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ABSTRACT

Sound effect libraries are commonly used by sound designers in

a range of industries. Taxonomies exist for the classification of

sounds into groups based on subjective similarity, sound source or

common environmental context. However, these taxonomies are

not standardised, and no taxonomy based purely on the sonic prop-

erties of audio exists. We present a method using feature selection,

unsupervised learning and hierarchical clustering to develop an un-

supervised taxonomy of sound effects based entirely on the sonic

properties of the audio within a sound effect library. The unsuper-

vised taxonomy is then related back to the perceived meaning of

the relevant audio features.

1. INTRODUCTION

Sound designers regularly use sound effect libraries to design au-

dio scenes, layering different sounds in order to realise a design

aesthetic. For example, numerous explosion audio samples are of-

ten combined to create an effect with the desired weight of impact.

A large part of this work involves the use of foley, where an artist

will perform sound with a range of props. A key aspect of foley

is that the prop being used may not match the object in the visual

scene, but is capable of mimicking its sonic properties. An ex-

ample would be the use of a mechanical whisk, which becomes a

convincing gun rattle sound effect when combined in a scene with

explosions and shouting.

Sound designers are less interested in the physical properties

or causes of a sound, and more interested in their sonic properties.

Despite this, many sound effect libraries are organised into geo-

graphical or physical categories. In [1] a sound search tool based

on sonic properties is proposed, considering loudness, pitch and

timbral attributes. A similar tool for semantic browsing of a small

library of urban environmental sounds has also been proposed [2].

No other known classification methods for sound effects based on

their sonic attributes exist, instead most previous work focuses ei-

ther on perceptual similarity or the context and source of the sound.

Given that the practical use for a sound sample is often ab-

stracted from its original intention, source or semantic label, cate-

gorisation based on this information is not always desirable. Fur-

thermore, no standard exists for the labelling of recorded sound,

and the metadata within a sound effect library can be highly in-

consistent. This makes the task of searching and identifying useful

sounds extremely laborious, and sound designers will often resort

to recording new sound effects for each new project.

The aim of this paper is to produce a hierarchical taxonomy of

sound effects, based entirely on the sonic properties of the audio

samples, through the use of unsupervised learning. Such an ap-

proach offers an alternative to standard categorisation, in the hope

that it will aid the search process by alleviating dependence on

hand written labels and inconsistent grouping of sounds.

Different approaches to developing taxonomies of sound are

discussed in Section 2. Section 3 presents the dataset, feature se-

lection technique and unsupervised learning method undertaken

to produce a hierarchy within a sound effect library. The taxon-

omy we produced is presented in Section 4. The evaluation of the

presented taxonomy is undertaken in Section 4.4 and discussed in

Section 5. Finally, the validity of the taxonomy and future work is

discussed in Section 6.

2. BACKGROUND

There are a number of examples of work attempting to create a tax-

onomy of sound. In [3], the author classified sounds by acoustics,

psychoacoustics, semantics, aesthetics and referential properties.

In [4], the authors classified "noise-sound" into six groups: roars,

hisses, whispers, impactful noises, voiced sounds and screams.

This is further discussed in [5].

Production of a taxonomy of sounds heard in a cafe or restau-

rant were produced, basing the grouping on the sound source or

context [6, 7].

In [8] the authors presented a classification scheme of sounds

based on the state of the physical property of the material. The

sound classifications were vibrating solids, liquids and aerody-

namic sounds (gas). A series of sub-classifications based on hy-

brid sounds were also produced along with a set of properties that

would impact the perception of the sound. This was developed fur-

ther by attempting to understand how participants would arbitrar-

ily categorise sounds [9]. In [10] the authors asked participants to

identify how similar sounds are to each other along a series of dif-

ferent dimensions. They then performed hierarchical cluster anal-

ysis on the results, to produce a hierarchical linkage structure of

the sounds. Furthermore, in [11] the authors performed a simi-

lar study where participants were asked how alike sets of sounds

were. Audio features were then correlated to a likeness measure

and a hierarchical cluster was produced on the set of selected fea-

tures.

