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ABSTRACT

In this paper, iterative zero-finding techniques are proposed to
resolve groups of nonlinearities occurring in Wave Digital Filters.
Two variants of Newton’s method are proposed and their suitabil-
ity towards solving the grouped nonlinearities is analyzed. The
feasibility of the approach with implications for WDFs containing
multiple nonlinearities is demonstrated via case studies investigat-
ing the mathematical properties and numerical performance of ref-
erence circuits containing diodes and transistors; asymmetric and
symmetric diode clippers and a common emitter amplifier.

1. INTRODUCTION

The Wave Digital Filter concept is a method for digitizing ana-
log reference circuits. WDFs were originally developed in the
1970s with the intention of realizing digital lattice and ladder filter
topologies [1] and, as such, were developed to preserve modular-
ity and properties analogous to passivity and losslessness inher-
ent in the analog prototype circuits being modeled [2]. Currently,
WDFs are used extensively in virtual analog and physical model-
ing [3–11] for those same reasons. In 2015, a more general ap-
proach has been developed that deals with both multiple/multiport
nonlinearities and arbitrary network topologies [12, 13].

The purpose of this paper is to build upon this general ap-
proach by incorporating an iterative solver into the WDF structure
to solve the system of multiple/multiport nonlinearities. Newton’s
Method with backtracking is employed because it is a classic and
robust zero-finding technique. Common models of the diode and
transistor are studied to learn about the convergence properties us-
ing Newton’s method of the underlying mathematical functions.
Lastly, a case study of three simple reference circuits is presented
which demonstrates the generality and promise for WDF imple-
mentation of circuits with multiple nonlinearities.

Section 2 summarizes the previous work related to WDFs with
nonlinearities and reviews the general approach which the itera-
tive method will be incorporated into. In Section 3, the setup of
the iterative solver within the general approach is presented and
the iterative techniques are introduced. Sections 4–5 present case
studies of circuits containing a single diode, pair of diodes and a
bipolar junction transistor. Section 6 summarizes the results.

2. PREVIOUS WORK

2.1. Nonlinear WDFs and Iterative Techniques

Many interesting musical devices contain nonlinear circuit ele-
ments and topologies which cannot be decomposed into only serial
and parallel connections. Early approaches to developing WDF

models with nonlinearities focused on reference circuits with cer-
tain types of single nonlinearities [14, 15]. Other solutions use
domain knowledge about the device or circuit to make simplifying
assumptions to realize computability of the WDF structure. These
include combining multiple nonlinearities into a single one-port
nonlinearity [5, 6, 9] and simplifying multiport nonlinearities into
cross-control models [4,7,10]. A comprehensive overview of early
nonlinear WDF implementations can be found in [15].

The first example of including a nonlinear circuit element in a
WDF [14] involved attaching the nonlinearity to an adapted port
at the root of the WDF. This is necessary because the model of the
nonlinearity is delay free, and a port reflection back to the nonlin-
earity would create a delay-free loop. In addition, the nonlinearity
studied was modeled with an invertible function in the Kirchhoff
domain from which it was possible to map to a corresponding in-
vertible function in the wave domain which was then able to be
solved explicitly. In modern WDF structures, child elements in the
WDF tree are adapted so that their upward-facing port is reflection
free. The root element cannot be adapted so if the reference circuit
contains a non-adaptable nonlinear or linear element it is placed at
the root of a binary connection tree [4].

In [5], the LambertW function is used to solve a single diode
equation or approximate the solution to an anti-parallel diode equa-
tion. In particular, a lookup table is used to determine an initial
guess at the solution which is then refined through iteration on an
approximation of the Lambert W function. The case of multiple
diodes is generalized and improved in [6].

In [3], a WDF implementation of a triode tube amplifier using
the Cardarilli triode model is introduced. This method involves
solving one or two nonlinear equations depending on whether or
not grid current is taken into account. In both cases, the authors
use the secant method to solve the nonlinear equations and, in the
case where grid current is taken into account, multidimensional
zero finding is avoided by solving one of the nonlinear equations
first and using that result to determine whether or not the second
nonlinear equation needs to be iterated on. This model was found
to be more computationally efficient than previous attempts [7,10]
and perform more realistically, especially when in saturation.

