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ABSTRACT

This work aims to implement a novel deep learning architec-
ture to perform audio processing in the context of matched equal-
ization. Most existing methods for automatic and matched equal-
ization show effective performance and their goal is to find a re-
spective transfer function given a frequency response. Neverthe-
less, these procedures require a prior knowledge of the type of
filters to be modeled. In addition, fixed filter bank architectures
are required in automatic mixing contexts. Based on end-to-end
convolutional neural networks, we introduce a general purpose ar-
chitecture for equalization matching. Thus, by using an end-to-
end learning approach, the model approximates the equalization
target as a content-based transformation without directly finding
the transfer function. The network learns how to process the au-
dio directly in order to match the equalized target audio. We train
the network through unsupervised and supervised learning proce-
dures. We analyze what the model is actually learning and how
the given task is accomplished. We show the model performing
matched equalization for shelving, peaking, lowpass and highpass
IIR and FIR equalizers.

1. INTRODUCTION

Equalization (EQ) is an audio effect widely used in the production
and consumption of music. It consists of the modification of fre-
quency content through positive or negative gains which change
the harmonic and timbral characteristics of the audio. This is per-
formed for different purposes, such as a corrective/technical filter
to reduce masking or leakage within a mixing task, to modify the
frequency response of a speaker system, or as an artistic or creative
tool when recording a specific audio source.

An equalizer is normally implemented via a filter bank whose
coefficients are obtained from the designed cut-off frequency fo
and quality factor @. In general, EQ is performed through an arbi-
trary boost or cut at a given fo and (), and it can be applied in the
time-domain and frequency-domain [1]. The filters can be classi-
fied into different classes such as lowpass, highpass, peaking, and
shelving.

Taking into account that multiplying the spectrum of signals

is the same as convolving their time-domain representation [2],
filtering can be described by (1).

y(t) = e(t) « h(t) > Y(k) = X(k)-H(k) (1)

Where h is the time-domain representation of the filter and =
and y are the input and filtered signals respectively. H, X, and Y
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are the respective frequency-domain representations. In this man-
ner, EQ can be achieved with time-domain convolutions, where
the transfer function of the filter bank can be expressed through
various signals in the time-domain and the equalized audio signal
is obtained through the respective convolutions. Therefore, we in-
vestigate EQ as a time-domain convolution transformation, where
the inherent content of the input and filtered signals can lead a
convolutional neural network (CNN) to match a target frequency
response.

Given an arbitrary EQ configuration, our task is to train a deep
neural network to learn the specific transformation. In this way,
an optimal filter bank decomposition and its latent representation
are learned from the input data, and these are transformed and de-
coded to obtain an audio signal that matches the target. Thus, we
explore whether the model can be used for EQ matching using an
end-to-end architecture, where raw audio is both the input and the
output of the system.

We train a model that matches an EQ objective without explic-
itly obtaining the parameters of the filters (gain, fo and Q). We
show that a procedure based on convolutional and fully connected
layers, via time-domain convolutions and latent-space modifica-
tions, can lead us to perform EQ matching or modeling. We an-
alyze what the model is actually learning and use a relevant loss
function in the time and frequency domains in order to achieve the
equalizer task.

The rest of the paper is organized as follows. In Section 2 we
summarize the relevant literature related to equalization matching
and end-to-end learning. We formulate our problem in Section
3 and in Section 4 we present the methods. Sections 5, 6 and 7
present the obtained results, their analysis and conclusion respec-
tively.

2. BACKGROUND

2.1. EQ Matching and Automatic Equalization

Several methods have been implemented in order to obtain the pa-
rameters of the filters or to match a specific frequency response.
[3] provides a review of the different state-of-the-art approaches.
These methods apply numerical optimization to find a transfer
function that corresponds a given complex or magnitude frequency
response. Most common techniques are based on the equation
error method [4], the Yule-Walker algorithm [5], the Steiglitz-
McBride method [6] and the frequency warped method [7].

Within an automatic mixing framework, [8, 9] explored mul-
titrack EQ as a cross-adaptive audio effect, where the processing
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of an individual track depends on the content of all the tracks in-
volved, then, the gains of a five filter, first order, filter bank are
obtained based on a perceptual loudness weighing.

