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ABSTRACT

In this paper, we introduce a function designed specif-

ically for sparse audio representations. A progression in

the selection of dictionary elements (atoms) to sparsely rep-

resent audio has occurred: starting with symmetric atoms,

then to damped sinusoid and hybrid atoms, and finally to

the re-appropriation of the gammatone (GT) and formant-

wave-function (FOF) into atoms. These asymmetric atoms

have already shown promise in sparse decomposition appli-

cations, where they prove to be highly correlated with nat-

ural sounds and musical audio, but since neither was origi-

nally designed for this application their utility remains lim-

ited.

An in-depth comparison of each existing function was

conducted based on application specific criteria. A directed

design process was completed to create a new atom, the

ramped exponentially damped sinusoid (REDS), that satis-

fies all desired properties: the REDS can adapt to a wide

range of audio signal features and has good mathematical

properties that enable efficient sparse decompositions and

synthesis. Moreover, the REDS is proven to be approxi-

mately equal to the previous functions under some common

conditions.

1. INTRODUCTION

A sparse synthesis model suggests that a signal s ∈ R
n

may be represented by a linear combination of a few el-

ements (atoms) from dictionary D ∈ R
n×m: s = Dv,

where v ∈ R
m is the signal’s sparse representation [1] [2].

Decomposing a signal with few elements implies, infor-

mally, great meaning is assigned to those elements. On the

other hand, creating complex sounds with a few additions

provides major efficiency improvements over the alterna-

tive (non-sparse) methods. Source-filter synthesis exem-

plifies a sparse synthesis model because a few waveforms

are summed to create a complex sound (typically, a vocal

sound) [3]. In either case, a sparse synthesis application re-

quires a dictionary that includes easily controllable atoms

capable of representing a wide range of signal content.
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Knowledge of salient audio signal features can help guide

dictionary design: they are asymmetric in time (short attack

and long decay) and usually have time-varying frequency

content [4]. Thus, a time-frequency structured signal model

that is asymmetric in time (e.g., a damped sinusoid) is ap-

propriate. However, the damped sinusoidal model [5] does

not have a smooth attack while real signals almost always

do. A compromise involves building a heterogeneous dic-

tionary that includes symmetric atoms (e.g., Gabor atoms)

and damped sinusoid atoms. Heterogeneous dictionaries

must be indexed by more data, however, because each atom

class within the dictionary will have a unique parameter set.

More importantly, decomposing asymmetric signal content

with a finite number of symmetric atoms will either lead to

a non-sparse solution or pre-echo (dark energy) [6].

A better approach is to design a homogeneous dictio-

nary (contains a single atom class), wherein the atoms are

exponentially damped sinusoids with an attack envelope.

Currently, only two functions common in literature have

assumed this atomic role: the formant-wave-function [3]

[7] (used in audio synthesis) and the gammatone (used in

perceptual audio coding) [8] [9]. Matching Pursuit Toolkit

(MPTK) supports the use of either function as a dictionary

atom [10]. Neither function was designed to be optimized

for the task of sparse audio decomposition, though, and they

both suffer from limited parameter adaptability.

In this paper, we introduce a new asymmetric atom that

is better suited for the sparse synthesis model. A theo-

retical and practical comparison of existing atom models

is presented to consolidate knowledge and highlight their

relative strengths and limitations. Our points of compari-

son reflect the qualities that we seek in a model: ability to

match diverse signal behavior (especially transients), and

good mathematical properties. Some of the desired mathe-

matical properties include having a concentrated spectrum

and an analytic inner product formula. Detailed criteria ex-

planations and justifications reside in a following section.

The paper is structured as follows. Section 2 details

the desired atom properties and form. Section 3 includes

an analysis and comparison of existing functions. The new

atomic model is introduced in Section 4. Section 5 overviews

some new atomic model sparse synthesis applications. Fi-
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nally, in Section 6 we reflect on the future work intended for

a sparse audio decomposition system using the new atomic

model.

