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ABSTRACT

An antialiased digital model of the wavefolding circuit inside the

Buchla 259 Complex Waveform Generator is presented. Wave-

folding is a type of nonlinear waveshaping used to generate com-

plex harmonically-rich sounds from simple periodic waveforms.

Unlike other analog wavefolder designs, Buchla’s design features

five op-amp-based folding stages arranged in parallel alongside a

direct signal path. The nonlinear behavior of the system is accu-

rately modeled in the digital domain using memoryless mappings

of the input–output voltage relationships inside the circuit. We pay

special attention to suppressing the aliasing introduced by the non-

linear frequency-expanding behavior of the wavefolder. For this,

we propose using the bandlimited ramp (BLAMP) method with

eight times oversampling. Results obtained are validated against

SPICE simulations and a highly oversampled digital model. The

proposed virtual analog wavefolder retains the salient features of

the original circuit and is applicable to digital sound synthesis.

1. INTRODUCTION

To talk about Don Buchla is to talk about the history of the ana-

log synthesizer. Motivated by his early experiments with musique

concrète, California native Donald “Don” Buchla was drawn to the

San Francisco Tape Music Center in 1963, where he began collab-

orating with composers Morton Subotnick and Ramon Sender [1].

Subotnick and Sender commissioned Buchla to design a voltage-

controlled musical instrument that could manipulate the character-

istics of sounds generated by function generators. This led to the

development of Buchla’s first synthesizer, the Buchla 100 [1, 2],

completed in 1964.

From the beginning, Buchla’s approach to sound synthesis

was fundamentally different to that of his contemporaries, partic-

ularly Robert Moog. In Moog synthesizers, sounds are sculpted

by filtering harmonically-rich waveforms with resonant filters.

This method is known in the literature as “subtractive” synthe-

sis and is commonly dubbed “East Coast” synthesis as a refer-

ence to Moog’s New York origins. In contrast, Buchla’s syn-

thesis paradigm (known as “West Coast" synthesis) concentrates

on timbre manipulation at oscillator level via nonlinear waveshap-

ing, frequency modulation or phase locking. A trademark module

in Buchla synthesizers is the lowpass gate, a filter/amplifier cir-

cuit capable of producing acoustic-like plucked sounds by using

photoresistive opto-isolators, or “vactrols”, in its control path [3].

Buchla’s designs played a key role in the development of electronic

music and can be heard across numerous recordings, such as in the

works of the renowned composer Suzanne Ciani [4].

Recent years have seen a resurgence of interest in analog syn-

thesizers, with music technology powerhouses such as Moog and

Korg re-releasing modern versions of their now classic designs.

Similarly, contemporary manufacturers of modular synthesizers

like Make Noise, Sputnik Modular and Verbos Electronics, to

name a few, have reinterpreted Buchla’s designs, rekindling the

interest in analog West Coast synthesis. This rise in popularity

serves as the motivation to study classic analog devices and to de-

velop virtual analog (VA) models which can be used within digital

audio environments. VA instruments are generally more affordable

than their analog counterparts, and are exempt from issues such as

electrical faults and component aging [5].

In this work we present a novel VA model of the timbre circuit

inside the seminal Buchla 259, a complex waveform generator re-

leased in 1970 as part of the Buchla 200 synthesizer. The 259 is a

dual oscillator module with frequency modulation and waveform

synchronization capabilities that provide a wide timbral palette.

However, its most distinctive feature is its wavefolding circuit ca-

pable of producing the rich harmonic sweeps characteristic to West

Coast synthesis. Wavefolding is a type of nonlinear waveshaping

in which parts of the input signal that exceed a certain value are

inverted or “folded back”. This process introduces high levels of

harmonic distortion and thus alters the timbre of the signal.

The use of nonlinear distortion to generate complex sounds

has been widely studied within the context of digital synthesis.