Given the raw multitrack recording an the final mixture, [10]
used least-squares optimization to estimate the gains and fo of FIR
filters. [11] proposed a pitch tracking system to perform automatic
EQ within a mastering task, where the selected pitches are consid-
ered as center frequencies for a set of second order peaking filters.
[12] used least squares fitting to equalize an audio signal by using
IIR filters with arbitrary frequency responses. A cross-adaptive EQ
was implemented in [13], where center and cut-off frequencies of
peaking and shelving filters were obtained through the minimiza-
tion of spectral masking and source separation. Similarly, based
on unmasking, [14] obtained the center frequencies and gains of
peaking filters and [15] attains the gains of a six-band equalizer
based on second-order IIR filters.

Based on an perceptual task, [16] proposed a method where
the model is trained manually by the users and through nearest
neighbor techniques the equalizer gains are obtained in order to
match the training data. In a similar approach, [17, 18] investi-
gated a model that associates the gain of each frequency band with
the user’s training data.

In order to obtain optimal results, most automatic EQ imple-
mentations rely on fixed architectures of filter banks or require
prior knowledge of the type of filters to be modeled. Therefore,
we explore a general architecture capable of performing equaliza-
tion matching given an arbitrary frequency response.

2.2. End-to-end learning

End-to-end learning corresponds to the integration of an entire
problem as a single indivisible task that must be learned from end-
to-end. The desired output is obtained from the input by learn-
ing directly from the data [19]. Deep learning architectures using
this principle have experienced significant growth, since by learn-
ing directly from raw audio signals, the amount of required prior
knowledge is reduced and the engineering effort is minimized [20].

Most audio applications are in the fields of music information
retrieval, music recommendation, and music generation. [20, 21]
explored CNNs to solve automatic tagging tasks. The networks
autonomously learn features related to the frequency and phase of
the raw waveforms, although architectures based on spectrograms
still yielded better results. In [22] an end-to-end neural network
is investigated for the transcription of polyphonic piano music. In
the context of end-to-end supervised source separation, [23] pro-
posed an adaptive autoencoder neural network capable of learning
a latent representation from the raw waveform.

Likewise, [24, 25] proposed models that generate audio sam-
ple by sample without the need handcrafted features and [26] ob-
tained a model capable of performing singing voice synthesis based
on Wavenet [27] autoencoders.

End-to-end learning has not been implemented for audio ef-
fect processing, though recent work demonstrated the usefulness
of deep learning applied to intelligent music production systems.

[28, 29] explored deep neural networks (DNN) to perform source
separation in order to remix the obtained stems and [30] used au-
toencoders to achieve automatic dynamic range compression for
mastering applications. Furthermore, most implementations rely
on the magnitude of different frequency representations (spectro-
gram, melspectogram, etc.), thus omitting the phase information.
This is sometimes not ideal, since the task under study could also
be based on phase transformations, and therefore would not be
learned by the models.

3. PROBLEM FORMULATION

For a specific EQ configuration or arbitrary combination of filters,
consider x and y the raw and equalized audio signals respectively.
We train a CNN autoencoder which operates as a filter bank and
produces a latent representation Z of the given task. One CNN
layer can be described by:

N-1

Xp=Y_ Xp1(n—i) W) 2)

1=0

Where X\, represents the feature map of the k5, layer, N rep-
resents the size of the input feature map X _; or input frame x
in the case of the first layer, and W, is the kernel matrix with K
filters. The latent representation Z is obtained after a designated
number of convolutional and subsampling layers.

Thus, in order to obtain a §j that matches the EQ target y, we
implement a deep neural network to modify Z based on the EQ
task. Finally, the decoder implements the deconvolution opera-
tion and reconstructs the time-domain signal by inverting the op-
erations of the encoder. We train the whole network within an
end-to-end learning framework and we minimize a suitable metric
between the target and the output of the network.

Based on an EQ matching task, we expect the network to learn
the relevant filters W, latent representation Z and further manip-
ulation. We attempt to find a general architecture that can serve as
a matching equalizer based on an arbitrary time-invariant EQ tar-
get.

4. METHODS

4.1. Model

In order to implement the network, we followed a similar proce-
dure as [23], although based entirely on the time-domain. The
model can be divided into three parts: adaptive front-end, synthe-
sis back-end and latent-space DNN. The model is depicted in Fig.
1.

