti+(n)

− λ (Pi(n)− τi)︸ ︷︷ ︸
negative contribution Ti−(n)

(21)

5. EXAMPLES

Nonlinear vibration leads to complex phenomena that can produce
subtle and chaotic variations in radiated sound. We can reduce the
complexity of the model and propose a heuristic that attempts to
maintain the essential perceptual attributes of an object vibrating
under nonlinear conditions. The resulting synthetic sound is nev-
ertheless less realistic and versatile than sounds generated by the
direct resolution of physical models (such as, e.g., the Föppl-von
Kármán system) although the synthesis quality can be improved by
using random processes in the implementation of the algorithms.

The coupled filter bank proposed here is dependent on many
parameters: the number of filters N , the oscillation frequencies ωi

and damping αi for each filter, the coefficients aij and the param-
eters λ and η for the definition of the redistribution matrix M, and
the thresholds τi. Strategies for setting these parameters are pre-
sented in two cases of musical interest. In the case of nonlinear
plate vibration, energy is transferred to filters of near frequency in
order to generate a gradual cascade of energy towards the high-
frequency range. In the case of a string colliding with a rigid ob-
ject, in contrast, there is simultaneous transfer or energy to many
frequency components.

5.1. Energy cascade in thin plates

Consider a thin rectangular plate (according to the Kirchhoff model
[22]), with mass density ρ kg· m−3, thickness H m, and flexural
rigidity D in kg·m2·s−2, and side lengths Lx and Ly in m. If
the plate is simply supported on all its edges, the modal frequen-
cies ωlm and modal shapes ϕlm(x, y) can be expressed as follows
[23]:

ωlm =
π2

L2
x

√
D

ρH

(
l2 + ν2m2) ϕlm(x, y) = sin(lπx) sin(mπy)

(22)

Here, ν = Lx/Ly is the plate aspect ratio, or the ratio between
the length and width of the plate. The integer indices l,m ≥ 1
correspond to the number of vibration nodes in the main directions
of the rectangular plate (Cartesian coordinates (x, y)) with x and
y being normalized by the length of the plate in the corresponding
direction (so that 0 ≤ x, y ≤ 1).

For a point excitation force located at (xe, ye), we can com-
pute the modal forces using the mode shapes evaluated at the ex-
citation point as ϕlm(xe, ye). We define the source of the l,mth
filter as follows:

ulm(n) = sin(lπxe) sin(mπye)u(n) (23)

where u(n) is the global excitation function.
We use a raised sinusoid for the excitation force (as proposed

in [4] and [24]) to simulate an impact:

u(n) =

{
A sin2(πn/Nex) if n ≤ Nex

0 else
(24)

For typical plate strikes, the strike duration Nex/fs in seconds is
on the order of 1-4 ms.

The damping coefficients are chosen according to an exponen-
tial law, as proposed by Aramaki et al.[25], with parameters that
are set to evoke a metallic object:

αlm = e(αG+ωlmαR) (25)

with αR = 4 × 10−5 and αG = 0.33220. This set of parameters
permits direct modal synthesis for linear plate vibration. To each
pair of indices (l,m) we associate an index i (perhaps chosen in
terms of increasing modal frequency) corresponding to the filter
number used to generate the corresponding tonal component.

In order to produce the cascade of energy towards the high fre-
quency components, we carry out transfers between filters whose
frequencies are close. Indeed, the energy supplied by the impact
is localised at low frequencies and transfers directed towards the
neighbouring modes allow the progressive appearance of higher
frequency components. The weighting coefficients aij can be set
as follows (see Figure 3):

aij =

[
1− |fj − fi|

∆f

]
+

(26)

with fi =
ωi
2π

a
ij

f
j
-f
i

0

1

Δf-Δf

Figure 3: Value of the coefficient aij as a function of the frequency
difference between filter i and j.

We set η = 1 (ensuring conservation of energy during the
redistribution). The cascade can be mainly controlled by λ, or by
the definition of thresholds τi (see Figures 4 and 5).
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Figure 4: Spectrograms of output for filters whose frequency corresponds to the modal frequency of a thin plate for different values of λ
(τi = 0). From left to right: λ = 0.001, λ = 0.01, λ = 0.1, λ = 1. We can observe that the energy cascade spreads faster and higher in
frequency with the increase of λ. Transfers are performed at each time step.
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Figure 5: Spectrograms of output for filters whose frequency cor-
responds to the modal frequency of a thin plate for different thresh-
olds τi. Left: τi = 0; middle: τi = 0 except for i = 10 where
τ10 = 1; right: τi is half the excitation amplitude. All tonal com-
ponents decay simultaneously when the thresholds are zero (left).
A component emerges and decays more slowly when its threshold
is non-zero (middle). When all thresholds are different from zero,
we observe a usual exponential decay after the delayed appear-
ance of the high frequency component (right).

In the case of wave turbulence in plates [26], couplings be-
tween modes can lead to rapid variations in amplitude and fre-
quency leading to a chaotic regime. In the chaotic regime, the
resulting signal is noisy, and difficult to reproduce by a set of tonal
components. One way to reproduce this phenomenon with the cou-
pled filters presented in this paper is to pass randomized phases to
the positive contributions of the transfer term in the source. In
this way, the tonal components are subject to rapid random ampli-
tude modulations that can evoke the chaotic phenomenon occur-
ring during wave turbulence in the plates (see Figure 6).

