
Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

THE QUEST FOR THE BEST GRAPHIC EQUALIZER

Juho Liski ∗ and Vesa Välimäki

Aalto University

Acoustics Lab, Dept. of Signal Processing and Acoustics

Espoo, Finland

juho.liski@aalto.fi

ABSTRACT

The design of graphic equalizers has been investigated for decades,

but only recently fitting the magnitude response closely enough to

the control points has become possible. This paper reviews the de-

velopment of graphic equalizer design and discusses how to define

the target response. Furthermore, it investigates how to find the

hardest target gain settings, the definition of the bandwidth of band

filters, the estimation of the interaction between the bands, and

how the number of iterations improves the design. The main focus

is on a recent design principle for the cascade graphic equalizer.

This paper extends the design method for the case of third-octave

bands, showing how to choose the parameters to obtain good ac-

curacy. The main advantages of the proposed approach are that

it keeps the approximation error below 1 dB using only a single

second-order IIR filter section per band, and that its design is fast.

The remaining challenge is to simplify the design phase so that

sufficient accuracy can be obtained without iterations.

1. INTRODUCTION

The design of graphic equalizers (EQ) is surprisingly difficult, and

for this reason it has been investigated for decades [1]. The first ap-

plication of graphic EQs was the enhancement of audio quality in

movie systems in the 1950s [2, 1]. In the early years, graphic EQs

were analog, but since the 1980s digital designs have been pro-

posed [2, 3, 4, 5]. The graphic EQ has become one of the standard

tools in music production [2, 6] and in audio systems [7, 8, 9, 10].

This paper reviews the development of graphic EQs, inves-

tigates the graphic EQ design problem, and discusses the recent

efforts to improve and simplify the design of digital graphic EQs.

Section 2 of this paper reviews the development of graphic equal-

izers. In Section 3, we first tackle the definition of target response

and how to evaluate the accuracy of the design. Section 4 elabo-

rates further on a recently proposed cascade octave graphic EQ de-

sign [11], trying to understand whether there are ways to improve

it. Furthermore, in Section 5, we expand the proposed cascade de-

sign for the third-octave case, which is another popular and useful

configuration. Section 6 concludes this paper and shows avenues

for future research in this topic.

2. HISTORICAL DEVELOPMENTS

The graphic EQ design problem is simple: to fit the magnitude re-

sponse of a digital filter through control points, which define the

gain at several predefined frequency points. These are often called

∗ J. Liski is supported by the Aalto ELEC Doctoral School. The work
was partially funded by Nokia Tehnologies (Aalto project number 410642).

the command gains. It was quickly understood that fitting the mag-

nitude response of an EQ through the command points, which are

usually spaced logarithmically in frequency is very difficult. Only

recent digital design methods have achieved sufficient accuracy for

hi-fi audio [12, 13, 1].

One straightforward method is to fit the response of a finite

impulse response (FIR) filter to the command point data using in-

terpolation and to apply the inverse discrete Fourier transform to

obtain the FIR filter coefficients [14, 15]. However, the frequency

division in graphic EQs is usually logarithmic, such as octaves,

and the use of an FIR filter leads to complications at low frequen-

cies: the impulse response associated with a sharp change in a

low-frequency band becomes very long [15]. One idea to reduce

this complication is using a multirate system to optimally down-

sample the long filters at low frequencies [16, 17]. Alternatively,

frequency warping can be used to shorten the filter at low frequen-

cies, but still, FIR graphic EQs are currently more costly to imple-

ment than infinite impulse response (IIR) graphic EQs [18].

During the analog era, most graphic EQs were based on the

parallel structure, which refers to a bank of bandpass filters all of

which receive the same input signal [19, 5, 20, 21, 12, 1]. The

outputs of the bandpass filters were amplified according to the

command gain of that band, and then combined (summed). Such

structures suffered from complications due to the interference of

the magnitude and phase responses of the neighboring bandpass

filters. These often led to notches in the transition region from

one band to another, or accumulation of gain in some bands due to

leakage from neighboring bands. Early digital graphic EQs inher-

ited the parallel structure from the analog world [5]. A few years

ago, Rämö et al. showed how a graphic EQ can be designed accu-

rately using a parallel filter, which is based on least-squares (LS)

optimization of a bank of IIR filters having fixed poles [12].