Well-known methods include the use of nonlinear waveshaping

functions, such as Chebyshev polynomials, to expand the spec-

trum of simple sinusoids [6–9], and frequency modulation (FM)

synthesis [10]. Other methods include modified FM synthesis

[11], bitwise logical modulation and vector phaseshaping synthe-

sis [12, 13]. Previous research on VA modeling of nonlinear ana-

log audio systems has covered a wide spectrum of topics, includ-

ing Moog’s ladder filter [14–18], other nonlinear filters [3,19–21],

distortion circuits [22–26] and effects units [27–29].

One of the major challenges in VA modeling is to minimize

the effects of aliasing distortion. Aliased components are known

to be perceptually disturbing and unpleasant, but become negli-

gible if attenuated sufficiently [30, 31]. The brute force method

to reduce aliasing is oversampling, but, if the nonlinearity intro-

duces high levels of distortion, the sample rate may have to be

very high to obtain good audio quality. Aliasing suppression tech-

niques have been thoroughly studied in the field of digital audio

synthesis [32–35] and, more recently, in nonlinear audio process-

ing [36–39]. In this work we propose the use of the previously in-

troduced bandlimited ramp (BLAMP) method [36, 37] which can

be used to bandlimit the corners, or edges, introduced by the wave-

folding operation. The BLAMP method significantly reduces the

oversampling requirements of the system.

This paper is organized follows. Section 2 details the analysis

of the circuit. Section 3 deals with its implementation in the digital

domain with emphasis on aliasing suppression. Finally, results and

concluding remarks are presented in Sections 4 and 5, respectively.
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Figure 1: Simplified schematic of the Buchla 259 timbre circuit.

2. CIRCUIT ANALYSIS

Figure 1 shows a simplified schematic of the Buchla 259 timbre

circuit. This figure has been adapted from Andre Theelen’s DIY

version of the circuit 1. The main difference between Fig. 1 and

Buchla’s original design2 is the omission of the “Symmetry” and

“Order” controls, which are not considered in this study. The fol-

lowing treatment of the circuit adheres, for the most part, to the

analysis presented by Prof. Aaron Lanterman as part of his lecture

series “Electronics for Music Synthesis” [40].

The wavefolder inside the Buchla 259 consists of five non-

identical op-amp-based folding cells arranged in parallel along-

side a direct signal path, as shown in Fig. 1. The two op-amps on

the right-hand side of the schematic are set up as summing am-

plifiers and are used to combine the outputs of all six branches.

Overall, this parallel topology differs from that of the more com-

mon transistor/diode-based wavefolders, where multiple folding

stages are usually cascaded together, e.g. as in the middle section

of the Serge Wave Multipliers3. The Intellijel µFold II4 and Toppo-

brillo Triple Wavefolder5 are examples of commercially-available

designs built around a series topology.

To simplify the analysis of the circuit, we first derive the input–

output voltage relationship of a single folding cell. Since the par-

allel paths share the same structure, this result can be applied to all

1www.ecalpemos.nl/sdiy/buchlaesque-modular/mutant-259-timbre-
modindex-section/

2rubidium.dyndns.org/~magnus/synths/companies/buchla/
3http://www.cgs.synth.net/modules/cgs52_folder.html
4www.intellijel.com/eurorack-modules/µfold-ii/
5www.toppobrillo.com/TWF/TWF.html
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Figure 2: Circuit diagram for a single folding cell, cf. Fig. 1.

folding branches. Component values for the circuit are given in Ta-

ble 1. Indices have been used to indicate branch number, e.g. R5,2

denotes resistor R2 in the fifth branch.

2.1. Single Folding Cell

Figure 2 shows the schematic for an op-amp circuit that is in the

context of this work referred to as a folding cell. The variable Vin

represents the voltage appearing at the input of all six branches. In

the Buchla 259 the input of the timbre circuit is wired internally to

the output of a sinusoidal oscillator. We denote the output voltage

of each folding branch by Vk, where k is the branch number as

counted from top to bottom. The value Vo denotes the voltage

at the output terminal of the op-amp. Since R3 is connected to

the virtual ground node formed at the inverting input terminal of

the succeeding summing amplifier (see Fig. 1), we assume loading

effects between the branches to be minimal, and thus treat each

folding cell individually.