2. ATOM PROPERTIES

2.1. General Form

We generalize the form of a causal asymmetric atom as

x[n] = E[n]eiωcn, (1)

where

E[n] = A[n]e−αnu[n] (2)

is the atom’s envelope, α ∈ R≥0 is the damping factor,

ωc = 2πfc is the normalized angular frequency of oscil-

lation (0 ≤ fc ≤ 1
2 ), u[n] is the unit step function, n is dis-

crete time, and A[n] is an attack envelope that distinguishes

each atom (A[n] ∈ R≥0 ∀ n ∈ N). We introduce the atoms

as discrete time signals because, in practice, dictionaries are

composed of finite sampled (discretized) atoms. We estab-

lish mathematical properties of the atoms (e.g., their deriva-

tives) from their continuous time counterparts.

In the literature, the formant-wave-function and gam-

matone are typically defined with real sinusoids rather than

complex ones. We choose to adopt a complex form for

mathematical ease of manipulation and concise represen-

tation in transform domains. Moreover, it is necessary to

parametrize phase for real valued but not for complex val-

ued atoms: expansion coefficients from a signal decompo-

sition using complex atoms will be complex and will thus

provide both the magnitude and phase [5].

2.2. Desired Atom Properties

Our comparison criteria are grouped into three categories:

time-frequency properties, control & flexibility, and algo-

rithmic efficiency.

2.2.1. Time-Frequency Properties

A dictionary of atoms with varying degrees of time and fre-
quency concentration is important for creating a sparse rep-

resentation overall. For example, a sustained piano note be-

gins with a short attack, which is best represented with con-

centrated time (spread frequency) resolution, followed by

a long decay, which requires an atom with long time sup-

port and a concentrated spectrum. Multi-resolution analysis

involves decomposing a signal onto a set of analyzing func-

tions whose time-frequency tiling is non-uniform [11] [12].

We are going one step further by considering that some

sounds require excellent time localization in the transient

region and concentrated frequency resolution in the decay

region. We aim at representing both regions with atoms

n

1

0 nm nI

Figure 1: An example envelope of the form (2) overlaid with
an exponential envelope (blue), where nI is the influence
time and nm is the time location of the envelope maximum.

whose envelopes are closer to those of natural sounds. We

quantify concentration in time and frequency by the time

spread, T , and frequency spread, B, respectively [13]. The

Heisenberg-Gabor inequality states BT ≥ 1.

Moreover, we prefer an atom that has a unimodal spec-
trum: a spectrum X(ω) is unimodal if |X(ω)| is monoton-

ically increasing for ω ≤ ωc and monotonically decreasing

for ω ≥ ωc. A function that is truncated in time with a rect-

angular window admits a non-unimodal spectrum because

the truncation is equivalent to convolving the spectrum with

a sinc function whose oscillations introduce multiple local

maxima/minima [14]. Multiple local maxima/minima in the

spectrum can complicate spectral parameter estimation. We

prefer an infinitely differentiable atom (i.e., of class C∞, as

defined in [15]) because its spectrum is unimodal.

2.2.2. Control & Flexibility

We modulate the damped sinusoid with A to enhance the

atom’s adaptability to natural sounds. A damped sinusoid’s

damping factor α indirectly controls its T and B. Smooth-

ing the damped exponential’s initial discontinuity with A

concentrates its frequency localization in exchange for a

more spread time localization. We want a parametrization

of A that enables precise control over its time and frequency

characteristics, controllability being an essential aspect of

audio synthesis. Furthermore, the attack portion of an au-

dio signal often contains dense spectral content that allows

humans to characterize its source [16].

Influence time has a major effect on the atom’s overall

perceived sound as it controls the degree to which the initial

discontinuity is smoothed [16]. We define influence time nI

as the duration that A influences the atom: nI is the largest

value of n for which e−αn(A[n]−1) > δ is true (in this pa-

per δ = .001, see Figure 1). The effects of varying influence

time are intuitively linked to T and B. In the frequency do-

main, influence time mostly controls the spectral envelope

far from its center frequency (skirt width as defined in [3]).

Increasing influence time spreads the atom’s time localiza-

tion and concentrates its spectrum.

An important quantity to compare between the atoms is
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the time ∆I = nI − nm, where nm is the time location of

E’s maximum. nm is often called a temporal envelope’s at-

tack time in sound synthesis [17]. We find nm by setting E’s

continuous time derivative equal to zero and solving for n.

For a continuous E whose α > 0, nm precedes nI (i.e.,A

influences E even after nm). To compare atoms along this

criteria, we equalize their nm values then compare their ∆I

values. ∆I indicates the amount of influence that varying

the skirt width will have on the bandwidth. We prefer an

atom with a small ∆I value because its 3 dB bandwidth

(set through α) is not affected much by the structure of A.