Another approach to WDFs with multiple nonlinearities is pro-
vided in [16] where the passivity property of WDFs is exploited to
show that WDFs are contractive systems which are guaranteed to
converge to a fixed point under global iteration. Using this, they
introduce an iteration time dimension and at each sample iterate
along this dimension until the steady-state solution for that sam-
ple has been reached for each nonlinearity with all other circuit
values held constant. While this approach can be applied to com-
plex topologies that are expressible as non-tree-like arrangements
of series and parallel adapters and models with multiple nonlin-
earities, the convergence of the fixed-point iteration is only linear

DAFX-279



Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

and the speed of convergence is highly dependent on the choice of
port resistance. Additionally, the contractivity property only holds
if the nonlinear elements are also contractive which excludes non-
contractive nonlinearities such as transistors.

This approach is expanded upon in [17] where the unrelaxed
fixed point iteration scheme is replaced with the secant method.
They additionally modify the secant method to control the step in
the search direction in a way such that it always moves in the direc-
tion of the zero. For multidimensional nonlinearities, two iteration
schemes are proposed. In the first, the iteration of all nonlineari-
ties is performed simultaneously in a vector formulation whereas
in the second each nonlinearity is iterated on individually.

The first method was found to be faster when it did converge
and the second method was found to converge in situations where
the first method did not converge. The primary benefits of the
methods in these two papers are that they preserve the modularity
of the WDF structure whilst the second paper’s results improves
the convergence of the iterations from linear to superlinear.

Another iterative approach based on a graph theoretic analy-
sis is given in [18]. In this approach, the entire circuit topology
is represented with a single scattering parameter matrix and power
waves are propagated between the circuit element ports. From this
representation a fixed point iteration can then be performed to re-
solve the delay-free loops introduced by nonlinear elements.

An example of iterative techniques being used in the imple-
mentation of circuits containing single nonlinearities as state space
filters is given in [19, 20]. This approach involves using the K-
method to linearize the nonlinearities into a system of equations
which can then be iterated on until convergence is reached with
the desired unknown quantity. Newton’s method is used to solve
single antiparallel diode nonlinearities whereas pretabulated tables
are suggested for realization of triodes and bipolar junction tran-
sistors (BJTs) in amplifier circuits.

2.2. A General Approach for Multiple/Multiport Nonlineari-
ties with Arbitrary Topologies

We review a general approach to set up a WDF structure with
any number of multiport nonlinearities as well as with any gen-
eral topology [12, 13].

First, the prototype circuit must be analyzed and decomposed
into parallel, series and rigidly connected components. This can
be accomplished using graph theoretic techniques [12, 21]. For
circuits containing multiple/multiport nonlinearities, all nonlinear-
ities are rigidly connected using the replacement graph technique
in [21] so that they are kept together as a single entity. The results
of this process is an SPQR tree where all nonlinear elements are
grouped together at the root of the tree in anR-type node.

To deal with the nonlinearities in the R-type node, all of the
nonlinearities are pulled out of the R-type node. This results in a
system of vector nonlinearities attached to aR-type adapter repre-
sented mathematically by the following system:

wave nonlinearity = {aI = Fw(bI) (1a)

scattering =

{
bI = S11aI + S12aE

bE = S21aI + S22aE
(1b)

S matrix =

[
S11 S12

S21 S22

]
, (1c)

where Fw represents the wave domain nonlinear equation(s), aI
and bI represent the vectors of internal incident and reflected waves

and aE and bE represent the external incident and reflected waves.
More specifically, all incident and reflected waves are defined in
terms of theR-type adapter with external waves propagating from
the WDF subtree and internal waves from the nonlinearities.

As described in [13], to calculate the S matrix, it is first nec-
essary to form an X matrix. This is done by attaching an instanta-
neous Thévenin port equivalent to each port of theR-type adapter
and then using Modified Nodal Analysis (MNA) to determine the
contents of the X matrix. It follows from the definitions of waves
and Thévenin port equivalents that S is given by the following ma-
trix equation:

S = I+ 2
[
0 R

]
X−1 [0 I

]T
, (2)

where R is a diagonal matrix of port resistances and I is the iden-
tity matrix.