4.1.1. Adaptive front-end

The adaptive front-end consist of a convolutional encoder. It con-
tains two CNN layers, one pooling layer and one residual connec-
tion for the back-end. The front-end performs time-domain con-
volutions with the raw waveform in order to map it into a latent-
space. It also generates a residual connection which facilitates the
reconstruction of the audio signal by the back-end. This differs
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Figure 1: Block diagram of the proposed model; adaptive front-end, synthesis back-end and latent-space DNN.

from traditional autoencoders, where the complete input data is en-
coded into a latent-space, which causes each layer in the decoder
to solely generate the complete desired output [31]. Furthermore,
a full encoding approach such as [25, 27] will require very deep
models, large data sets and difficult training procedures.

The input layer has 128 one-dimensional filters of size 64.
Based on (2), the operation performed by the first layer can be
described by (3).

Xlzx*Wl (3)
R=X, )

Where R is the matrix of the residual connection, X is the
feature map or frequency decomposition matrix after the input sig-
nal z is convolved with the kernel matrix W ;. The first layer is
followed by the absolute value as non-linear activation function.

The second layer has 128 one-dimensional filters of size 128
and each filter is locally connected. This means we follow a filter
bank architecture by having unshared weights in the second layer
since each filter is only applied to its corresponding row in | X 1].
The filters in this layer are larger due to convolving | X 1| with suit-
able averaging filters W5 could lead the model to learn smoother
representations [23], such as envelopes. This layer is followed by
the softplus non-linearity.

X2 = softplus(| X 1| x W) (5)

Where X > is the second feature map obtained after the local
convolution with Wy, the kernel matrix of the second layer.

The latent-space representation Z is achieved by the max-
pooling operation. This pooling function consists of a moving
window of size 16 applied over X 5 and the maximum value within
that window correspond to the output. Also, the positions in time
of the maximum values are stored and used by the decoder.

4.1.2. Synthesis back-end

In order to invert the operations performed by the front-end, the
decoder consists of one CNN layer and one unpooling layer. Since
the max-pooling function is non-invertible, the inverse can be ap-
proximated by recording the locations of the maximum values in
each pooling window [32] and only upsampling Z at these time

indices. Thus the discrete approximation X5 is obtained.

The approximation X1 of matrix X is obtained through the
element-wise multiplication of the residual R and X 5.

X =R-X, (6)

Depending on whether Z has been modified or not, (6) can be
seen as a sampling or transformation of X .

The final layer corresponds to the deconvolution operation,
which can be implemented by transposing the first layer transform.
This layer is not trainable since its kernels are transposed versions
of W 1. In this way, the synthesis layer reconstructs the audio sig-
nal in the same manner the front-end decomposed it.

G(t) = X1 % W1 (7)

All convolutions are along the time dimension and all strides
are of unit value. This means, during convolution, we move the
filters one sample at a time.

4.1.3. Latent-space deep neural network

The latent-space DNN contains two layers, which are based on
locally connected and fully connected dense layers respectively.
Thus, following the filter bank architecture, the first layer applies
a different dense layer to each row of the matrix Z. Each of the
locally connected dense layers has 64 hidden units and is followed
by the sofiplus activation function. The second layer consists of
a fully connected neural network of 64 hidden units, which is ap-
plied in each row of the output matrix from the first layer. It is also
followed by the softplus activation function.

The output of the max pooling operation Z corresponds to
an optimal latent representation of the input audio given the EQ
task. The DNN is trained to modify this matrix, thus, a new latent
representation Z is fed into the synthesis back-end in order to re-
construct an audio signal that matches the target task.

4.2. Training

The training of the model is performed in two steps. The first step
is to train both the adaptive front-end and the synthesis back-end
for an unsupervised learning task. This can be considered as a pre-
training of the autoencoder since the model showed better results
than when only trained with the second training step. The second
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step consists of an end-to-end supervised learning task based on a
given EQ target.

During the pretraining only the weights W and W', are opti-
mized and both the raw audio x and equalized audio y are used as
input and target functions. This means the model is being prepared
to reconstruct the input and target data in order to have a better
fitting when training for the EQ task. Once the convolutional au-
toencoder is trained, the latent-space DNN is incorporated in the
model. Hence, the second training procedure consists in using as
objectives of the model x and y as input and target respectively.
During the end-to-end learning, all the weights of the convolu-
tional and dense layers are updated. This is done independently
for each EQ task.