First, we assume ideal op-amp behavior and apply Kirchhoff’s

voltage law (KVL). This results in the current–voltage relation-

ships

Vin = R1I1 + Vk and Vo = Vk −R2I2, (1)

where

Vk = R3I3. (2)

Rearranging these equations in terms of currents then gives us

I1 =
Vin − Vk

R1

, I2 =
Vk − Vo

R2

and I3 =
Vk

R3

. (3)

Next, we apply Kirchhoff’s current law (KCL) at node Vk to estab-

lish the current relation

I1 = I2 + I3. (4)

Plugging (3) into (4) results in the expression

Vin − Vk

R1

=
Vk − Vo

R2

+
Vk

R3

, (5)

Table 1: Component values for the Buchla 259 circuit in Fig. 1.

Name Value Name Value Name Value

R1,1 10 kΩ R1,2 100 kΩ R1,3 100 kΩ
R2,1 49.9 kΩ R2,2 100 kΩ R2,3 43.2 kΩ
R3,1 91 kΩ R3,2 100 kΩ R3,3 56 kΩ
R4,1 30 kΩ R4,2 100 kΩ R4,3 68 kΩ
R5,1 68 kΩ R5,2 100 kΩ R5,3 33 kΩ
− − C 100 pF R6,3 240 kΩ
R7 24.9 kΩ RF1 24.9 kΩ RF2 1.2 MΩ
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which we can solve for Vk as:

Vk =
R3 (R2Vin +R1Vo)

R1R3 +R2R3 +R1R2

. (6)

Now, since the op-amp is in the inverting configuration, the value

of Vo is defined as

Vo = −
R2

R1

Vin. (7)

This definition implies that the op-amp can provide a fixed gain

of −R2

R1

for all values of Vin. If we were to substitute (7) into (6)

we would find that Vk = 0, as required by ideal op-amp behavior

(i.e., the op-amp maintains the input terminals at the same poten-

tial) [41]. In practice, however, the value of Vo is limited by the

supply voltages and the device is unable to maintain Vk at ground

potential when the input voltage is high. Note that the op-amps in

the folding branches are connected to lower supply voltages than

the rest of the circuit.

Buchla’s original design utilized CA3160 op-amps in its fold-

ing cells. This particular “rail-to-rail” op-amp features a CMOS

output stage and is capable of swinging the output up to the supply

voltages. As illustrated in its datasheet [42], the CA3160 exhibits

a sharp saturating behavior similar to hard clipping. Therefore, we

rewrite (7) as

Vo =

{
−R2

R1

Vin, if |Vin| ≤
R1

R2

Vs

−sgn (Vin)Vs, otherwise,
(8)

where Vs = 6V is the supply voltage of the op-amp and sgn() is

the signum function.

By combining (6) and (8), we can derive a piecewise expres-

sion for the output of each folding branch in the original circuit:

Vk =





Rk,3 (Rk,2Vin − sgn(Vin)Rk,1Vs)

Rk,1Rk,3 +Rk,2Rk,3 +Rk,1Rk,2

, if |Vin| >
Rk,1

Rk,2
Vs

0, otherwise.
(9)

Figures 3(a)–(e) show the value of V1−5 for values of Vin be-

tween –10 V and 10 V measured at 1 mV steps using SPICE. Since

no publicly available SPICE model for the CA3160 seems to exist,

LTC6088 was used in the simulations instead. This device is sim-

ilar to the CA3160 in that it also features a “rail-to-rail”-capable

CMOS output stage [43]. These plots show that the output of each

folding cell has a “deadband” in the input voltage region where the

op-amp displays ideal behavior and maintains Vk at ground poten-

tial. At larger input voltage values, the op-amp output saturates to

the supply voltage and is unable to maintain the deadband.