Next, since most nonlinear circuit models are defined in the
Kirchhoff domain and Fw may be hard to obtain, it may be easier
to work with iC = Fk(vC). In that case a w–K converter matrix
C to convert incident and reflected waves aI and bI into voltage
and currents vC and iC is typically used. The C matrix is given
by:

C =

[
C11 C12

C21 C22

]
=

[
−RI I
−2RI I

]
, (3)

where RI is a diagonal matrix of internal port resistances. This
process results in three vector delay-free loops which can then be
reduced to one vector delay-free loop by combining the submatri-
ces of S and C into matrices E, F, M and N:

E = C12(I+ S11HC22)S12 (4a)
F = C12S11HC21 +C11 (4b)
M = S21HC22S12 + S22 (4c)
N = S21HC21 , (4d)

with H = (I−C22S11)
−1.

This formulation yields a structure in which all nonlinearities
in the circuit can be isolated together at the top of the WDF tree
above theR-type adapter. This leads to the following system with
the nonlinearities represented in the Kirchhoff domain:

iC = Fk(vC) (5a)
vC = EaE + FiC (5b)
bE = MaE +NiC , (5c)

where E, F, M and N are given in (4). If trying to work directly
from (5), dealing with the nonlinearity in the Kirchhoff domain,
it must be determined how to evaluate the nonlinearity as it still
contains a delay-free loop.

In [12], this delay-free loop is eliminated by means of the K-
method. With the K-method, the nonlinearity is solved either using
iteration or table lookup with pretabulated values of the nonlinear
function.

The general approach proposed in [12, 13] allows any proto-
type analog circuit to be turned into a computable WDF structure
regardless of topology or number of nonlinearities as long as the
nonlinearities possess a functional model representation. Use of
the K-method, however, implies a shear transformation of the non-
linearity models from the Kirchhoff domain to a domain consisting
of pseudo-wave variable p and current iC . Thus, if solutions are
tabulated in either domain, the table of solutions must be shear
transformed to the other domain. Finding the correct value in the
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sheared space can require complex search and interpolation meth-
ods. Additionally, the storage and computational requirements of
multidimensional tables quickly becomes challenging as the num-
ber of dimensions increases.

3. ITERATIVE TECHNIQUES

3.1. The General Approach with Nonlinear Solver

An iterative solution to the nonlinearities contained in (5a) is pre-
sented as an alternative to storing tables and to introduce generality
and the abilityto obtain solutions of a desired numerical precision.
The zero-finding formulation of the system in Section 2.2 is ob-
tained by substituting (5a) into (5b):

vC = EaE + FFk(vC) , (6)

and then solving the equation for zero to obtain:

H(vC) = EaE + FFk(vC)− vC . (7)

This nonlinear function H(vC) will give the values of vC and iC
that solve the instantaneous relationship.

Consequently, using an iterative technique such as Newton’s
method to find the zero of (7) presents itself as a natural method for
resolving the delay-free loop in the general framework presented
in Section 2.2.

In using such a technique, having a good initial guess is crucial
to the success of the zero-finding algorithm. In the context of (6)
and (7), a typical choice would be:

v0
C(n) = EaE(n− 1) + FFk(vC(n− 1)) , (8)

where v0
C(n) is the initial guess at the value of vC(n). However,

considering that vC(n−1) has already been propagated down and
back up the tree structure, the most current value of aE is already
known. Thus, another possible initial guess would be:

v0
C(n) = EaE(n) + FFk(vC(n− 1)) . (9)

In the case studies in Sections 4 and 5 both initial guess choices
will tested and investigated.

3.2. Newton’s Method

The basis of Newton’s method in a single dimension to find the
zero x∗ of a function f comes from the Taylor series expansion of
f about x∗ which leads to the recursive series of approximations
of x∗:

xn+1 = xn −
f(xn)

f ′(xn)
, (10)

for which xn → x∗ as n→∞ given that f and the initial guess x0
satisfy certain assumptions. The multivariate equivalent of New-
ton’s method is:

Xk+1 = Xk − J(Xk)−1F (Xk) , (11)

with X = (x1, x2, . . . , xn)
T , F = (f1, f2, . . . , fn)

T and where
J is the Jacobian matrix of F and the superscript represents the
current iterate.