The loss function to be minimized is based in time and fre-
quency and described by (8).

loss = kI(Y,Y) + mse(Y,Y) + mae(y, i) (8)

Where kl is the normalized Kullback-Leibler divergence, the
mean squared error is mse, and mae is the mean absolute error.
Y and Y are the frequency magnitude of the target and output
respectively, and y and ¢ their respective waveforms. We use a
1024-point Fourier transform (FFT) in order to obtain Y and Y,
which we extract on the GPU using Kapre [33].

We selected a more specialized loss function since by intro-
ducing spectral terms in a frequency related task, such as EQ,
fewer training iterations were required. In both training procedures
the input and target audio is windowed by a hanning function into
frames of 1024 samples with hop size of 64 samples. The batch
size consisted of the total number of frames per audio sample and
100 iterations were carried out in each training step. Adam is used
as optimizer.

4.3. Dataset

The raw audio z is obtained from the Salamander Grand Piano V3
dataset', which consists of a Yamaha C5 grand piano sampled in
minor thirds from the lowest A note and with 16 velocity layers for
each note. The dataset is augmented by pitch shifting each note un-
til all the available semitones of the piano are obtained. This gives
us a total of 1440 samples. The piano notes are downsampled to
16 kHz and trimmed to 4 seconds. The test and validation subsets
correspond to 10% of the dataset and contain a musical note (B)
not present in the training subset.

The EQ targets y are obtained by applying the filters described
in Table 1.

Table 1: Filter parameters of the EQ targets.

EQ filter type | order | gain (dB) | fo (Hz) Q
shelving IR 2 10 500 0.707
peaking IIR 2 10 500 0.707
lowpass FIR 50 0 500
highpass FIR 50 0 500

'@®

5. RESULTS

The unsupervised and supervised learning steps were performed
for each type of EQ target. Then, the models were tested with
samples from the test dataset.

Fig. 2 shows various visualizations from the front-end and
back-end of the autoencoder after the unsupervised training pro-
cedure. Fig. 2a displays the waveform and frequency magnitude
of a test frame x of 1024 samples and its respective reconstruction
Z. The weights of the first convolutional layer W can be seen in
Fig. 2b, where the first 32 filters are shown.

Consequently, in order to obtain Z, different plots from the
front-end, latent-space and back-end are shown in Figs. 2c-2e.
The results of (3) can be seen in Fig. 2c where the first 32 rows
of X1 are displayed. Fig. 2d presents their latent-space represen-
tation Z, which is obtained through the second convolutional and
subsampling layers. Fig. 2e shows X1, which is the result of (6)
and the input to the deconvolution layer, the prior step to obtain
the output frame Z.

Following the pretraining of the autoencoder, the model is
trained through an end-to-end supervised learning method. For
each EQ task, Fig. 3 shows the results of selected samples from
the test dataset. For a specific frame of 1024 samples, the input,
target and output waveforms as well as their FFT magnitudes are
displayed. The power spectrogram of the respective 4-second sam-
ples is also shown. Finally, together with the input and the target,
the complete reconstructed output waveform of a shelving EQ task
is presented in Fig. 4.

The performance of the models, and their respective losses (8)
in time and frequency can be seen in Table 2.

Table 2: Evaluation of the models with the test datasets. Loss
values for each EQ task.

EQ kl mse mae loss
shelving || 0.021845 | 0.007764 | 0.002474 | 0.032083
peaking 0.022038 | 0.007847 | 0.002521 | 0.032406
lowpass 0.025365 | 0.005345 | 0.002710 | 0.033420
highpass || 0.021463 | 0.000951 | 0.001293 | 0.023708

6. ANALYSIS

6.1. Adaptive front-end and back-end

From the results of the encoder and decoder, a comparison between
the input and output waveforms, as well as their FFT magnitude
(see Fig. 2a), it can be seen the model manages to reconstruct the
input frame almost perfectly. There are minor differences between
the magnitudes of the lower and higher frequencies, but it is worth
mentioning that the network achieves this by optimizing only two
convolutional layers.

