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ABSTRACT

In this paper, we introduce means of improving fidelity and con-
trollability of the RAVE generative audio model by factorizing
pitch and other features. We accomplish this primarily by creating
a multi-band excitation signal capturing pitch and/or loudness in-
formation, and by using it to FiLM-condition the RAVE generator.
To further improve fidelity when applied to a singing voice appli-
cation explored here, we also consider concatenating a supervised
phonetic encoding to its latent representation. An ablation analysis
highlights the improved performance of our incremental improve-
ments relative to the baseline RAVE model. As our primary en-
hancement involves adding a stable pitch conditioning mechanism
into the RAVE model, we simply call our method P-RAVE.

1. INTRODUCTION

Deep generative audio models aim to reconstruct and/or synthesize
novel audio by learning its underlying data distribution. Since the
inception of WaveNet [1], models have made considerable gains
to improve fidelity, and achieve state-of-the-art realism in many
domains. However, they are still largely considered too complex
for widespread use, and offer limited controllability to end users.

Recently, the RAVE approach was introduced [2]. This vari-
ational autoencoder (VAE) has garnered excitement in the audio
community due to its expressive synthesis, stable training pro-
cedure, favorable performance, and tractability for streaming ap-
plications running on edge devices [3], while modeling audio at
sampling rates suitable for music production (i.e. ≥ 44.1 kHz).
Despite this breakthrough, its baseline formulation can be prone
to pitch glitches, especially when applied to out-of-domain input
samples. Its latent representation may also still conflate timbral,
pitch, and other factors without additional mechanisms to steer
their disentanglement, limiting controllability.

Meanwhile, modern voice AI techniques have become emer-
gent in research and pop culture [4]. Singing voice conversion
(SVC) is one such application, whose goal is to transform sung
material to match the timbre of some target singer while main-
taining the source performance. SVC methods such as FastSVC
[5] and [6] condition waveform generation on a harmonic excita-
tion signal to counteract the fact that most neural generators lack
sufficient pitch stability otherwise [7]. SawSing [8] considered a
sawtooth excitation, and in our own work [9], we considered a hy-
brid end-to-end approach, where a differentiable WORLD synthe-
sizer creates an initial synthesized output from inferred features,
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Figure 1: RAVE model and proposed enhancements in P-RAVE.

which is then further refined via a black-box postnet. Few SVC
approaches are amenable to real-time streaming applications [10],
so naturally, it is of interest to explore how the RAVE model can
be refined for this use case.

In this work, we offer improvements to the RAVE model. We
apply insights from the SVC community to improve tonal signal
reconstruction and/or generation in RAVE in a multi-band gener-
ator context [11], effectively conditioning its generator on exci-
tation signals capturing pitch and/or loudness information. Ac-
cordingly, we call our method P-RAVE. Approaches are exem-
plified for an SVC application, and within this context, we also
consider whether the model can benefit from supervised encod-
ings of linguistic content. A byproduct of this work is an efficient
phoneme recognizer that learns a feature representation from the
time-domain waveform. Our goals are two-fold: we would like
to improve the outputs of RAVE while maintaining its advantages,
and to disentangle features such as pitch from its latent representa-
tion so that they are not conflated in the latent space and/or so that
they can be controlled explicitly. In doing so, we are inherently
investigating whether and/or how RAVE can be adapted for SVC.
We illustrate the benefits of our enhancements relative to a stan-
dard RAVE baseline. We organize our paper as follows: Section
2 describes our proposed method, Section 3 reports experimental
results, and Section 4 draws conclusions.

2. PROPOSED METHOD

The RAVE model, as well as our proposed additions in P-RAVE,
are illustrated in Figure 1. Generally, an input signal x is mapped
to a latent encoding z. The decoder aims to invert z, yielding the
reconstructed waveform x̂. The architecture utilizes a 16-band
Pseudo Quadrature Mirror Filterbank (PQMF) [11], which aids
model efficiency by allowing the core architecture to operate in-
ternally at a fraction (i.e. 1/16th) of the audio system sampling
rate fs. As in [2], we consider fs = 48 kHz in this work. Signal re-
construction involves generation of an audio waveform from a suit-
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able encoding z, along with specifications of any available control
signals. Novel signal generation would additionally involve pre-
diction of a relevant latent trajectory (via a second "prior" model).
Our focus leans to the former task without restricting the latter.