As an alternative, the cascade structure has been considered

for graphic EQs [19, 22, 23, 24, 1]. Traditional parametric EQ

filters can be used as building blocks of a cascade graphic EQ [22,

25, 13]. It is well known in digital signal processing that the same

transfer functions can be implemented using either a parallel or

a cascade filter [26]. However, the design of the filter parameter

values for these structures can be very different. The main reason

for this is that considering the phase response of the band filters is

unnecessary in the case of the cascade structure [1, 11]. However,

in the case of the parallel structure, the phase response of each

band filter is critical, as in the end the output signals of all band

filters are combined.

Cascade graphic EQs suffer from similar interference from

neigboring band filters as parallel EQs [1]. Some solutions to this

problem include variable-Q designs, which change the bandwidth

of the band filter according to the gain [27], and higher-order band

filters, which improve the summation of the neighboring bands
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Figure 1: Definition of the ±1-dB error limits in the case of (a)

different and (b) same neighboring command gains (red circles).

In both figures, the blue diamonds indicate the extra points mid-

way between each command point.

at the cost of increased computational complexity [28, 23, 24].

Our recent work showed that in the case of the octave cascade

graphic EQ, a sufficiently accurate design can be obtained using a

fairly simple design, which involves an unusual definition of filter

bandwidth and the LS optimization with one iteration [11]. Ad-

ditionally, the new cascade filter can be implemented with fewer

second-order sections than the best parallel graphic EQ, which re-

quires twice as many biquad filter sections as there are command

points. It now seems clear that the best graphic EQ design must be

based on the cascading of second-order band filters.

3. DEFINING THE BEST OCTAVE GRAPHIC EQ

There are multiple ways to compare different EQ designs. Com-

monly, the maximum error, the computational cost of the imple-

mentation, and the complexity of the design are used as criteria

[12]. This section discusses ways to define the target response and

how to test graphic EQ designs. Both aspects affect the evaluation

of the maximum error.

3.1. Target Response

Obviously, the magnitude response of a graphic EQ should match

the command gains at the control frequencies very closely. In hi-fi

audio, a 1-dB accuracy requirement is typical at those points [23,

12, 1]. The error function used is usually the magnitude frequency

response error in dB.

However, how to define the target response between the com-

mand points is less obvious. Smooth and monotonous transitions

from one command point to another are usually desirable, since

in practice a large increase or decrease in the filter gain between

the command points is not what an audio engineer expects from a

graphic EQ. Various interpolation methods have been suggested

for producing a virtually continuous target magnitude response

from command gain data [12, 29]. Some design methods require

such a high-resolution target response.
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Figure 2: Worst-case command gain (red circles) settings (a) re-

ported by Oliver and Jot for their design [13] and (b) observed in

this work for the new cascade design [11]. The black curve is the

magnitude response obtained with the proposed design.

We have observed that for a cascade octave graphic EQ hav-

ing low-order band filters, such as second-order IIR filters, inter-

polating a high-resolution target response is unnecessary, since the

band filter’s gain cannot make large deviations between command

points. To guarantee a monotonous transition between command

points, one option is to simply define one intermediate point be-

tween each command point, where the gain error is evaluated, as

suggested in [11]. The gain at the intermediate point is determined

as the average of the adjacent command gains in dB. The frequency

of the intermediate point must be the geometric mean of the neigh-

boring command points. Figure 1 visualizes this error definition.

Figure 1(a) shows the ±1-dB error limits at three command points

and at two intermediate points between them.

Figure 1(b) presents a common special case in which two or

more neighboring command gains are equal. In this case, it is

meaningful to require the magnitude response to stay within 1 dB

from the command gain also at all frequencies between these points.