An envelope with a small ∆I also reflects those produced

by many acoustic instruments: an exciter increases the sys-

tem’s energy and then releases (at nI ), which results in a

freely decaying resonance.

We do not want to complicate the definition of the atom

when modulating the damped sinusoid by A either; we en-

courage time-domain simplicity. The damped sinusoid’s sim-

ple definition enables us to solve for its parameters alge-

braically. Classic parametric estimation techniques can be

used to adapt the damped sinusoid to an arbitrary signal

[18]. We want to retain these desirable properties even af-

ter introducing A. An atom’s time-domain simplicity will

depend on how its A marries with the complex damped si-

nusoid. Finally, after modulating the damped sinusoid with

A, we want the atom’s envelope to match well with those in

actual musical signals.

2.2.3. Algorithmic Efficiency

Fast algorithms are one of the focuses of sparse represen-

tations research, as they aim to make sparse decomposition

processes more tractable. Amid publications dedicated to

creating faster algorithms, some reported techniques have

become widely adopted [10]. Specifically, certain analytic

formulas are known to increase the algorithm speed because

they avoid some of the algorithm’s most time consuming

numerical calculations (e.g., the inner product).

An envelope shape that enables the inner product of two

atoms to be expressed as an analytic formula is required for

a fast matching pursuit algorithm [1]. A summary of the

relevant algorithm steps are included for justification.

In matching pursuit, a dictionary D is compared with a

signal s by calculating and storing the inner product 〈s,gγ〉
of each atom gγ and the signal. The atom that forms the

largest inner product gq is picked as the signal’s best fit.

Then 〈gq,gγ〉 is computed and subtracted from 〈s,gγ〉. This

continues until some stopping criteria is met.

Dictionary inner products can be calculated and stored

once when the dictionary is static. However, when atom

parameters are refined within the iterative loop these in-

ner products cannot be precomputed and, therefore, must be

computed at each iteration. Numerical calculations of many

inner products at every iteration prohibit speed. Analytic

formulas make the process tractable.

Another way to increase the efficiency of a sparse de-

composition program is to use parametric atoms, then refine

atom parameters using an estimator. Finding a more adapted

atom at every iteration may require less iterations overall.

Developing parametric estimation techniques sometimes re-

lies on having analytic discrete Fourier transform (DFT) for-

mula. For example, in derivative methods, two spectra are

divided to solve for one or more variables [18]. We include

each atom’s analytic DFT formula in [19] and [20].

Finally, [5] explains how recursion may be exploited to

calculate the convolution of damped sinusoidal atoms with

a signal: since the impulse response of a complex one-pole

filter is a damped complex exponential sinusoid, a recursive

filter can efficiently calculate the correlation. We provide

each atom’s Z-transform to indicate its causal filter simplic-
ity and therefore practicality for calculating the correlation.

Besides, the Z-transform is useful for source-filter synthesis

and auditory filtering.

3. EXISTING FUNCTIONS

3.1. Damped Sinusoid

3.1.1. Background

The damped sinusoid (DS) is essential in audio as it repre-

sents a vibrating mode of a resonant structure. The use of

a DS model in the context of analysis dates back to Prony’s

method [21], according to our knowledge, and was the first

asymmetric atom used in the context of sparse representa-

tions [5].

3.1.2. Properties

Staying with the predefined generic atom expression (1):

ADS [n] = 1 (3)

and thus nm = nI = 0. Its continuous-time Fourier trans-

form is well known,

XDS(ω) =
1

α+ i(ω − ωc)
(4)

as is the DFT [20], and finally, the Z-transform,

XDS [z] =
1

1− e−α+iωcz−1
(5)

The DS’ spectrum is unimodal but not concentrated.

3.2. Gammatone

3.2.1. Background

Auditory filter models are designed to emulate cochlea pro-

cessing and are central to applications like perceptual audio
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coding, where auditory filters are used to determine which

sounds should be coded or not according to auditory mask-

ing principles. Auditory filter modeling has a variety of ap-

plications in bio-mechanics and psychoacoustic research.