During the first training step, the model learns the W and
W weight matrices with 128 filters each. These filters corre-
spond to the optimal weights of the autoencoder for the decompo-
sition and reconstruction of the training data. As expected, from
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Figure 2: Various plots from the front-end and back-end with the test dataset after the unsupervised learning step. 2a) Input (x) and output
(Z) frames of 1024 samples and their respective FFT magnitude. 2b) First 32 filters (W 1) of the first convolutional layer. 2¢) First 32 rows
of X1, resulting matrix of the convolution between the kernels W1 and the input frame x. 2d) Latent-space representation that is being
encoded by the front-end. First 32 rows of Z. 2e) Result of the element-wise multiplication between the residual R and the output of the
unpooling layer. This is the input to the deconvolution layer prior to obtaining the output frame &(t). Vertical axes in 2b)-2e) are unitless

and horizontal axes correspond to time.

the W kernels shown in Fig. 2b, it can be observed the filters rep-
resent sinusoids and distributions of different frequencies. Also,
upon examination of all the weights, we find some redundancy
between the filters. This can be improved by adding kernel or ac-
tivity regularizations, such as the L; or L2 norm regularizes. In
addition, some learned weights follow the hanning window shape,
which makes sense given that all the input frames were windowed.

From the feature map matrix X; (see Fig. 2c¢), the filters W
are actively acting as a filter bank or frequency selectors, since X 1
correspond to the decomposition of the input data into different
frequencies. Since this is also the residual matrix R, the resulting
features consist of the required frequencies from the input data in
order to be reconstructed by the back-end and encoded by rest of
the front-end.

The second convolutional layer is acting as a smoothing layer,
since X2 correspond to positive and negatives envelopes from
X 1. This is due to the learned averaging filters and the absolute
and softplus activation functions. The subsampled version Z is
presented in Fig. 2d, where different types envelopes are evident.
Therefore, the autoencoder is learning a latent-space representa-
tion based on the envelopes of selected frequencies.

Taking into account that the result of the unpooling layer X,
corresponds to the values of Z at the time positions registered by
the max-pooling layer and padded with zeros between each maxi-
mum value. The element-multiplication of X, with R generates
a discrete version of the latter, which indicates the amplitudes and
positions in time that the deconvolution layer should use to recon-
struct the input signal (see Fig. 2e). Thus, convolving X, with

WT generates the output frame presented in Fig. 2a.

The front-end and back-end manage to reconstruct the test pi-
ano notes with a loss value (8) of 0.104. Adding a simple latent-
space neural network or increasing the number of filters in the con-
volutional layers would improve the results significantly. Also,
since the training was performed with a hop size of 64 samples,
an ideal unit sample hop size would decrease the loss value, al-
though the training time will increase notably. Given that the un-
supervised learning task only acts as pretraining step, and that the
autoencoder has a relative small number of trainable parameters
(24832) we consider these results to be satisfactory.

6.2. EQ task

Table 2 shows that the model performed well on each EQ task. To
provide a reference, the mean loss value between the inputs and
targets of the shelving testing samples is 1.21. The &l is fairly
uniform across the four types of equalizers, with a minor increase
for the lowpass EQ. The same can be said about the mse and mae
with the exception of a significant decrease for the highpass EQ.
Therefore, loss function values were minimal and the model is ca-
pable of matching the most common types of EQ, whether these
are based on FIR or IIR filters.

The model achieved the best results during the highpass task,
which could be an indication of the frequency distribution among
the training data. Since only piano notes where used, and most
spectral energy of acoustic pianos is within 250 Hz - 1 kHz with
higher frequencies responsible for the perceived timbral quality of
the notes [34]. Thus, having a 500 Hz cut-off frequency could sig-
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Figure 3: Results with the test dataset for the following EQ tasks: 3a) shelving, 3b) peaking, 3c) lowpass and 3d) highpass. In 3a)-3d),
the input, target and output frames of 1024 samples are shown in waveforms and their respective FFT magnitudes. In addition, for each
EQ task and from top to bottom: input, target and output power spectrograms of the 4-second test samples are displayed. Color intensity

represents higher energy.

nify that the model effectively filters out the lower-end of the piano
notes by efficiently learning the filters for this task. The slightly
worse performance for the lowpass task could be further explored
by adding kernel regularizations on the CNN layers.

Fig. 3 confirms the correct EQ matching for the different types
of equalizers. The spectral and waveform comparison between in-
put, target and output shows how accurate the model is at recon-
structing an audio signal that matches the EQ task. For individual
frames and complete piano notes, the different types of EQ are ev-
ident from the FFT magnitude and power spectogram respectively.