In [12] the authors asked participants to rate the similarity

of audio samples, and performed hierarchical cluster analysis to

demonstrate the related similarity structure of the sounds. Acous-

tic properties of sound walk recordings were taken and unsuper-

vised clustering performed in [13]. These clusters were identified

and related back to some semantic terms. Similarly, sound walks

and interviews were used to identify appropriate words as sound

descriptors [14]. Classification of sound effects by asking individ-

uals to identify suitable adjectives to differentiate different sound

samples was performed in [15] and similarly in [16] where the au-

thors define classes of sound descriptor words that can be used to
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Reference Type of Classification Quantitive Qualitative Word Audio Feature Hierarchical

Sound properties Analysis Analysis Classification Analysis Cluster

[3] Environmental Acoustics N N N Y N

[3] Environmental Aesthetics N N N N N

[3] Environmental Source/context N N N N Y

[4, 5] Environmental Subjective N N N N N

[6] Cafe sounds Source or context N N N N Y

[7] Restaurant Subjective ‘liking’ score N Y Y N N

[7] Restaurant Word occurrence N Y Y N Y

[8] Environmental Physical properties Y N N N N

[9] Environmental Subjective grouping Y N N N Y

[10] Environmental Subjective ratings Y N N Y Y

[11] Environmental Subjective ratings Y N N N Y

[12] Environmental Subjective ratings Y N Y N Y

[13] Sound walks Low level audio features Y Y N Y N

[14] Sound walks Semantic words Y N Y N N

[15] Soundscape Subjective free text word recurrence N Y Y N N

[16] ‘Perceptual attribute’ words Definition of word N Y Y N N

[17] Broadcast objects Predefined word list Y Y Y N Y

[18] Urban sounds Source N N N N Y

[19] Synthesised sounds Control parameters N N N N Y

[20] Field recordings Labels/audio features Y N N Y N

Table 1: Summary of literature on sound classification

relate the similarity of words. In an extension to this, [17] asked

participants to perform a sorting and labelling task on broadcast

audio objects, again yielding a hierarchical cluster.

[18] produced a dataset of urban sounds, and a taxonomy

for the dataset, where sounds are clustered based on the cause of

the audio, rather than the relative similarity of the audio sample

themselves. They then used this dataset for unsupervised learning

classification [21, 22]. In the context of synthesised sounds, [19]

grouped sounds by their control parameters.

There is no clear standard method for grouping sounds such

as those found in a sound effect library. It becomes clear from the

literature that there is limited work utilising audio features to pro-

duce a taxonomy of sound. It can be seen in Table 1 that a large

range of relevant work structures sound grouping based on either

subjective rating or word clustering. It is also apparent there is lit-

tle work clustering the acoustic properties of individual samples.

There is a discussion of sound classification based on the acous-

tic properties of samples [3], but only a high level discussion is

presented and is not pursued further.

3. METHODOLOGY

We used unsupervised machine learning techniques to develop an

inherent taxonomy of sound effects. This section will detail the

various development stages of the taxonomy, as presented in Fig-

ure 1. The Adobe sound effects library was used. A set of audio

features were extracted, feature selection that was performed using

Random Forests and a Gaussian Mixture Model was used to pre-

dict the optimal number of clusters in the final taxonomy. From

the reduced feature set, unsupervised hierarchical clustering was

performed to produced the number of clusters as predicted using

the Gaussian Mixture Model. Finally the hierarchical clustering

results are interpreted. All software is available online 1.

1https://goo.gl/9aWhTX

Figure 1: Flow Diagram of unsupervised sound effects taxonomy

system.

3.1. Dataset

A dataset containing around 9,000 audio samples from the Adobe

sound effect library 2 is used. This sound effects library contains a

range of audio samples. All input audio signals were downmixed

to mono, downsampled to 44.1 kHz if required, and had the initial

and final silence removed. All audio samples were loudness nor-

malised using ReplayGain [23]. Each sound effect was placed in a

different folder, describing the context of the original sound effect.

The original labels from the sound effect library can be found in

Table 2, along with the number of samples found in each folder.