3.2. Hardest Gain Settings

In a graphic EQ, the gains can usually be adjusted in the range

of ±12 dB [1]. When trying to find the hardest command gain

combinations, testing the settings where the gains are set either to

+12 or −12 dB in order to produce the largest deviations between

the bands is natural. Since there are ten bands in an octave EQ

and we have two alternatives, we obtain 210 = 1024 different

combinations, or binary settings. These combinations can then

easily be tested to find the one producing the largest error.

Figure 2 shows two examples where the gains are selected

from the binary cases. Oliver and Jot found that for their proposed

design the worst-case gain setting was the one shown in Fig. 2(a)

[13]. On the other hand, our previous work found the settings seen

in Fig. 2(b) to cause the largest error. Clearly, these two exam-

ples have similarities: there are steep transitions between ±12 dB,

but also plateaus, where the EQ has to produce the same gain in

multiple adjacent bands. In both cases, the largest error was actu-

ally produced at such a plateau, at approximately 1 kHz [13] and
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Figure 3: Effect of the value of c on the maximum error in three

different command gain settings. The worst case is the one shown

in Fig. 2(b). The dashed line indicates the 1-dB error that should

not be exceeded.

at 9 kHz [11].

Based on the two cases reviewed above and our own compre-

hensive testing, we propose that the 1024 hard binary cases should

be utilized to test graphic octave EQs in order to reveal the largest

approximation error. Note, however, that for the third-octave EQ,

there are about 30 command gains, so exhaustive testing of all

combinations may not be viable.

4. OCTAVE GRAPHIC EQ DESIGN

Here, a summary of the new cascade graphic EQ design proposed

in [11] is presented. The method is based on designs proposed by

Abel and Berners [30] and Oliver and Jot [13]: one filter per octave

band is used whose interaction with its two neighboring filters at

their center frequency is exactly controlled.

The method uses as band filters the following second-order IIR

peak/notch filter given by Orfanidis in which the reference gain at

dc is set to 1 [31]:

H(z) =
1 +Gβ − 2 cos(ωc)z

−1 + (1−Gβ)z−2

1 + β − 2 cos(ωc)z−1 + (1− β)z−2
, (1)

where G is the linear peak gain, ωc = 2πfc/fs is the normalized

center frequency in radians (the ten standard octave frequencies

31.25 Hz, 62.5 Hz, 125 Hz etc. are used), fs is the sampling fre-

quency, β is defined as

β =











tan (B/2) , when G = 1,
√

|GB
2 − 1|

|G2 −GB
2| tan

(

B

2

)

otherwise,
(2)

and GB is the linear gain at bandwidth B = 2πfB/fs.

In the IIR section defined by (1) and (2), the bandwidth can

be selected such that for the mth band filter, a specified dB gain

gB,m = cgm is reached at the neighboring center frequencies. We
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Figure 4: Normalized amplitude responses of the 8-kHz band filter

for three different peak gain values: (a) the original bandwidth,

which leads to too wide a response (the responses do not cross

inside the boxes) and (b) the adjusted bandwidth, which makes the

responses cross at the lower neighboring center frequency. The

squares indicate the points where the responses should meet.

found that the choice c = 0.3 leads to a successful octave graphic

EQ design [11]. This is illustrated in Fig. 3, which shows the ef-

fect of the parameter c with three different command gain settings.

As is seen, the desired accuracy is achieved when c has values be-

tween 0.28 and 0.38, and thus c = 0.3 can be used. This value

of the parameter c leads to an unusual definition of the bandwidth,

since traditionally the bandwidth of a resonance is determined as

the difference of −3-dB points on each side of a peak, which refers

to 0.7 times the linear gain. However, this non-traditional choice

appears to be crucial for accurate automatic design.