The most popular auditory filter model is the gamma-

tone (GT) filter due to its heritage and simple time domain

expression. Originally described in 1960 as a fitting func-

tion for basilar displacement in the human ear [8], the gam-

matone filter was later found to precisely describe human

auditory filters, as proven from psychoacoustic data [22].

[9] shows that atoms learned optimally from speech and nat-

ural sounds resemble gammatones. Designing gammatone

filters remains a focus in audio signal processing [23].

More recently, filter models closely related to the gam-

matone filter have been proposed, such as the all-pass gam-

matone filter and the cascade family [24]. Added features

of these variants do not overlap with our criteria so they are

not included for comparison.

3.2.2. Properties

We assign the gammatone as the prototypical auditory fil-

ter model. A single variable polynomial envelope function

shapes the gammatone:

AGT [n] = np (6)

In literature, p + 1 is called the filter order. AGT does not

converge (its derivative is strictly positive), and thus admits

the largest ∆I in this study, as nm = p
α and nI > 2nm. No

part of the gammatone is, strictly speaking, a freely decay-

ing sinusoid (excluding when p = 0, in which case it is a

DS), though it asymptotically approaches a DS as n → ∞.

We demonstrate the filter order’s effect by applying the

Fourier transform frequency differentiation property to ex-

press its spectrum parametrized by p:

XGT (ω) =
p!

(α+ i(ω − ωc))p+1
(7)

From its frequency representation, we see that the filter or-

der determines the denominator polynomial order. Finally,

referencing the convolution property of the Fourier trans-

form, the gammatone impulse response is a DS convolved

with itself p times.

Frequency spread B decreases with respect to the model

order, while the time spread T increases. A gammatone of

order four (p = 3) correlates best with auditory models [23].

The gammatone’s spectrum is unimodal and concentrated.

The attack envelope is not parametrized, and therefore

cannot be controlled independently of α. After setting p,

controlling the atom is solely through α and ωc. Influence

time (or skirt width) is not directly controllable, so one can-

not tune the atom to have time concentration in exchange

for frequency spread. Thus, the adaptability of this model

to a range of sound signal behavior is limited.

We establish an analytic formula for the gammatone’s

Z-transform that supports an arbitrary integer p > 0:

XGT [z] =

∑p
r=1

〈

p
r−1

〉

ar

(1− a)p+1
(8)

where a = e−α+iωcz−1, and the Eulerian number
〈

p
r−1

〉

=
∑r

j=0(−1)j
(

p+1
j

)

(r−j)p. The gammatone’s analytic inner

product formula is complicated and described in [20].

3.3. Formant-Wave-Function

3.3.1. Background

In the source-filter model, an output sound signal is con-

sidered to be produced by an excitation function sent into a

(resonant) filter, referred to as a source-filter pair [3]. Most

acoustic instruments involve an exciter, either forced or free,

and a resonator [4]. When an instrument’s exciter and res-

onator are independent, or have only a small effect on one

another, its sound production mechanism may be described

sufficiently with a source-filter model. An example is the

voice production system, where excitations produced by glot-

tal pulses are filtered within the vocal tract.

Source-filter synthesis involves sending an excitation

function through one or more resonant filters in parallel.

The filters are typically one or two pole and defined by their

auto-regressive filter coefficients. The excitation function

can be an impulse, but is more often an impulse smoothed

by a window to emulate natural excitation. The window

shape effects the transient portion of the time-domain out-

put from the system, and the skirts of the spectral envelope.

The filter coefficients control the shape of the spectral enve-

lope near the resonant peak.

Time-domain formant-wave-function synthesis describes

the output of the source-filter model by a single function in

the time domain. The amplitude envelope of the function

is designed to generically match the output envelope of a

source-filter pair: a damped exponential (filter) for which

the initial discontinuity is smoothed (excitation). The ad-

vantage of this approach is twofold: direct parametrization

of the spectral envelope, and efficient synthesis by table

lookup [3].

Creating a sustained sound (e.g., a voice) from this model

involves filtering a sparse excitation signal made of a (pos-

sibly) periodic sequence of short duration signals. Likewise,

synthesizing a percussive sound (e.g., a piano) involves sum-

ming the output of several resonant filters with compara-

bly long decay times from a single excitation. In the time-

domain method, this means that the model synthesizes a sig-

nal s as a linear combination of time-shifted resonant filter

impulse responses (i.e., time-frequency atoms). Formally,
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we express this as s[n] =
∑

hλ[n − τ ]vλ,τ = Dv, where

D is a dictionary of atoms hλ,τ [n] = hλ[n− τ ] that are in-

dexed by λ and time shift τ , and v contains their amplitude

coefficients vλ,τ . Thus, the source-filter model is a sparse

synthesis representation.