2https://goo.gl/TzQgsB
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Class Quantity of Class Quantity of

Name Samples Name Samples

Ambience 92 Animals 173

Cartoon 261 Crashes 266

DC 6 DTMF 26

Drones 75 Emergency Effects 158

Fire and Explosions 106 Foley 702

Foley Footsteps 56 Horror 221

Household 556 Human Elements 506

Impacts 575 Industry 378

Liquid-Water 254 Multichannel 98

Multimedia 1223 Noise 43

Production Elements 1308 Science Fiction 312

Sports 319 Technology 219

Tones 33 Transportation 460

Underwater 73 Weapons 424

Weather 54

Table 2: Original label classification of the Adobe Sound Effects

Dataset. DC are single DC offset component signals. DTMF is

Dual Tone Multi Frequency - a set of old telephone tones.

3.2. Feature Extraction

The dataset described in Section 3.1 was used. We used Essentia

Freesound Extractor to extract audio features [24], as Essentia al-

lows for extraction of a large number of audio features, is easy to

use in a number of different systems and produced the data in a

highly usable format [25]. 180 different audio features were ex-

tracted, and all frame based features were calculated using a frame

size of 2048 samples with a hop size of 1024, with the exception of

pitch based features, which used a frame size of 4096 and the hop

size 2048. The statistics of these audio features were then calcu-

lated, to summarise frame based features over the audio file. The

statistics used are the mean, variance, skewness, kurtosis, median,

mean of the derivative, the mean of the second derivative, the vari-

ance of the derivative, the variance of the second derivative, the

maximum and minimum values. This produced a set of 1450 fea-

tures, extracted from each file. Sets of features were removed if

they provided no variance over the dataset, thus reducing the orig-

inal feature set to 1364 features. All features were then normalised

to the range [0, 1].

3.3. Feature Selection

We performed feature selection using a similar method to the one

described in [26], where the authors used a Random Forest classi-

fier to determine audio feature importance.

Random forests are an unsupervised classification technique

where a series of decision trees are created, each with a random

subset of features. The out-of-bag (OOB) error was then calcu-

lated, as a measure of the random forests classification accuracy.

From this, it is possible to allocate each feature with a Feature Im-

portance Index (FII), which ranks all audio features in terms of

importance by evaluating the OOB error for each tree grown with

a given feature, to the overall OOB error [27].

In [26] the authors eliminated the audio features from a Ran-

dom Forest that had an FII less than the average FII and then grew

a new Random Forest with the reduced audio feature set. This

elimination process would repeat until the OOB error for a newly

grown Random Forest started to increase.

Here, we opted to eliminate the 1% worst performing audio

features on each step of growing a Random Forest, similar to but

more conservative than the approach in [28]. In order to select

the correct set of audio features that fit our dataset we chose the

feature set that provided us with lowest mean OOB error over all

the feature selection iterations.

On each step of the audio feature selection process, we cluster

the data using a Gaussian Mixture Model (GMM). GMM’s are an

unsupervised method for clustering data, on the assumption that

data points can be modelled by a gaussian. In this method, we

specify the number of clusters and get a measure of GMM qual-

ity using the Akaike Information Criterion (AIC). The AIC is a

measure of the relative quality of a statistical model for a given

dataset. We keep increasing the number of clusters used to create

each GMM, while performing 10-fold cross-validation until the

AIC measure stops increasing. This gives us the optimal number

of clusters to fit the dataset.

3.4. Hierarchical Clustering

There are two main methods for hierarchical clustering. Agglom-

erative clustering is a bottom up approach, where the algorithm

starts with singular clusters and recursively merges two or more

of the most similar clusters. Divisive clustering is a top down ap-

proach, where the data is recursively separated out into a fixed

number of smaller clusters.

Agglomerative clustering was used in this paper, as it is fre-

quently applied to problems within this field [10, 11, 12, 13, 26,

17]. It also provides the benefit of providing cophonetic distances

between different clusters, so that the relative distances between

nodes of the hierarchy are clear. Agglomerative clustering was

performed, on the feature reduced dataset, by assigning each in-

dividual sample in the dataset as a cluster. The distance was then

calculated for every cluster pair based on Ward’s method [29],

d(ci, cj) =

√

2ncincj

nci + ncj

euc(xci , xcj ) (1)

where for clusters ci and cj , xc is the centroid of a cluster c,

nc is the number of elements in a cluster c and euc(xci , xcj ) is

the euclidean distance between the centroids of clusters ci and cj .