P-RAVE improves upon RAVE by 1) FiLM conditioning [12]
the RAVE generator with a multi-band harmonic excitation signal,
2) incorporating loudness information into said excitation, and 3)
appending a supervised phonetic encoding alongside the learned
latent representation, considering our particular interest in singing
voice applications. We outline the motivation and implementation
of each enhancement.

2.1. Harmonic excitation and FiLM conditioning

In order to provide stability and controllability of pitch, we lever-
age pitch-driven excitations as conditioning signals and adapt them
to the multi-band RAVE generator. Combining the excitation gen-
eration approaches in [6, 8, 13], we generate the excitation e as

e[n] =

{
η[n] if f0[n] = 0∑K

k=1
1
k
sin(ϕk[n]) otherwise

(1)

K = ⌊ fs
2f0[n]

⌋ (2)

ϕk[n] = ϕk[n− 1] + 2πk
f0[n]

fs
(3)

where η ∼ N (0, 1) and f0 is a fundamental frequency contour
that can be user-specified or estimated directly from an input sig-
nal x. For the latter case, pitch is detected at a specified interval
(we arbitrarily use a stride of 128 samples in this work), and up-
sampled to audio rate using a basic zeroth order interpolation in
order to match the input audio waveform dimension. To this end,
we leverage the torchyin library, which among other conve-
niences, ensures that the entire pipeline is constructed in PyTorch
and can leverage the GPU more effectively during training.

We proceed by creating the multi-band excitation representa-
tion ePQMF = PQMF (e). Naturally, these sub-bands still oper-
ate at a faster sampling rate than the encoding z (in fact, it would
match that of the hypothetical multi-band output signal estimate
x̂PQMF ). Accordingly, we apply FiLM conditioning to layers
of the multi-band generator (decoder), as illustrated in Figure 2.
We apply successive downsampling layers to ePQMF according
to the upsampling factors of each generator layer to ensure that
they operate at the same rate. While downsampling could have
been accomplished without trainable parameters, we opt to use
strided convolutional layers instead, maintaining a constant 16-
channel count for each downsampling stage. The outputs of each
downsampling stage are subjected to respective 1x1 convolutional
layers whose channels equal twice that of the corresponding gener-
ator upsampling layer which they are paired with. Output channels
are split in half to form the scale and offset terms for FiLM condi-
tioning. For an arbitrary scale γ, offset β, and upsampling layer y,
the FiLM-conditioned output is given by

yFiLM = γ ⊙ y + β (4)

When scales and offsets are equal to unity and zero, respec-
tively, FiLM conditioning sites act as pass-throughs. Unlike DDSP
[14], note that we are not imposing for the model output to be
strictly monophonic per se. The model is still fully capable of gen-
erating polyphonic audio, and therefore, we entirely maintain the

↑4 ↑4 ↑4

↓4 ↓4 ↓2 ↓1

1x11x11x11x1

↑2 xPQMF^z

ePQMF

Figure 2: Proposed multi-band FiLM conditioning applied in the
P-RAVE generator. Solid black dots represent conditioning sites.

generality of the RAVE system. We are simply adding a condition-
ing signal to steer generator upsampling layers, and if the model
did not find useful information contained within it, could choose to
ignore it. Nonetheless, when applied to intrinsically monophonic
applications (e.g. solo voice), we expect that the model would
learn to interpret it as an excitation signal (so we continue to refer
to it as such), and to non-linearly filter it as a neural source-filter
[13].