5.2. Collisions in sound production

The perturbation of the vibrations of an object when colliding with
an obstacle can lead to different types of sound events. In the typi-
cal case of a guitar, the player can choke the string, mute it, play a
natural harmonic. The string can also interact with the soundboard
(slap, string buzz).
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Figure 6: Spectrogram of output for filters whose frequency corre-
sponds to the modal frequency of a thin plate. The random modu-
lation of the redistributions induces rapid variations in the ampli-
tude of the tonal components which generate noise and beating in
the signal.

The model of a vibrating string with simply supported bound-
ary conditions gives the following modal frequencies and shapes:

ωi = iω1 ϕi(x) = sin (iπx) (27)

where here, the spatial coordinate x is normalized by the length of
the string (0 ≤ x ≤ 1). For a point excitation force located at xe,
the source of the ith filter can be defined as:

ui(n) = sin (iπxe)u(n) (28)

We use the same excitation force and damping model than previ-
ously (see Eqs.(24) and (25)).

The evocation of an obstacle disturbing the vibrations of the
string requires the definition of thresholds that correspond to the
location of the obstacle. We propose thresholds corresponding to
the maximum amplitude of modal displacements without colliding
with a virtual obstacle positioned at xc, yc, where yc is the vertical
displacement of the obstacle relative to the string:

τi =
1

2

(
yc

sin (iπxc)

)2

(29)
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We define a redistribution matrix with all columns being iden-
tical in order to cause a simultaneous redistribution to a set of tonal
components. The coefficients aij are defined as follows:

aij = | sin (iπxc)|ξi(fi) (30)

with ξi(fi) a parameter depending on the frequency allowing weight-
ing of the redistribution according to the filter frequency. We de-
fine ξi(fi) as the Fourier transform of the raised cosine, an ap-
proximation of the force profile caused by a collision (as defined
for the source, Eq.(24)):

ξi = sinc(fiγ) +
1

2
(sinc(fiγ − 1) + sinc(fiγ + 1)) (31)

with fi the frequency of the ith filter and γ a parameter corre-
sponding to the duration of the raised cosine. This results in a cut-
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Figure 7: Value of ξi as a function of the frequency of filter i.

off frequency beyond which there is no more transfer (see Figure
7). Various examples of sound outputs for different configurations
are presented—see Figures 8 and 9.
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Figure 8: Spectrograms of output for filters whose frequency are
harmonic for different values of xc (yc = 0, γ = 2 × 10−4s,
λ = 0.25, ν = 0.5). Transfers are performed every 294 samples
for times greater than 500ms, which corresponds to a collision
every 6.67ms (150Hz). From left to right: xc = 1/2, xc = 1/3,
xc = L/4. We can observe that the transfer does not affect even
harmonics (resp. multiples of 3 and 4) for xc = 1/2 (resp.xc =
1/3 and xc = L/4 ), which allows the reproduction of a natural
harmonic played on a guitar.

Collisions in musical instruments may be the source of more
subtle phenomena than a simultaneous appearance of various fre-
quency components. The cases of string buzz and tanpura can be
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Figure 9: Spectrograms of output for filters whose frequency are
harmonic for different values of ν and γ (xc = 1/2, yc = 0).
From left to right: (ν = 0.5, γ = 2×10−4s), (ν = 0.15, γ = 2×
10−4s), (ν = 0.5, γ = 2×10−3s). Transfers are performed every
294 samples for times greater than 500ms, which corresponds to
a collision every 6.67ms (150Hz). There is a lower increase in
the high-frequency components and a faster dissipation of all the
tonal components involved in the redistribution as the efficiency
decreases. As γ increases, there is also less energy distributed to
the high-frequency components, but this energy is not dissipated
and remains in the low-frequency components.

approached by introducing random processes into the redistribu-
tion, as has been done for chaotic phenomena in plates (see Figure
10).

It is possible to apply the same principle for the generation of
sounds corresponding to collisions with 2D objects. For example,
we can generate muted plate sounds (see Figure 11).

6. CONCLUSION AND FURTHER WORK

In this paper, we have presented the design of coupled resonant
filters geared towards the emulation of mode coupling effects in
nonlinear vibrating structures. This filter bank allows efficient and
real-time sound synthesis even for a large number of filters. The
coupling, performed without modifying the phase, introduces pre-
dictable and controllable effects on the output signal. The terms
controlling the coupling between the different filters are grouped
in a matrix whose definition is the main challenge. The setting of
the parameters of the sound synthesis process is presented through
various examples corresponding to sources whose behavior is non-
linear. A simple setting allows the generation of typical sounds,
though sometimes with an unnatural character. The introduction
of random processes in the energy redistribution can add a lot in
terms of plausibility.

Future work will be concerned with determining which sound
morphologies are important from a perceptual point of view for the
recognition of sound events [27] corresponding to nonlinear phe-
nomena in order to reproduce them with this coupled filter bank.
This could lead to the development of environmental sound syn-
thesizers and virtual musical instruments (e.g. tanpura, cymbal ...),
or to non-linear audio effects (such as the nonlinear reverberation
of a snare drum due to the wires held under tension against the
lower drumskin). The filter bank presented in this paper can also
be used as an abstract sound creation tool. In this context, the chal-
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Figure 10: Spectrograms of output for filters whose frequency are
harmonic with the introduction of random processes during the
redistribution (λ = 0.001, ν = 0.9, xc = 0.38, yc = 0.001,
γ = 2 × 10−4s). Transfers are performed every 294 samples for
times greater than 500ms, which corresponds to a collision every
6.67ms (150Hz).
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Figure 11: Spectrograms of output for filters whose frequency cor-
responds to the modal frequency of a thin plate. here ν = 0 and
we observe the quick dissipation of certain tonal components for
three distinct impacts, which creates a sensation of choking.

lenge would be to design intuitive control for use in a musical or
sound design context.
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