This introduces a penalty for clusters that are too large, which re-

duces the chances of a single cluster containing the majority of the

dataset and that an even distribution across a hierarchical structure

is produced. The distance is calculated for all pairs of clusters, and

the two clusters with the minimum distance d are merged into a

single cluster. This is performed iteratively until we have a sin-

gle cluster. This provides us with a full structure of our data, and

we can visualise our data from the whole dataset, down to each

individual component sample.

3.5. Node Semantic Context

In order to interpret the dendrogram produced from the previous

step, it is important to have an understanding of what is causing

the separation at each of the node points within the dendrogram.

Visualising the results of machine learning algorithms is a chal-

lenging task. According to [30] decision trees are the only clas-

sification method which provides a semantic explanation of the

classification. This is because a decision tree faciliates inspection

of individual features and threshold values, allowing interpretation

of the separation of different clusters. This is not possible with

any other classification methods. As such, we undertook feature
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selection and then grew a decision tree to provide some semantic

meaning to the results.

Each node point can be addressed as a binary classification

problem. For each node point, every cluster that falls underneath

one side is put into a single cluster, and everything that falls on the

other side of the node is placed in another separate cluster. Every-

thing that does not fall underneath the node is ignored. This pro-

duces two clusters, which represent the binary selection problem at

that node point. From this node point, a random forest is grown to

perform the binary classification between the two sets and feature

selection is then performed as described in Section 3.3. The main

difference here is that only the five most relevant features, based

on the FII are selected at each stage.

A decision tree is grown with this reduced set of 5 audio fea-

tures, to allow manual visualisation of the separation of data at

each node point within the hierarchical structure. The decision

tree is constructed by minimising the Gini Diversity Index (GDI),

at each node point within the decision tree, which is calculated as:

GDI = 1−
∑

i

p(i)2 (2)

where i is the class and p(i) is the fraction of objects within class

i following the branch. The decision trees are grown using the

CART algorithm [31]. To allow for a more meaningful visualisa-

tion of the proposed taxonomy, the audio features and values were

translated to a semantically meaningful context based on the audio

interpretation of the audio feature. The definitions of the particu-

lar audio features were investigated and the authors identified the

perceptual context of these features, providing relevant semantic

terms in order to describe the classification of sounds at each node

point.

4. RESULTS AND EVALUATION

4.1. Feature Extraction Results

Figure 2 plots the mean OOB error for each Random Forest that

is grown for each iteration of the audio feature selection process.

In total there were 325 iterations of the feature selection process,

where the lowest OOB error occurred at iteration 203 with a value

of 0.3242. This reduced the number of audio features from 1450

to 193.

Figure 3 depicts the mean OOB error for each Random Forest

feature selection iteration against the optimal amount of clusters,

where the optimal amount of clusters was calculated using the AIC

for each GMM created. We found the optimal amount of clusters

to be 9, as this coincides with the minimum mean OOB error in

Figure 3.

4.2. Hierarchical Clustering Results

Having applied agglomerative hierarchical clustering to the re-

duced dataset, the resultant dendrogram can be seen in Figure 4.

The dotted line represents the cut-off for depth analysis, chosen

based on the result that the optimal choice of clusters is 9.

The results of the pruned decision trees are presented in Fig-

ure 5. Each node point identified the specific audio feature pro-

vides the best split in the data, to create the structure as presented

in Figure 4.
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Figure 2: Mean OOB Error for each Random Forest grown plotted

against number of feature selection iterations

4.3. Sound Effects Taxonomy Result

The audio features used for classification were related to their se-

mantic meanings by manual inspection of the audio features used

and the feature definitions. This is presented in Figure 6. As can

be seen, the two key factors that make a difference to the clustering

are periodicity and dynamic range.