3.3.2. Properties

The formant-wave-function (FOF) is ubiquitous with time-

domain wave-function synthesis. It was introduced for its

desirable properties: a concentrated spectral envelope that

can be controlled rather precisely using two parameters. The

FOF’s A is defined as:

AFOF [n] =

{

1
2 (1− cos(nβ)) for 0 ≤ n ≤ π

β ,

1 for π
β < n.

(9)

where β ∈ R>0 controls influence time. Decreasing β in-

creases influence time, nI ≈ π
β , and the time location of the

maximum,

nm = 1
β cos−1

(

α2−β2

α2+β2

)

(10)

∆I and α
β are positively correlated.

A raised cosine is an excellent attack shape in terms of

concentration, however, since it is piecewise (its value must

be held at one after half of a period) some other design cri-

teria suffer.

XFOF (ω) =
β2

2

1 + e−
π
β
(α+i(ω−ωc))

(α+ i(ω − ωc))((α+ i(ω − ωc))2 + β2)
(11)

The FOF’s spectrum is non-unimodal when the piecewise

transition occurs within the window of observation. More-

over, it is difficult to estimate the FOF’s parameters and its

analytic inner product formula is complicated [7].

We establish the FOF’s DFT and Z-transform by con-

verting the cosine function into a sum of complex exponen-

tials and using the linear property:

XFOF [z] =
1
2
1+aN1

1−a − 1
4

(

1−(aeiβ)N1

1−aeiβ
+ 1−(ae−iβ)N1

1−ae−iβ

)

(12)

where a = e−α+iωcz−1, and N1 = [πβ ]. From (12), we see

that a FOF filter may be implemented as a sum of three com-

plex pole-zero filters. The time-varying input delay compli-

cates controlling attack shape.

3.4. Connecting FOF to Gammatone

Applying the small angle theorem to AFOF reveals a rela-

tion between the FOF and GT:

lim
β→0

2
β2 (1− cos(βn)) = n2 (13)

We establish that a FOF and gammatone of p = 2 are ap-

proximately equal when β = 1
4α

√
12ǫ, where ǫ is the ap-

proximation error (see [20] for proof).

3.5. Recapitulation

Each existing function has several desired properties miss-

ing. While the gammatone’s unimodal frequency spectrum

and time-domain simplicity are appealing, expressing its

DFT and inner product is complicated. Most importantly,

without a parameter to control influence time, the gamma-

tone is not flexible enough to sparsely represent a variety of

signal features. On the other hand, the FOF’s attack func-

tion enables precise control over its spectral envelope, how-

ever, its piecewise construction is problematic: spectral rip-

ples result from a truncation in time, refining its parameters

is difficult, and its frequency, Z-transform, and inner prod-

uct expressions are complicated.

3.6. Towards a New Atom

The starting goal of this paper was to design a C∞A that is

similar to AFOF . While piecewise construction is the rea-

son for the FOF’s shortcomings, approximating the raised

cosine with a C∞ function does not necessarily improve the

situation because many functions admit complicated frequen-

cy-domain and Z-domain formulas once a unit step is intro-

duced. For example, e−βn2

has a compact bell shape that

seems to be, at first inspection, a good candidate to replace

the raised cosine. However, when a unit step is introduced,

it admits a non-algebraic Fourier transform expression (a

special function defines the imaginary part). Many bell-

shaped functions have the same problem (e.g., tanh (βn)2).

On the other hand, there are A options that are simple

but have ∆I that are large compared to the FOF for equal

nm. In fact, any C∞ function will have a larger ∆I than

the FOF’s for equal nm. Therefore, our goal became more

specific: define a C∞ A that admits simple mathematical

expressions when married with a complex damped expo-

nential, and whose ∆I is close to that of the FOF’s for equal

nm. After an exhaustive search, we resolved that designing

a function to satisfy all of the design criteria is difficult.

4. THE NEW ASYMMETRIC ATOM

We have designed a new atom specifically for sparse au-

dio representations. All the aforementioned criteria were in

mind when constructing this new atom.