In order for Newton’s method to converge quadratically in the
univariate case, it is necessary that f be twice continuously differ-
entiable, that x∗ is a simple zero of f (meaning that f ′(x∗) 6= 0

and f ′′(x∗) 6= 0) and the initial guess x0 is in a close enough
neighborhood of the zero [22, p. 85].

The condition for having global convergence is given by f
again being twice continuously differentiable as well as being an
increasing, convex function that has a zero [22, p. 86]. For a func-
tion meeting these assumptions, the zero x∗ is unique and can be
reached with any initial guess.

In order to have superlinear convergence in the multivariate
case, F must be continuously differentiable in a convex open set
around a simple zero X∗ as well as having a sufficiently close ini-
tial guess X0. Additionally, if F is Lipschitz continuously differ-
entiable near X∗ then, for sufficiently close X0, the convergence
is quadratic [23, p. 276].

3.3. Newton’s Method with Backtracking

Since the convergence of Newton’s method depends on the prox-
imity of the initial guess to a zero, attempts have been made to
alter Newton’s method to improve the convergence. One such al-
gorithm is called Newton’s method with backtracking or damped
Newton’s method.

The main idea behind the univariate version of this algorithm
is to keep the linear approximation of the function from overshoot-
ing the zero. This is accomplished by performing a backtracking
line search on the linear approximation of the function and ensur-
ing that the norm of the function is being reduced at each iteration.
Thus, rather than setting xn+1 = xn − f(xn)/f ′(xn) , the new
iterate is set to xn+1 = xn − αf(xn)/f ′(xn) where α ∈ (0, 1] .
Starting with α = 1 , α is multiplied by 0.5 – or any value in (0, 1)
– until the following condition is met:∣∣f (xn − αf ′(xn)−1f(xn)

)∣∣ ≤ (1− αµ)|f(xn)| , (12)

where µ ∈ (0, 1). This condition is called the sufficient decrease
condition and ensures that the next guess is moving closer to x∗.

In the multivariate case, the sufficient decrease criterion is
given by∥∥∥F (XK − αkJ(Xk)−1F (Xk)

)∥∥∥ ≤ (1− αµ)‖F (Xk)‖ . (13)

Newton’s method with backtracking does achieve global conver-
gence under certain assumptions about f [24]. Unfortunately, how-
ever, there are still a wide range of smooth functions for which
global convergence is not guaranteed.

3.4. Improving the Initial Guess

As previously noted, Newton’s method and Newton’s method with
backtracking depend on a good initial guess and being in a close
neighborhood of the zero in order to achieve quadratic conver-
gence.

In addition to the initial guess types discussed Section 3.1, an
additional enhancement would be to use another more globally
robust method to hone in on a better initial guess for Newton’s
method and then switch methods when the refined guess is suffi-
ciently closer to the region of quadratic convergence. One way to
accomplish this is by starting the iterations using a method called
Steepest Descent.

The univariate Steepest Descent method [25, pp. 654–659]
works by finding a value x̂ that minimizes a merit function g. The
merit function is chosen in such a way that g(x̂) = f(x∗) = 0
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Table 1: Diode Clipper Circuit Component Values

Component
Circuit R1 C1 C2

Clipper 1 2.2 kΩ 0.01 µF N/A
Clipper 2 2.2 kΩ 0.01 µF 0.47 µF

and, thus, is also the solution to the original problem at hand. The
following merit function is typically chosen:

g(x) =
1

2
f(x)2 . (14)

Successive approximations of x̂ are found by moving in the di-
rection of greatest decrease which is −g′(x), the negative of the
derivative of g. Backtracking is also employed so that the newest
estimate of the minimizer does not overshoot and move away from
the minimizer.

In the multivariate case, the merit function is given by

G(X) =
1

2
F (X)TF (X) , (15)

and the direction of greatest decrease is given by the negative gra-
dient −∇G(X) .

This method used by itself will eventually converge to the min-
imum of the merit function (which corresponds to the zero of the
original function, if it exists), but the convergence is only linear.
Even given that, it still approaches the zero quickly enough that a
few iterations can be enough to generate an initial guess for New-
ton’s method which will quickly converge to the zero.