2.2. Mixing Stages

Following the folding cells, the output voltages of the six paral-

lel branches are combined with two inverting amplifiers. Voltage

V7, the output of the lower amplifier (cf. Fig. 1), is formed as the

weighted sum of the voltages from the three lower branches

V7 = −RF1

(
V4

R4,3

+
V5

R5,3

+
Vin

R6,3

)
. (10)

This voltage is subsequently fed to the input of the upper amplifier

along with voltages V1−3. The upper amplifier is an active first-

order integrator that lowpass filters the weighted combination of

the input signals. Assuming that the op-amp is operating within

Figure 3: SPICE simulation of the input–output voltage relation of

each folding branch against the proposed digital mappings.

its linear region, the summing and filtering operations commute.

Therefore, we can simplify the analysis by representing this stage

as an inverting amplifier cascaded with a first-order lowpass filter.

By replacing capacitor C with an open circuit we can then derive

an expression for V ′

out, the output of the circuit before filtering:

V ′

out = −RF2

(
V1

R1,3

+
V2

R2,3

+
V3

R3,3

+
V7

R7

)
. (11)

Figure 4(a) shows a SPICE simulation of the input–output

voltage relation of the entire circuit when the output filter is by-

passed. It can be seen that the weighted sum of the individual

branches (cf. Fig. 3) implements a piecewise linear waveshaping

function. Figure 4(b) illustrates the outcome of driving the circuit

with a sinusoidal signal. A fundamental frequency of 100 Hz and

a peak voltage of 5 V were used in this simulation. The output of

the circuit exhibits high levels of harmonic distortion which dra-

matically alters its timbral characteristics. In general, the output

signal is perceived as harsher than the original input signal. Sig-

nificant timbral variation can be achieved by simply modulating

the amplitude of the input sinusoid. The filtering effect of the up-

per summing amplifier is discussed in Section 3.1.

3. DIGITAL IMPLEMENTATION

With the exception of the filtering stage at the output, the Buchla

259 timbre circuit can be categorized as a static system. This
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Figure 4: Comparison of the input–output relationship of a SPICE

simulation of the Buchla 259 timbre circuit and the proposed dig-

ital model for (a) a DC voltage sweep and (b) 100-Hz sinusoidal

input with 5-V peak gain.

means that we can derive a digital model using discrete memory-

less mappings of the voltage relationships derived in the previous

section. First, we define our discrete-time sinusoidal input as

Vin[n] = A sin(2πf0nT ), (12)

were n is the sample index, A is peak amplitude, f0 is the funda-

mental frequency and T is the sampling period, i.e. T = 1/fs.

From (9) we can then define explicit discrete-time expressions

for the output of each folding branch. To facilitate their imple-

mentation, terms containing resistor values have been evaluated

and replaced for their corresponding approximate scalar values:

V1[n] =

{
0.8333Vin[n]− 0.5000s[n] |Vin[n]| > 0.6000

0, otherwise,
(13)

V2[n] =

{
0.3768Vin[n]− 1.1281s[n] |Vin[n]| > 2.9940

0, otherwise,
(14)

V3[n] =

{
0.2829Vin[n]− 1.5446s[n] |Vin[n]| > 5.4600

0, otherwise,
(15)

V4[n] =

{
0.5743Vin[n]− 1.0338s[n] |Vin[n]| > 1.8000

0, otherwise,
(16)

V5[n] =

{
0.2673Vin[n]− 1.0907s[n] |Vin[n]| > 4.0800

0, otherwise,
(17)

where s[n] = sgn(Vin[n]). From these branches we can then de-

fine a global summing stage:

V ′

out[n] = −12.000V1[n]− 27.777V2[n]− 21.428V3[n]

+17.647V4[n] + 36.363V5[n] + 5.000Vin[n]. (18)

Figures 3 and 4 show the input–output relation of these map-

pings against the previously presented SPICE simulations. These

results show a good match between the original and modeled be-

havior, with an absolute error in the range of 10−5 V.

3.1. Filtering Stage

The filter at the output of the system is a one-pole lowpass filter.