4.1. Background

To reflect generality, we call the new atom the ramped ex-
ponentially damped sinusoid (REDS). Identically to exist-

ing source-filter and auditory filter models, a complex expo-

nentially damped sinusoid defines the atom’s decay section.

A binomial with one exponential term shapes the atom’s

attack envelope. By defining the atom as a sum of expo-

nentials (see (16)), all the desired mathematical properties
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Figure 2: REDS filter diagram, where ar = e−α−rβ+iωc

and br = (−1)r
(

p
r

)

.

are achieved. The main idea is that the linear property of

the Fourier transform and Z-transform can be exploited and

each exponential has a transform that is simple and well

known.

4.2. Properties

We define REDS concisely in the time-domain by express-

ing AREDS [n] polynomially as (1− e−βn)p:

x[n] =
(

1− e−βn
)p

en(−α+iωc)u[n] (14)

where β controls the influence time (or skirt width) and p+1
is the order.

nm = 1
β log(1 + pβ

α ) (15)

and nI ≈ − 1
β log(1 − (1 − δ)1/p), where δ is the same as

in Section 2.2.2.

Like in the gammatone model, order is often constant

within an application: we may choose the order, for exam-

ple, to match with auditory data or to approximate a frame

condition [23]. Given that the order is a constant, the num-

ber of control parameters and their effect are the same as the

FOF. To summarize, the REDS parameter set is a conflation

of the source-filter and auditory filter models.

We express the REDS in binomial form to reveal its sum

of exponentials construction:

x[n] =

p
∑

r=0

(−1)r
(

p
r

)

en(−α−rβ+iωc)u[n] (16)

Considering the Fourier transform linear property, we read-

ily find from (16) the Fourier transform of REDS:

XREDS(ω) =

p
∑

r=0

(−1)r
(

p
r

) 1

α+ rβ + i(ω − ωc)
(17)

and the analytic DFT [20]. Finally, we apply the linear prop-

erty to retrieve the Z-transform:

XREDS [z] =

p
∑

r=0

(−1)r
(

p
r

) 1

1− e−α−rβ+iωcz−1
(18)
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Figure 3: XFOF [ωk] (red) and XREDS [ωk] (blue) for fixed
β, where p = 2 on the left, p = 10 on the right, and α = .05.

A sum of p+1 complex one-pole filters in parallel will thus

output a REDS (see Figure 2).

The REDS has a concentrated and unimodal spectrum.

Similarly to the FOF, it is possible to precisely control the

REDS’ spectrum: by varying β one may exchange con-

centration in time for frequency, and vice versa. The FOF

has greater time concentration than the REDS because the

raised cosine attack function has a fast uniform transition

from zero to one, while the REDS attack envelope is bell-

shaped. Formally, nIREDS
> nIFOF

when nmREDS
=

nmFOF
. The REDS’ spectral concentration surpasses the

FOF’s as p increases (see Figure 3).

We established analytic inner product and convolution

formulas for two REDS atoms that support the case when

atoms have different lengths N (see [20]). Considering that

these formulas for Gabor atoms and FOFs provide an effi-

ciency boost in existing programs [7], and the REDS for-

mulas are simpler than those, we assume that using the for-

mulas are more efficient than numerical computations.

4.3. Connection to Existing Functions

A REDS is approximately equal to a GT when β is very

small:

lim
β→0

1
βp

(

1− e−βn
)p

= np (19)

We establish that a REDS and a GT are approximately equal

when β = ǫαp−2, where ǫ is the approximation error (see

[20] for proof). This is important because the REDS fil-

ter requires fewer mathematical operations per sample than

the gammatone filter. In practice, the perceptual difference

between the two is negligible when ǫ < .001, which cor-

responds to a signal-to-noise ratio between the two atoms

greater than 60 dB.

Furthermore, by (13), AREDS [n] ≈ 2AFOF [n] when

p = 2 and their β values are 1
4ǫα.