In the implementation of Steepest Descent used in this paper,
a maximum number of iterations as well as a tolerance on the size
of the norm of the merit function are given. Thus, the algorithm
stops if the merit function has been sufficiently minimized or when
the maximum number of iterations has been reached.

Other methods exist, such as the Secant method and Broyden’s
Method, which numerically approximate the derivative and Jaco-
bian. Additionally, quasi-Newton methods exist which only eval-
uate the Jacobian once and then perform incremental numerical
updates of it at each iteration. These methods can reduce the com-
putational complexity of their corresponding algorithms but this
may sometimes be at the expense of reduced convergence speed
and/or loss of the roundoff error correction typically exhibited by
Newton’s method [25, ch. 10.3].

In the following case studies, the performance of methods from
Sections 3.3 and 3.4 will be evaluated on a circuit containing a
single diode, one containing antiparallel diodes and one contain-
ing a transistor. Additionally, the mathematical characteristics of
the nonlinear models of the diode and transistor will be examined
to determine whether any guarantees can be given to their conver-
gence using the proposed iterative methods.

4. DIODE CLIPPER CIRCUITS

The wave-domain solution of the diode has been well-studied in
literature [4–6, 8, 9, 12, 16, 17, 26–28] and an explicit solution ex-
ists using the Lambert W function [5, 6] (although the Lambert
W function requires an iterative method to either precalculate for
table lookup or solve at runtime). While the solution to the diode
can be tabulated in the wave domain, as has been previously done,
it will be informative to demonstrate the method of Section 3.1 on
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Figure 1: Diode Clipper Schematics and WDF Structures
(Dark Grey: Nonlinearities; Light Grey: R-type Adapter)

a circuit containing a single nonlinearity. Additionally, the mathe-
matical properties of Shockley’s diode model can be investigated.

An asymmetric diode clipper circuit consists of a resistive volt-
age source in parallel with a capacitor and a diode (Fig. 1a). We
model the diode using the Shockley diode equation:

iD = Is
(
evD/ηVT − 1

)
, (16)

where Is = 2.52 × 10−14 represents the reverse bias saturation
current, VT = 0.02585 represents the thermal voltage, η is the
ideality factor of the diode and vD is the voltage across the diode.

The scattering behavior of a parallel three-port adapter, which
is already known in explicit form [29], immediately gives us the S
matrix from the formulation of Section 2.2:

S =

[
S11 S12

S21 S22

]
=

 δA − 1 δB δC
δA δB − 1 δC
δA δB δC − 1

 . (17)

where
δm =

2Gm
GA +GB +GC

. (18)

From (3) it follows that the C matrix is:

C =

[
−RA 1
−2RA 1

]
. (19)

The WDF (Fig. 1c) is formed by placing the diode at the unadapted
port of the parallel adapter and then forming the system from (5).

From (7), the following equation representing the nonlinearity
is determined:
h(vC(n)) = EaE(n) + Ffk(vC(n))− vC(n)

= EaE(n) + F
[
Is
(
e
vC (n)/ηVT − 1

)]
− vC(n) .

(20)

From (20) it follows that

h′(vC(n)) = F
Is
ηVT

evC(n)/ηVT − 1 , (21)

h′′(vC(n)) = F
Is

(ηVT )2
evC(n)/ηVT , (22)
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Table 2: Newton’s Method with Backtracking Diode Clipper

Iterations Backtracking Output Error
Circuit Upsamp Mean Peak Mean Peak RMSE Peak

Clipper 1 1×fs 3.88 9 1.50 13 0.40 0.88
Clipper 1 2×fs 3.01 9 0.57 9 0.14 0.47
Clipper 1 4×fs 2.61 8 0.22 6 0.05 0.25
Clipper 1 8×fs 2.32 7 0.07 5 0.02 0.05
Clipper 2 1×fs 5.63 9 1.46 7 0.21 0.60
Clipper 2 2×fs 4.61 7 0.74 5 0.08 0.26
Clipper 2 4×fs 3.97 7 0.27 5 0.01 0.04
Clipper 2 8×fs 3.23 6 0.08 2 0.01 0.04