In the Laplace domain, the transfer function of this filter is given

by

H(s) =
wc

s+ wc

, (19)

where wc = 2πfc and fc represent the cutoff frequency in radians

and Hz, respectively [44,45]. From Fig. 1 the cutoff of the filter is

derived as

fc =
1

2πRF2C
≈ 1.33 kHz. (20)

This relatively low cutoff frequency indicates the purpose of

the filter is simply to act as a fixed tone control, attenuating the per-

ceived brightness of the output by introducing a gentle 6-dB/octave

roll-off. Equation (19) can be discretized using the bilinear trans-

form, which results in the z-domain transfer function

H(z) =
b0 + b1z

−1

1 + a1z−1
, (21)

where

b0 = b1 =
wcT

2 + wcT
and a1 =

wcT − 2

wcT + 2
.

Due to the low cutoff parameter, the warping effects of the bilinear

transform can be neglected. This transfer function can be imple-

mented digitally, e.g. using Direct Form II Transposed [44].

3.2. Antialiasing

Given the highly nonlinear nature of wavefolding, audio-rate im-

plementations of the proposed model using (12)–(18) will suffer

from excessive aliasing distortion. This problem can be attributed

to the corners or edges introduced by the folding cells of the sys-

tem (cf. Fig. 4). These corners indicate that the first derivative

of the signal is discontinuous and, as such, has infinite frequency

content. In the discrete-time domain, frequency components that

exceed the Nyquist limit will be reflected into the audio band as

aliases.

To ameliorate this condition we propose the use of the

BLAMP method, which has previously been used in the context

of ideal nonlinear operations such as signal clipping and recti-

fication [36, 37]. This method consists of replacing the corners

with bandlimited versions of themselves. It is an extension of

the bandlimited step (BLEP) method used in subtractive synthe-

sis [33–35], which is in turn based on the classic bandlimited im-

pulse train (BLIT) synthesis method [32].

The BLAMP function is a closed-form expression that models

a bandlimited discontinuity in the first derivative of a signal. It is

derived from the second integral of the bandlimited impulse [35],

or sinc, function and is defined as

RBL(t) := t

[
1

2
+

1

π
Si(πfst)

]
+

cos(πfst)

π2fs

, (22)

where t is time and Si(x) is the sine integral

Si(x) :=

∫ x

0

sin(t)

t
dt. (23)

Computing the difference between the BLAMP and the ideal ramp

function

R(t) :=

{
t, when t ≥ 0
0, when t < 0

(24)
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Figure 5: Time domain representation of (a) the central lobe of

the BLAMP residual function and (b) its two-point polynomial ap-

proximation.

produces the BLAMP residual function shown in Fig. 5(a). In the

discrete-time domain, this function is used to reduce aliasing by

superimposing it on every corner within the waveform and sam-

pling it at neighboring sample points. A crucial step in this process

is centering the residual around the exact point in time where each

discontinuity occurs, which is usually between samples.

Due to the high computational costs of evaluating (22), we

will use its two-point polynomial approximation (polyBLAMP)

instead [36]. Figure 5(b) illustrates the time-domain waveform of

the two-point polyBLAMP residual function evaluated using the

expressions given in Table 2. In this context d ∈ [0, 1) is the frac-

tional delay required to center the residual function between two

samples.

In the case of the Buchla 259 timbre circuit, the BLAMP

method is applied independently within each folding branch. To

facilitate its implementation, we define an intermediate processing

step in which the input–output relationships of the folding cells

(13)–(17) are rewritten as inverse clippers. We then denote the

output of the kth inverse clipper as V ′

k , which can be written as

V ′

k [n] =





Vin[n], if |Vin[n]| >
Rk,1

Rk,2

Vs

sgn (Vin[n])
Rk,1

Rk,2

Vs, otherwise.
(25)

Figure 6 shows the input–output relation of this intermediate pro-

cessing stage. The advantage of this seemingly unnecessary step

is that now we can apply the BLAMP method following the same

approach described in [36] and [37] for the case of the regular

hard clipper. This process involves detecting the transition from

non-clipping to clipping samples (i.e. detecting the corners), com-

puting the exact fractional clipping point and adding the correction

function to the samples immediately before and after each corner.