Periodicity is calculated as the relative weight of the tallest

peak in the beat histogram. Therefore strongly periodic signals

have a much higher relative peak weight than random signals,

which we expect to have near-flat beat histograms. Dynamic range

is represented by the ratio of analysis frames under 60dB to the

number over 60dB as all audio samples were loudness normalised

and all leading and trailing silence was removed, as discussed in

Section 3.2. Further down the taxonomy, it is clear that periodicity

stands out as a key factor, in many different locations, along with

the metric structure of periodicity, calculated as the weight of the

second most prominent peak in the beat histogram. Structured mu-

sic with beats and bars will have a high metrical structure, whereas

single impulse beats or ticks will have a high beat histogram at one

point but the rest of the histogram should look flat.

4.4. Evaluation

To evaluate the results of the produced sound effect taxonomy, as

presented in Figure 6, the generated taxonomy was compared to

the original sound effect library classification scheme, as presented

in Section 3.1. The purpose of this is to produce a better under-

standing of the resulting classifications, and how it compares to

more traditional sound effects library classifications. It is not ex-

pected that out clusters will appropriately represent an pre-existing

data clusters, but that it may give us a better insight into the repre-

sentation of the data.

Each of the 9 clusters identified in Figures 5 and 6 were eval-

uated by comparing the original classification labels found in Ta-

ble 2 to the new classification structure. This is presented in Fig-

ure 7, where each cluster has a pie chart representing the distribu-

tion of original labels from the dataset. Only labels that make up

more than 5% of the dataset were plotted.
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Figure 3: Mean OOB Error for each Random Forest grown plot-

ted against optimal number of clusters for each feature selection

iteration

In cluster 1, which has quick, periodic, high dynamic range

sounds with a gradual decay, the majority of the results are from a

range of production elements which are highly reverberant repeti-

tive sounds, such as slide transition sounds. Many of these sounds

are artificial or reverberant in nature, which follows the intuition

of the cluster identification.

Cluster 2 contains a combination of foley sounds and water-

splashing sounds. These sounds are somewhat periodic, such as

lapping water, but do not have the same decay as in cluster 1.

Cluster 3 is very mixed. Impacts, household sounds and foley

make up the largest parts of the dataset, but there is also contri-

bution from crashes, production elements and weapon sounds. It

is clear from the distribution of sounds that this cluster contains

mostly impactful sounds. It is also evident that a range of impact-

ful sounds from across the sound effect library have been grouped

together.

In cluster 4, most of the samples are from the production ele-

ments label. These elements are moderately periodic at a high rate,

such as clicking and whooshing elements, which are also similar

to the next category of multimedia.

Cluster 5 contains a spread of sound labels, which includes

transport and production elements as the two largest components.

In particular, the transport sounds will be a periodic repetition of

engine noises or vehicles passing, while remaining at a consistent

volume.

There is a large range of labels within cluster 6. The three

most prominent are human, multimedia and production elements,

though cartoon and emergency sounds also contribute to this clus-

ter. Human elements are primarily speech sounds, so the idea that

periodic sounds that do not have a lot of high mid seems suit-

able, as the human voice fundamental frequency is usually be-

tween 90Hz and 300Hz.

Cluster 7 is entirely represented by the science fiction label.

These fairly repetitive, constant volume sounds have an unnatu-

rally large amount of high mid frequency.

Within cluster 8, the largest group of samples is multimedia,

which consists of whooshes and swipe sounds. These are aperi-

Figure 4: Dendrogram of arbitrary clusters - The dotted line rep-

resents the cut-off for the depth of analysis (9 clusters)

odic, and their artificial nature suggests a long reverb tail or echo.

A low dynamic range suggests that the samples are consistent in

loudness, with very few transients.

Finally, cluster 9 consists of a range of aperiodic impactful

sounds from the impact, foley, multimedia and weapon categories.

5. DISCUSSION

The 9 inferred clusters were compared to the 29 original labels. It

is clear that some clusters relate to intuition, and that this structure

may aid a sound designer and present a suitable method for finding

sounds, such as impactful sounds in cluster 9. Despite this, there

are some clusters that do not make intuitive sense, or are difficult

to fully interpret. We suspect that this is due to the depth of anal-

ysis on the dataset. Despite the GMM predicting 9 clusters within

the data, we believe that a greater depth of analysis and clustering

could aid in providing more meaningful, interpretable results, as

many of the clusters are currently too large.