The bandwidths is selected as Bm = 1.5ωc,m, which equals

the difference between the neighboring upper and lower center fre-

quencies. This way, the behavior of each band filter can be exactly

controlled at the center frequencies of both its neighbors. How-

ever, at high center frequencies, the bandwidth needs to be adjusted

in another way, because the filter response becomes asymmetric.

Figure 4(a) shows examples of the normalized magnitude re-

sponse of the band filter at 8 kHz for three different gains. The

magnitude responses have been normalized on the dB scale by

dividing them by their respective dB gain, as suggested in [30].

Without the bandwidth adjustment, the filter responses do not cross

at the desired points, i.e., at their center frequency and the two

neighboring center frequencies, as seen in Fig. 4(a). This anomaly

leads to difficulties in predicting the interaction between neigh-

boring band filters. In the octave design, the asymmetry concerns

the three band filters with the highest center frequencies, 4 kHz,

8 kHz, and 16 kHz. Their bandwidth is set so that the 0.3gm point

occurs at the lower neighboring center frequency (but not at the

higher one), as shown in Fig. 4(b). This leads to bandwidth values

fB,8 = 5580Hz, fB,9 = 9360Hz, and fB,10 = 12160Hz instead

of 6000 Hz, 12000 Hz, and 24000 Hz, respectively.

The resulting filter-response shapes for all band filters of the

cascade octave graphic EQ are shown in Fig. 5, where the re-

sponses are seen to meet at all the desired frequency points (the
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Figure 5: Normalized amplitude responses of all the band filters,

which have gains of 0.3 times its peak gain in dB at the neigh-

boring center frequencies, with different peak gain values: 2 dB

(blue), 17 dB (red), and 24 dB (black).

squares) except for the three highest filters whose responses do not

cross at their higher neighboring frequency. Additionally, Fig. 5

demonstrates the self-similarity of the band filters. Three responses

are plotted at each band with different peak gains. Due to the simi-

lar shape of each normalized response, the samples taken from the

dB amplitude responses can be used as a basis function in order to

control the interaction of the band filters at the selected frequen-

cies [30, 13, 11]. The normalized dB amplitude responses of the

filters are stored in an interaction matrix B.

The octave design uses 19 design points [11] instead of ten,

as suggested by Oliver and Jot [13]. These 19 points include the

filter center frequencies and the geometric mean of these values

between them. This decreases the error and thus improves the be-

havior of the EQ between the command points. With ten octave

bands and 19 design frequencies we obtain a 19-by-10 interaction

matrix, which is visualized in Fig. 6. The filters for the interaction

matrix are designed with (1) and (2) using a prototype dB-gain gp,

which in this case is 17 dB. The values inserted into the interaction

matrix represent the magnitude response divided by gp at the com-

mand points and the intermediate points. As is seen in Fig. 6, the

diagonal values of the interaction matrix are 1 dB, representing the

filter center frequencies, and the other stems indicate the relative

effect of each band filter at the other design points.

The interaction matrix is utilized to determine the optimal dB

gain for each filter in the LS sense by solving its inverse matrix

[32]. However, since the method uses a non-square matrix, the

pseudoinverse of the interaction matrix B+ is necessary to obtain

the optimal solution [32]. The filter gains g are then obtained as

g = B
+
t1 = (BT

B)−1
B

T
t1, (3)

where t1 is a vector with 19 elements containing the original target

dB-gain values in odd rows and their linearly interpolated interme-

diate values in even rows.

Finally, to achieve the desired accuracy of 1 dB, one itera-

tion step is required, because the shape of the basis functions vary

slightly with the filter gains [11]. A new interaction matrix B1 is

formed with the gains g obtained from (3) instead of the prototype

gain gp, and new filter gains are calculated similarly to (3). The

effect of iteration steps is shown in Fig. 7. Figure 7(a) shows the

largest filter gain change in dB as a function of the number of iter-

ation steps. The hardest command gain setting shown in Fig. 2(b)

has been used as the target. The first iteration step is seen to cause

gain changes up to approximately 0.4 dB when compared to the

non-iterative version, whereas the second step has an effect of ap-

proximately 0.05 dB or less. After the third iteration step the gains
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Figure 6: A 19-by-10 interaction matrix containing the normalized

leakage of each band filter to the other frequency points.
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Figure 7: (a) Maximum difference in filter gains between the iter-

ation rounds, and (b) maximum error after each iteration for the

hardest command gain setting of the octave graphic EQ, cf. 2(b).

practically do not change at all.