For the shelving EQ in Fig. 3a, the effect of the equalizer can
be seen in the target and output spectral plots. The power spectro-
gram shows how the spectral energy was boosted for frequencies
lower than 500 Hz. From the FFT magnitude it can be noticed
a minor deviation in the lower-end of the target, where there is a
boost increment around 20 Hz. This could indicate a weak gen-
eralization around these frequencies, which could be improved by
using a loss function with higher resolution in the lower-end [7].

The peaking equalizer can be seen in Fig. 3b. The selective
boost at 500 Hz is notorious both in the FFT magnitude and in
the power spectrogram. There is a minor boost in the lower-end
which is a consequence of the reasons discussed above. Overall
the results indicate a significant fitting for the peaking EQ task.
Accordingly, the model is able to match EQ tasks based on peak-
ing and shelving IIR filters.

Likewise, the lowpass and highpass EQ targets were correctly
accomplished. Fig. 3c-3d show the cut of frequencies higher than
500 Hz for the lowpass and the opposite for the highpass. As dis-
cussed, it can be seen the model performs the best for the highpass
EQ task, obtaining a highly accurate matching between target and
output in both time and frequency domains.

The model was trained in a frame-by-frame basis and the input
frames were windowed. So the model learned the windowing pro-
cedure and the output frames followed the hanning shape. There-
fore, in order to reconstruct the complete audio signal (see Fig.
4), no further windowing was needed. The overlapping procedure
was carried out by applying a gain in order to ensure a Constant
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Figure 4: For a test sample of the shelving EQ task, complete
waveform reconstruction of the output and comparison with the
input and target. See Fig. 3a for the power spectogram of these
waveforms.

Overlap-Add [35], which is specific to the type of window and hop
size.

7. CONCLUSION

In this work, we proposed a novel deep learning architecture ca-
pable of performing an audio processing task such as EQ match-
ing. To achieve this, based on the universal approximation capa-
bilities of neural networks, we explored a convolutional adaptive
front-end and back-end together with a latent-space deep neural
network. Thus, we introduced a general purpose architecture for
EQ matching able to model different types of equalizers and filters.

We showed the model matching shelving, peaking, lowpass
and highpass IIR and FIR equalizers. For each EQ task the model
was trained via unsupervised and supervised learning procedures.
The latter corresponded to an end-to-end learning approach, which
presents and advantage towards common methods of automatic
EQ since no prior knowledge of the type of filters nor fixed fil-
ter bank architecture is required. Accordingly, the proposed model
approximated the target as a content-based transformation with-
out using or obtaining filter parameters. Therefore, the model
learned an optimal filter bank decomposition and latent represen-
tation from the training data, and correspondingly, how to modify
it in order to obtain an audio signal that matches the EQ task.

Possible applications for this architecture are within the fields
of automatic mixing and audio effect modeling. For example,
style-learning of a specific sound engineer could be explored, where
the model is trained with several tracks equalized by the engineer
and finds a generalization from the engineer’s EQ practices. Also,
automatic EQ for a specific instrument across one or several gen-
res could be analyzed and implemented by the model.

Our implementation can serve as a baseline model for deep
learning architectures in the context of audio processing. Linear
transformations within a mixing task could be easily achieved. As
future work, the exploration of recurrent or recursive neural net-
works or adaptive activation functions can improve the capabili-
ties of the network to model much more complex audio effects. In
this case, transformations involving temporal dependencies such
as compression or different modulation effects, as well as compli-
cated distortion effects, could be implemented.

A further exploration of the latent-space DNN, or deeper con-
volutional layers within the encoder and decoder could improve
the results of the model. As well as regularizers and loss functions
based on frequency wrappers. Also, since training on piano semi-
tones provides only a sparse sampling of the frequency dimension,
the generalization capability of the model should be extended for
much more complex audio signals, such as noise, human voice or
non-musical sounds. Therefore, a further exploration with a less
homogeneous dataset together with an analysis of the type of filters
learned by the model could benefit the design of a general archi-
tecture for modeling audio effects.

Finally, it is worth noting the immense benefit that generative
music could obtain from deep learning architectures for intelligent
music production. Our implementation could be used in the field
of deep neural networks applied to generative music and automatic
mixing production systems.
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