As can be seen from Figure 6 and discussed in Section 4, dy-

namic range and periodic structure are the key factors that sepa-

rate this dataset. It is surprising that no timbral attributes and only

one spectral attribute appears in the top features for classification

within the dataset, and that seven of the eight features are time

domain features.

Cluster 7 was described entirely as ‘Science Fiction’ in Sec-

tion 4.4. This set of sound effects is entirely artificial, created using

synthesisers and audio production. We believe that that the group-

ing using this audio feature is an artefact of the artificial nature of

the samples and the fact they all come from a single source. This
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Figure 5: Machine learned structure of sound effects library, where clusters are hierarchical clusters. The single audio feature contributing

to the separation is used as the node point,with normalised audio feature values down each branch to understand the impact the audio

feature has on the sound classification. The ∗ represents a feature separation where the classification accuracy is less than 80%, never less

than 75%.

is also caused by the analysis and evaluation of a single produced

sound effect library. This artefact may be avoided with a large

range of sound effects from different sources.

Section 4.4 shows that the current classification system for

sound effects may not be ideal, especially since expert sound de-

signers often know what sonic attributes they wish to obtain. This

is one of the reasons that audio search tools have become so promi-

nent, yet many audio search tools only work using tag metadata

and not the sonic attributes of the audio files.

Our produced taxonomy is very different from current work.

As presented in Section 2, most literature bases a taxonomy on

either audio source, environmental context or subjective ratings.

6. CONCLUSION

Given a commercial sound effect library, a taxonomy of sound ef-

fects has been learned using unsupervised learning techniques.

At the first level, a hierarchical structure of the data was ex-

tracted and presented in Figure 4. Following from this, a decision

tree was created and pruned, to allow for visualisation of the data,

as in Figure 5. Finally a semantically relevant context was applied

to data, to produce a meaningful taxonomy of sound effects which

is presented in Figure 6. A semantic relationship between different

sonic clusters was identified.

The hierarchical clusters of the data provide deeper under-

standing of the separating attributes of sound effects, and gives us

an insight into relevant audio features for sound effect classifica-

tion. We demonstrated the importance of the periodicity, dynamic

range and spectral features for classification. It should be noted

that although the entire classification was performed in an unsu-

pervised manner, there is still a perceptual relevance to the results

and there is a level of intuition provided by the decision tree and

our semantic descriptors. Furthermore, the clustering and structure

will be heavily reliant on the sound effects library used.

We also demonstrated that current sound effect classification

and taxonomies may not be ideal for their purpose. They are both

non-standard and often place sonically similar sounds in very dif-

ferent categories, potentially making it challenging for a sound de-

signer to find an appropriate sound. We have proposed a direction

for producing new sound effect taxonomies based purely on the

sonic content of the samples, rather than source or context meta-

data.

In future work, validation of the results on larger sound ef-

fect datasets could aid in evaluation. By using the hierarchical

clustering method, one can also produce a cophonetic distance be-

tween two samples. This would allow identification of how the

distance can correlate with perceived similarity and may provide

some interesting and insightful results. Further development of

the evaluation and validation of the results, perhaps through per-

ceptual listening tests, would be of beneficial to this field of re-

search. It is also possible to look at the applications of hierarchical

clustering towards other types of musical sounds, such as musical

instrument classification. Hierarchical clustering is able to provide

more information and context than many other unsupervised clus-
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Figure 6: Machine learned taxonomy, where each node separation point is determined by hierarchical clustering and text within each node

is an semantic interpretation of the most contributing audio feature for classification. Each final cluster is given a cluster number and a

brief semantic description. The ∗ represents a feature separation where the classification accuracy is less than 80%, never less than 75%.

Figure 7: Dataset labels per cluster, where all labels that make up more than 5% of the dataset were plotted
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tering methods. Further evaluation of clusters produced could be

undertaken, as well as a deeper analysis into each of the identified

clusters, to produce a deeper taxonomy.
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