On the other hand, Fig. 7(b) shows the maximum approxima-

tion error in each case. As is seen, the acceptable error of less

than 1 dB is achieved with one iteration, and the second iteration

decreases the error very slightly. After that, the error saturates at

0.87 dB and further iteration steps have practically no effect. Sim-

ilar error behavior is observed with other tested target responses.

Thus, it is safe to assume that iterating the interaction matrix once

suffices, and that further iterations are superfluous.

5. THIRD-OCTAVE DESIGN

In this section we devise a third-octave cascade graphic EQ design

based on the octave version. One second-order peak/notch filter

of the form (1) is used for each band. Also, an interaction matrix
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Table 1: Center frequencies and bandwidths for the 31 filters of the third-octave graphic equalizer. The adjusted bandwidths of the six

highest band filters are shown in italics.

1 2 3 4 5 6 7 8 9 10 11

fc (Hz) 19.69 24.80 31.25 39.37 49.61 62.50 78.75 99.21 125.0 157.5 198.4

fB (Hz) 9.178 11.56 14.57 18.36 23.13 29.14 36.71 46.25 58.28 73.43 92.51

12 13 14 15 16 17 18 19 20 21 22

fc (Hz) 250.0 315.0 396.9 500.0 630.0 793.7 1000 1260 1587 2000 2520

fB (Hz) 116.6 146.9 185.0 233.1 293.7 370.0 466.2 587.4 740.1 932.4 1175

23 24 25 26 27 28 29 30 31

fc (Hz) 3175 4000 5040 6350 8000 10080 12700 16000 20160

fB (Hz) 1480 1865 2350 2846 3502 4253 5038 5689 5573
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Figure 8: Normalized amplitude responses of all third-octave band filters with three different peak gains, as in Fig. 5. The filter gain at the

neighboring center frequencies, indicated with squares, is set to be 0.4 times the peak dB-gain.

with extra frequencies is used with one iteration step to optimize

the filter gains. Differences between the two designs are caused

by the unequal number of bands and different bandwidths, and

therefore some of the parameters must be reselected.

The third-octave design has 31 bands, whose center frequen-

cies are given in Table 1. We use the center frequencies as well

as the geometric mean frequencies between them as design fre-

quencies, which leads to 61 design points. Thus, the size of the

interaction matrix is now 61-by-31, and since it is non-square, its

pseudoinverse is used in the LS design. The initial interaction ma-

trix is designed using the same prototype gain value as the octave

design, gp = 17 dB.

The bandwidths for the third-octave design are defined in the

same way as in the octave design by selecting a specified dB value

that is achieved at the neighboring center frequencies. When using

the same principle as in the octave design for calculating the band-

widths (i.e., the difference of center frequencies above and below

a filter), we obtain Bm = ( 3
√
2 − 1/ 3

√
2)ωc,m ≈ 0.4662ωc,m.

Due to the filter asymmetry, the bandwidths of the six uppermost

filters are tuned by hand, resulting in the values presented in Table

1. The effect of the manual adjustments are also seen in Fig. 8,

where the left sides of the six last filters now cross the boxes at the

lower neighboring center frequencies.

The largest difference between the octave and the third-octave

design is found in the selection of the parameter c. Initially the

value c = 0.3 was tested, but this resulted in too narrow filters

and large approximation errors. The EQ is unable to create a flat

response when the filters are too narrow, since the overall response

droops between the command points. This is shown in Fig. 9(a):

when all command gains are set to +12 dB, the error exceeds 1 dB

at high frequencies. Figure 9(c) shows that the same can happen

in the middle frequencies with certain command gain settings.