Prior to addition, the polyBLAMP function must be scaled by the

slope of the input signal at the clipping point. Since we know the

input to the system is a sinusoidal waveform, we can compute the

fractional clipping points and their respective slopes analytically,

thus facilitating the implementation and improving the robustness

of the method.

Table 2: Two-point polyBLAMP function and its residual [36].

Span Two-point polyBLAMP d ∈ [0, 1)
[−T, 0] d3/6
[0, T ] −d3/6 + d2/2 + d/2 + 1/6
Span Two-point polyBLAMP residual d ∈ [0, 1)
[−T, 0] d3/6
[0, T ] −d3/6 + d2/2− d/2 + 1/6
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Figure 6: Input–output relationship of the proposed intermediate

processing step, the inverse clipper (25).

For an arbitrary inverse clipper stage (25) driven by an f0-Hz

sinewave starting at zero phase, the first clipping point (in seconds)

is given by

t1 =
sin−1 (VsRk,1/ARk,2)

2πf0
. (26)

From this value, we can evaluate the three remaining clipping

points within the first period of the signal:

t2 =
1

2f0
− t1, t3 =

1

2f0
+ t1 and t4 =

1

f0
− t1. (27)

Figure 7(a) shows the result of inverse-clipping the first period of

a sinewave, all four clipping points are highlighted. Subsequent

clipping points can then be computed by adding multiples of the

fundamental period, i.e. 1/f0.

For a stationary sinewave, the magnitude of the slope is the

same at all clipping points. Therefore, we can define a closed-form

expression of the polyBLAMP scaling factor as

µ = |2πf0A cos (2πf0t1−4) /fs| . (28)

Figure 7(b) illustrates the process of centering the polyBLAMP

residual function at each clipping point, scaling it and sampling it

at neighboring samples. The polarity must be adjusted according

to the polarity of the signal at the clipping point. Although in

this study we only consider the case of sinusoidal inputs, the same

approach can be adapted when other periodic signals are used as

input to the wavefolder, e.g. sawtooth and triangular waveforms.

Now, if we then define Ṽ ′

k as the signal that results from ap-

plying the polyBLAMP method to V ′

k , we can write an expression

for Ṽk, the antialiased output of each folding cell:

Ṽk[n] =
Rk,2Rk,3

Rk,1Rk,3 +Rk,2Rk,3 +Rk,1Rk,2

[
Ṽ ′

k [n]

− sgn
(
Ṽ ′

k [n]
) VsRk,1

Rk,2

]
. (29)

This step basically undoes the intermediate processing step (25)

while preserving the antialiased behavior.
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Figure 7: (a) Time-domain representation of a sinewave processed

by the inverse clipping stage (25) and (b) the process of centering

the polyBLAMP residual at each clipping point. The fractional

delay is given for each corner.

A complete block diagram of the proposed wavefolder model,

including the output filter, is given in Fig. 9. Boxes labeled w1−5()
consist of the inverse clipper (25) followed by polyBLAMP cor-

rection and the mapping function (29). Once again, a tilde has

been used to distinguish Ṽout, the output of the system with alias-

ing suppression, from Vout, its trivial counterpart.

4. RESULTS

Having compared the time-domain characteristics of the proposed

model against SPICE simulations (cf. Figs. 3 and 4), in this section

we move on to observe and evaluate its frequency-domain behav-

ior. The spectrogram in Fig. 8 shows the effect of sweeping the

input gain A from 0 to 10 for a sinewave with fundamental fre-

quency f0 = 100Hz. Compared to typical saturating waveshapers

(e.g. the tanh function or the hard clipper), where the level of intro-

duced harmonics is directly proportional to input gain, wavefold-

ing generates complex harmonic patterns reminiscent of FM syn-

thesis. From a perceptual point of view, the folded waveform can

be described as being brighter and more abrasive than the original

input signal. It should be pointed out that due to the odd symmetry

of the wavefolding operation [cf. Fig. 4(a)], the system introduces

odd harmonics only.