2.2. Injection of loudness information into the conditioning

We can also incorporate loudness information into our pitched ex-
citation signal. This is to say that its signal strength can be set
to a user-specified value (a constant loudness, amplitude envelope,
and/or mapping to MIDI velocity, as in [15]), or to match that of
x. In the case of the latter, much like the f0 computation in Sec-
tion 2.1, we achieve this by measuring the frame-level root-mean-
square (RMS) of x at some notional stride and upsampling it to
full resolution, yielding the desired loudness trace L0. If we sim-
ilarly extract the RMS of e, yielding Le, we can embed loudness
information into a loudness-adjusted conditioning signal eL via

eL[n] =

(
L0[n] + ϵ

Le[n] + ϵ

)
e[n] (5)

where ϵ = 10−5 is used for numerical stability. Accordingly, the
multi-band excitation signal is then ePQMF = PQMF (eL).

2.3. Supervised phonetic encoding

When trained for a voice application, the encoder is tasked with
capturing not only pitch, loudness, and tone in a global sense, but
also timbral changes which vary as a function of the phonetic unit
being uttered. As this may prove challenging to accomplish suf-
ficiently in a purely unsupervised manner, the final enhancement
considered here concatenates the learned latent representation with
a phonetic posteriorgram (PPG) capturing linguistic content.

We train a phonetic encoder on the TIMIT dataset [16] in a
supervised manner. One subtlety here is that this dataset is na-
tively sampled at 16 kHz, containing 8 kHz of bandwidth. There-
fore, we upsample the data to audio rate (48 kHz in this case), and
only consider the lower 5 PQMF sub-bands as input to the pho-
netic encoder, ideally covering 7.5 kHz with sufficient roll-off by
8 kHz. We use the condensed 40-class phonetic dictionary for the
TIMIT dataset (39 phonemes and a silence class) [17], and train
the phonetic encoder for 250K training steps before freezing it for
the remainder of system training. Maintaining a total encoding
size of 128, this leaves 88 latent dimensions to be learned in an
unsupervised manner. Input and output sizes aside, the phonetic
encoder EP architecture is identical to that of the unsupervised
encoder E. We reduce the number of channels in the two encoders
by 50%, such that the number of parameters of their composite is
effectively the same as in the encoder of the baseline RAVE model.
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3. EXPERIMENTAL RESULTS

For subjective listening, we refer readers to our demo website at
https://sites.google.com/izotope.com/prave-demo.

Generally, we observe that the VAE framework offers a suffi-
cient information bottleneck in its latent space [18] for providing
the speaker disentanglement needed for SVC. Accordingly, in or-
der to illustrate the effectiveness of our proposed methods, we train
models and analyze their robustness in this context. Models were
trained on approximately two hours of internal singing voice data
of a single target singer. Four different conversion models were
considered: a baseline RAVE system, and three P-RAVE systems
where we incrementally add our proposed enhancements, as per
their enumeration in Section 2. We follow the training strategy
outlined in [2], using a batch size of 8, Adam optimizer and its
adversarial objective function. In the initial "warm-up" training
phase, the encoder and decoder models are optimized jointly for
1M training steps, with the adversarial loss terms omitted. The
(latent) encoder is then frozen and the decoder undergoes an ad-
ditional 2M training steps which attempts to minimize the full ob-
jective.

We summarize our quantitative ablation analysis in Table 1,
reporting the multi-spectrogram loss (MSL), the number of com-
ponents needed to summarize 99% of the latent manifold (M99)
[2]. We see that our P-RAVE variants considerably improve re-
construction performance relative to the RAVE baseline, as mea-
sured by the MSL. Explicit incorporation of loudness informa-
tion in P-RAVE (1+2) improves upon P-RAVE (1). Meanwhile,
P-RAVE (1+2+3) technically sees slightly degraded quantitative
performance on the self-reconstruction task relative to P-RAVE
(1+2). We attribute this to the fact that the learned latent repre-
sentation is catered to the target singer (in-domain distribution),
while the PPG is a vocalist-independent representation to be lever-
aged by any source singer (out-of-domain distribution). Therefore,
its inclusion still has favorable implications for our ultimate goal
of the conversion task. P-RAVE (1) and P-RAVE (1+2) create sig-
nificantly more compact latent feature representations relative to
the baseline RAVE model, as the pitched and/or leveled excitation
reduces the burden on the unsupervised encoder to fully model
the feature space. The feature space is effectively reduced by one
component between P-RAVE (1) and P-RAVE (1+2), hinting that
conceivably, there may have indeed been a single latent dimension
capturing loudness variations in the data. Interestingly, addition of
the PPG in P-RAVE (1+2+3) considerably increases M99. Though
seemingly unintuitive, we explain this by noting that the informa-
tion contained within PPGs arguably reflects the majority of the
voice modeling task beyond pitch and loudness. Therefore, by
now offloading the unsupervised encoder of its primary modeling
"duties", P-RAVE (1+2+3) reduces the posterior collapse effect
overall, allowing its unsupervised encoder to concentrate its de-
grees of freedom to modeling a smaller subspace of the variability