To improve the behavior of the third-octave EQ, different val-

ues of c were tested. Additionally, a minor modification needed

to be applied to the error criterion with respect to the octave de-

sign. For the third-octave design, the error is not evaluated at the

intermediate points between the center frequencies, although those

points are accounted for in the design. Even though the magnitude

response of the EQ varies smoothly from one command point to

another the approximation error exceeds 1 dB in the narrow and

steep transition bands. As the transition bands are very narrow,

such minor undulations are not expected to be perceivable.

Figure 10 shows the effect of parameter c on the maximum er-

ror in three different command gain settings. A suitable c param-

eter range for the third-octave design, where the maximum error

of all three test cases remains below 1 dB, is observed to be 0.38–

0.4. In this work, c = 0.4 is used. The improvements achieved

by adjusting c to 0.4 are shown in Figs. 9(b) and in 9(d), where

the approximation errors is now smaller than 1 dB and the desired

accuracy is thus achieved.

Finally, a non-extreme third-octave EQ design example, taken

from [12], is presented in Fig. 11(a). This command gain setting

leads to a varied target curve, which the proposed design matches

well, confirmed by the error curve shown in Fig. 11(b). In the

plateaus, the error has been evaluated at 16 frequency points be-

tween each neighboring command points.
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Figure 9: Effect of the value of c on the magnitude response. For

(a) and (c), all the command gains are at 12 dB, and for (b) and

(d), the command gains are at ±12 dB: the target seen in Fig. 2(a)

repeats itself until the 31 target points are filled. The horizontal

dashed lines indicate the ±1-dB error tolerances and the arrows

show the points where the error exceeds the 1-dB limit. The error

is reduced, when the value of c is changed from 0.3 to 0.4.
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Figure 10: Effect of the parameter c on the maximum error using

three different command gain settings. The hard setting is shown

in Fig. 12(a).

5.1. Comparison With a Previous Accurate Method

In this section, the proposed third-octave design is compared with

another graphic EQ, which, to our knowledge, is currently the most

accurate, i.e., the high-precision parallel graphic EQ (PGE) [12].

It comprises twice as many second-order filter sections as there are

bands and has a maximum approximation error of less than 1 dB at

all tested command gain configurations. However, it is difficult to

design, since a high-resolution interpolation of the target magni-

tude response is required as well also a phase response estimation

[29].
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Figure 11: Third-octave EQ example showing varying command

gains: (a) the complete response of the EQ and (b) the error, as

defined for the third-octave design in Sec. 5. The dots illustrate the

frequency points where the error has been evaluated.

Table 2 compares the accuracy of the two EQs with different

command gain settings. We are interested in the maximum error

that is determined by the guidelines shown in Fig. 1 apart from

using the intermediate frequency points as explained in the pre-

vious section. The first test case is a zigzag setting in which the

command gains alternate between ±12 dB that reveals the EQ’s

ability to create steep transitions. As is seen in Fig. 12(a) and (b),

the proposed design and the PGE produce very similar responses

everywhere except at very low frequencies below the first com-

mand point, and they both stay within ±1 dB of the targets. How-

ever, when looking at the maximum error, the proposed method is

slightly better with an approximately 0.2-dB smaller error.

The responses of the second test case are shown in Figs. 12(c)

and (d). Here too the command gains vary between ±12 dB, but

there are also flat regions between the steep transitions. The gain

setting is inspired by the ones seen in Fig. 2. However, in the

case of third-octave filters we could not test all the hard binary

settings as in the octave version, because of the huge number of

combinations (231 compared to 210). Instead, some combinations

that we thought were hard were tested, and we ended up using the

following demanding command gain configuration: t = [12 –12 12

12 –12 12 –12 –12 –12 12 –12 12 12 12 –12 12 –12 –12 12 12 12

–12 –12 12 12 –12 12 –12 –12 12 12]T . The two methods again

produce similar responses, as seen by comparing Figs. 12(c) and

(d). When investigating the maximum error, we see that the PGE

is slightly better, but that both methods stay within ±1 dB of the

target.