Next, we analyze the effect of wavefolding on a static 890-Hz

input sinewave with amplitude A = 5. Figures 10(a)–(b) show

the waveform and magnitude spectrum, respectively, of the sys-

tem’s output when implemented at audio rate (i.e. fs = 44.1 kHz)

and without polyBLAMP correction. The resulting signal is prac-

tically unusable, as it exhibits very high levels of audible alias-

ing distortion. In comparison, Figs. 10(c)–(d) show the outcome

of operating at the same rate but employing the two-point poly-

BLAMP method. As expected, the overall level of aliasing has

been considerably attenuated. Next, Figs. 10(e)–(f) show the out-

put of the system for a sample rate fs = 2.82MHz, i.e. 64 times

the previous rate. This example was generated by synthesizing the

input sinewave at the target rate and plotting only those frequency

components below 20 kHz. The output is virtually free from alias-
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Figure 8: Magnitude response of the system for a 110-Hz sinu-

soidal input with amplitude ranging from 0 to 10.

ing, with only a handful of components laying above the –100 dB

line. Lastly, Figs. 10(g)–(h) show the outcome of using eight times

oversampling and the proposed polyBLAMP method. Results ob-

tained are comparable to those in Fig. 10(f), which indicates that

the proposed method reduces the oversampling requirements of the

system.

The overall increase in signal quality provided by the two-

point polyBLAMP method was measured for a larger set of input

signals. Figure 11 shows the measured signal-to-noise ratio (SNR)

at the output of the wavefolder for input sinewaves with funda-

mental frequency between 100 Hz and 5 kHz. In this context, we

consider SNR to be the power ratio between the desired harmonics

and aliasing components. This plot shows that the two-point poly-

BLAMP method provides an SNR increase of approx. 12 dB over

a trivial audio-rate implementation. When combined with eight

times oversampling the proposed method yields an average SNR

increase of approx. 20 dB w.r.t. oversampling by factor 64.

In terms of computational costs, the two-point polyBLAMP

method is highly efficient in that only samples around disconti-

nuities are processed. Therefore, the complexity of the method

increases as a function of fundamental frequency, not oversam-

pling factor. For the case of a 5-kHz sinusoidal input (i.e. the

worst-case scenario for the polyBLAMP method in terms of op-

eration count), Matlab simulations indicated that the proposed

method is approx. 6 times faster than oversampling by factor 64.

This estimate does not include the costs of any resampling filters

at the output of the system, which will also be more expensive

for the case of oversampling by 64. An implementation of the

proposed model and accompanying sound examples are available

at http://research.spa.aalto.fi/publications/

papers/dafx17-wavefolder .

5. CONCLUSIONS

In this work we have examined the underlying structure of the

Buchla 259 wavefolder, also known as the timbre circuit. The anal-

ysis of the circuit provides a glimpse into the unconventional de-

signs of Don Buchla and his approach to sound synthesis. A digi-
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Figure 9: Block diagram of the proposed digital Buchla 259 wavefolder. The LPF block is the lowpass filter at the output of the system.

tal model of the wavefolder is derived using nonlinear memoryless

mappings based on the input–ouput voltage relationships within

the circuit. In an effort to minimize the high levels of aliasing

distortion caused by the inherent frequency-expanding behavior of

the system, the use of the BLAMP method has been proposed,
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Figure 10: Waveform and magnitude spectrum of an 890-Hz

sinewave (A = 5) processed using the proposed model (a)–(b)

at audio rate (fs = 44.1 kHz), (c)–(d) at audio rate with the

two-point polyBLAMP method, (e)–(f) using 64 times oversam-

pling (fs = 2.82MHz) and (g)–(h) with 8 times oversampling

(fs = 352.8 kHz) and the two-point polyBLAMP method.

more specifically in its two-point polynomial form. This method

reduces the oversampling requirements of the system, allowing us

to accurately process sinusoidal waveforms with fundamental fre-

quencies up to 5 kHz at a sample rate of 352.8 kHz, which is eight

times the standard audio rate. The proposed model is free from

perceivable aliasing and can be implemented as part of a real-time

digital music synthesis environment.
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