5. APPLICATIONS

This section includes two sparse synthesis examples: REDS

source-filter synthesis, and musical audio decomposition.
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5.1. Synthesis

Sparse synthesis via the source-filter model generally in-

volves sending a short excitation periodically through one

or more filters, typically one per formant. In this example

we checked the ability of the REDS to synthesize a vowel

sound /i/ with 5 REDS filters tuned by parameters provided

in [3], see Table 1. We set p = 2 (see (19)) for better com-

parison with FOF, which have demonstrated their aptitude

for singing voice synthesis. After normalization (see nor-

malization factor in [19] or [20]), a gain G (0 ≤ G ≤ 1)

tunes the filter output amplitude. Results show the quality

of the synthesized sound as well as the ability to match the

spectral envelopes, even in the valleys, mainly controlled by

β (see [19]).

Table 1: REDS filter settings for synthesizing a vowel, where
νc is center frequency in Hz and p = 2.

νc 260 1764 2510 3100 3600
α .005 .006 .006 .009 .011
β .018 .059 .034 .011 .008
G 1.0 .501 .447 .316 .056

5.2. Decomposition

We decomposed a set of real audio signals using a standard

matching pursuit algorithm1. We selected the audio signal

set to reflect a range of the source-filter model: it includes a

vocal sound (sustained, relatively high damping and smooth

attack per atom), a vibraphone (not-sustained, made of low

damping and short attack per atom), and a violin (interme-

diate situation).

We created damped sinusoid dictionaries to fit with each

signal’s content. Then we made dictionaries for each atom

class by modulating the damped sinusoid dictionaries with

a set of each atom’s A[n]. We superimposed each selected

atom’s Wigner-Ville distribution to show their time-frequen-

cy footprint, such as in [6] & [7].

We can represent a signal as time-varying sinusoidal tra-

jectories per the additive model, or as filtered excitation se-

quences per the source-filter model, by decomposing it onto

a dictionary of REDS atoms with constrained damping fac-

tors. We chose to demonstrate the ability of the REDS to

analyze the signal set from the source-filter viewpoint. For

the singing voice, if the dictionary contained atoms with

small damping (long time support) then the selected atoms

would represent the sinusoidal partials of the signal. We

set the damping to be high and in doing so, successfully ex-

tracted the excitation sequence of atoms whose spectral con-

1Standard in the sense that the dictionary was static and it did not in-

volve fast algorithms or parameter refinements. We implemented the algo-

rithm based on [1].
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Figure 4: Sparse representation of a vibraphone (transient
part shown) from a decomposition onto 50 REDS atoms.
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Figure 5: Source-filter sparse representation of a singing
voice. Atom spacing expands/contracts reflecting vibrato.

Table 2: Decomposition results. Each audio signal is sam-
pled at 44100 Hz. ds is the signal’s duration in seconds.

SNR (dB)

ds Atoms N DS GT FOF REDS

Vocal 1.0 104 28 30.7 35.9 37.8 38.8
Violin 1.6 104 29 20.0 14.6 27.7 28.0
Vibes 5.5 50 217 17.6 32.1 36.9 37.1

tent represented vocal formants rather than the sinusoidal

partials (see Figure 5). Regarding the vibraphone, we cre-

ated a dictionary whose damped sinusoids had large time

support with low decay rates.

For each test, the REDS dictionaries provided higher

SNR values for the same number of iterations, see Table 2.

For the singing voice, the gammatone and REDS were close

in performance because the formant time-domain envelopes

had very smooth attacks. REDS matched the vibraphone’s

envelope tightly, while the gammatone caused pre-echo be-

cause of its greater amount of symmetry (see [19]). The

reconstructed signal from the REDS decomposition had an

SNR of 38.8 dB, and consisted of 50 atoms (.04% of the

signal length) (see Figure 4). Our companion website in-

cludes audio files for each signal approximation and further

details the decomposition study results [19].
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6. CONCLUSION

We have introduced a new function called REDS that can

sparsely represent audio. Through the comparison of func-

tions previously used in sparse representation contexts, we

highlighted the most important features for this new func-

tion to embody (see Table 3). We have started researching

an efficient sparse audio decomposition system that exploits

the good properties of the new asymmetric atom.

Since the mathematical properties of the REDS enable

efficient implementations of filter banks, source-filter syn-

thesis, and audio coding, the REDS has potential to be used

in many audio signal processing fields.

Table 3: Comparison results.

Criteria DS GT FOF REDS

Concentrated Spectrum − X X X

Unimodal Spectrum X X − X

Influence Time Control − − X X

Time-Domain Simplicity X X − X

Causal Filter Simplicity X X − X

Inner Product Simplicity X − − X
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