Table 3 lists the number of operations during real-time filter-

Table 2: Maximum error of two third-octave graphic EQs in two

test target settings. The best result in each case is highlighted.

Case PGE Proposed

Zigzag 0.65 dB 0.41 dB

Hard case 0.66 dB 0.98 dB
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Figure 12: Magnitude response of (a) the proposed design and (b) the PGE with zigzag (±12 dB) command settings and (c) the proposed

design and (d) the PGE with hard command gain settings (±12 dB) inspired by the targets in Fig. 2.

ing for the PGE and the proposed methods. As is seen, the pro-

posed method is approximately 44% more efficient. This advan-

tage mainly comes from using one biquad filter per band rather

than the two per band in the PGE. Even though the PGE uses an op-

timized structure by having one fewer numerator coefficient com-

pared to the traditional second-order filter [12], the larger number

of filter sections negates that advantage.

Additionally, we compared another computational aspect of

the graphic EQ design, namely the parameter computing time when

a command gain is changed. The update times were calculated in

MATLAB as an average of 1000 updates using random values be-

tween ±12 dB as command gains. The Internet connection and all

other programs were shut down so as not to affect the computation.

The average time for the command gain update was 24 ms for

the PGE method and 6.0 ms for the proposed method. This implies

that the proposed method is 75% faster than the PGE in updating

its parameters. The proposed method requires linear interpolation

between the command gains, a matrix inversion, and large matrix

multiplications, which increase its update time. However, due to

the computation of the high-resolution target magnitude and phase

responses and a pseudoinverse of a large matrix, the PGE requires

much more time to update its parameters.

In summary, the proposed method is approximately equally

accurate as the PGE, but requires fewer operations per output sam-

ple and is faster in command gain updating, making it the superior

design.

6. CONCLUSION AND FUTURE WORK

This paper reviewed the methods and the target response definition

for graphic EQ design, proposed a methodology for testing graphic

Table 3: Comparison of the operation count in third-octave EQs.

Operations PGE Proposed

Additions 248 124

Multiplications 248 155

Total 496 279

EQs, and expanded a previously proposed accurate graphic EQ to

the third-octave equalization problem. In the case of a cascade

octave graphic EQ with low-order band filters, one alternative is

to evaluate the error at intermediate points between the command

points in addition to the command points themselves. This is

enough to guarantee a monotonous transition between the bands,

since large deviations between bands are impossible using second-

order IIR filters having a restricted bandwidth. In addition, some

hard command gain settings were presented that can be used to

test graphic EQ designs. The largest errors were observed when

all command gains were at the extreme values, usually at ±12 dB.

Finally, a previously proposed accurate graphic EQ design was

expanded to the third-octave case. The design method uses one

second-order IIR filter per band. The interaction between the dif-

ferent band filters is optimized at the band center frequencies and

at one extra point between each center frequency with the help of

an interaction matrix. With one iteration step in the interaction

matrix design, the method achieves 1-dB accuracy and thus is ap-

plicable to high-quality audio.

The new third-octave design was compared with a previously

proposed parallel graphic EQ, which, to our knowledge, was the

state-of-the-art graphic EQ prior to this work. The new method

achieves approximately the same accuracy but requires fewer op-

erations per output sample and is faster to design. The proposed

method is thus currently the best graphic EQ design. The relevant

MATLAB code is available online [33].

A remaining research challenge is to simplify the EQ design

so that sufficient accuracy is achieved without an iteration step.

Possible approaches to this end are the determination of data- or

frequency-dependent c and gp parameters. This would lead to

computational benefits, since the interaction matrix and its pseu-

doinverse would not have to be calculated with each command

gain change. Furthermore, the cascade EQ could be converted into

a parallel form in order to reap benefits in the filter implementa-

tion.
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