in the data in a way that better matches the prior. This can be con-
firmed by observing that the Kullback-Liebler divergence against
the prior for RAVE and P-RAVE (1+2+3) are 12.01 and 1.749,
respectively.

Next, we analyze the preservation and controllability of condi-
tioning features across different models for both self-reconstruction
(in-domain source vocalist) and conversion (out-of-domain source
vocalist), as listed in Table 2. Specifically, we compare condition-
ing features extracted from source and synthesized performances,
measuring their average absolute deviation in fundamental fre-
quency (∆F in Hz) and loudness (∆L in dB), and average categor-
ical cross-entropy between source and synthesized PPGs (∆CE in
nats). In the in-domain case, we see that the baseline RAVE model
performs decently, though features are better preserved in P-RAVE
variants, where P-RAVE (1+2+3) appears to provide the best bal-
ance across all features. Within the conversion context, we further
discern between whether or not we apply a pitch shift to f0 so
that the converted result is reflective of the register of the vocalist,
and report results for both cases. Here, the baseline RAVE model
struggles considerably, as it cannot maintain consistent pitch when
the source register does not match the target data, and moreover,
does not possess an explicit mechanism for applying a pitch shift if
it were needed to accomplish a convincing conversion. Again, we
see that P-RAVE (1+2+3) is better suited for the application, with
outputs roughly achieving their target values across all features.

4. CONCLUSIONS

In this paper, we suggested additions to the RAVE model which
improved fidelity and controllability of the generative audio model,
and applied it to a singing voice application. In future work, we
would like to add further refinements in order to improve fidelity.
For example, we may consider a loss term that encourages the
model to produce Mel spectrogram-like representations at an in-
termediate generator layer, or integrate aspects of the very recent
developments in [19]. We are also interested to get a better sense
of the prominent factors the latent space has learned when it is re-
lieved of modeling pitch, loudness, and phonetic content, and to
envision what other forms of transformative audio processing this
may be able to unlock. Lastly, we would like to investigate fur-
ther application of our enhancements in the context of novel tonal
content creation.

Table 1: Quantitative ablation analysis comparing RAVE to our
various enhancements in P-RAVE.

Experiment MSL M99%

RAVE 8.568 9
P-RAVE (1) 7.267 4
P-RAVE (1+2) 7.175 3
P-RAVE (1+2+3) 7.227 14

Table 2: Comparison of conditioning features between source and synthesized performances.

Reconstruction Conversion (without/with pitch shift)
Experiment ∆F (Hz) ∆L (dB) ∆CE (nats) ∆F (Hz) ∆L (dB) ∆CE (nats)
RAVE 3.351 3.667 0.0564 61.43 / 103.92 4.918 / 4.923 0.0769 / 0.768
P-RAVE (1) 0.443 2.362 0.0556 0.682 / 1.321 4.560 / 2.786 0.0731 / 0.071
P-RAVE (1+2) 0.596 1.764 0.0562 0.237 / 0.791 1.922 / 1.958 0.0706 / 0.0716
P-RAVE (1+2+3) 0.628 1.993 0.0515 0.277 / 0.823 3.3922 / 2.0625 0.0696 / 0.0676
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