Input signal: 10 kHz, 4.5 peak amplitude sinusoid at 44.1 kHz sampling rate,

are the equations for the first and second derivatives, respectively.
Since IS , (ηVT )2 and evC(n)/ηVT are all positive, it is clear that
as long as F 6=

[
0
]
, then the diode model is either strictly convex

or strictly concave. In either case, from the results in Section 3.2
it follows that (20) is globally convergent if that condition holds
for the F matrix. In particular, the only way for F =

[
0
]

is if
S11 =

[
−1
]

which should never happen in practice. In the case of
a parallel adapter, that condition would only be possible ifGA, the
inverse of the port resistance RA, of the diode’s port, is equal to
zero. The requirement that RA > 0 prevents that from happening.
In any arbitrary circuit topology, one should be able to explicitly
set GA to avoid the degenerate condition F =

[
0
]
.

A symmetric diode clipper circuit (Figs. 1b, 1d) contains two
antiparallel diodes which (if identical) can be represented with the
following model:

iD = IS
(
evD/ηVT − e−vD/ηVT

)
. (23)

While the derivative is nonnegative:

d
dvD

iD =
IS
ηVT

(
evD/ηVT + e−vD/ηVT

)
> 0 (24)

⇐⇒ evD/ηVT > −e−vD/ηVT , (25)

from the equation for the second derivative:

d2

dv2D
iD =

IS
(ηVT )2

(
evD/ηVT − e−vD/ηVT

)
, (26)

it is easy to see that the second derivative takes on all values in R
and so the function is not convex.

In the general setting of a circuit containing Mfwd parallel
diodes and Mrev antiparallel diodes [6], the function for the non-
linearity is:

iD = IS [e
vD/MfwdηVT − e−vD/MrevηVT ] , (27)

from which the same conclusions can be reached. Therefore, global
convergence is not guaranteed for any combination of parallel and
antiparallel diodes.

Numerical simulations were run for WDF implementations of
both diode clipper circuits. The numerical values used in the sim-
ulations are given in Table 1 where Clipper 1 refers to the asym-
metric diode clipper and Clipper 2 refers to the symmetric diode
clipper. The device values and ideality factor of 1.75 are the same
as were used in [9].

For both diode clipper circuits, an LTspice [30] simulation was
ran for use as a baseline comparison to the WDF simulations. The
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Figure 2: Initial Guess Type Performance Comparison
(I.G. 1 refers to (9) and I.G. 2 refers to (8))

input voltage was a 10 kHz sinusoid with peak amplitude of 4.5 V
which was used to test the performance of the iterative technique
in response to a numerically challenging input signal. The LT-
spice simulations were generated using default LTspice configura-
tion values with a maximum timestep frequency 176.4 kHz which
reduces the interpolation error resulting from converting the adap-
tive timestep of the LTspice output to a fixed timestep.

Both Newton’s method with backtracking and the hybrid Steep-
est Descent–Newton’s method with backtracking algorithms were
compared. For both algorithms, the tolerance (which is calculated
as the L2 norm of (7)) was set to 1.42 × 10−8 V 1 and maximum
Newton iterations and backtracking steps were set to 200 and 50,
respectively.

The results of the simulations for Newton’s Method with back-
tracking are given in Table 2 where the error value is calculated as
the difference in output voltage between the LTspice simulation
and the WDF. RMSE is the root-mean-square error which is given
by

ERMSE =

√∑N−1
n=0 (xLT(n)− xWDF(n))2

N
, (28)

where xLT is the LTspice output voltage signal and xWDF is the
WDF output voltage. The peak error is calculated as the L∞ norm
of the difference in output voltages and is given by

EPEAK = max
n
|xLT(n)− xWDF(n)|. (29)

In both error formulas (28) and (29), xLT refers to the LTspice
output voltage, xWDF refers to the WDF output voltage and N is
the length of the signal in samples.

Even with this relatively high voltage and high frequency test
signal, acceptable iteration counts are achieved after 4 to 8 times
oversampling. The error values are the result of a combination of
factors including linear interpolation and the fact that WDFs use
the bilinear transform while LTspice does not. Results with lower
amplitude and lower frequency test signals yielded extremely fast
convergence with mean iterations typically between 1 or 2.

The results of the hybrid Steepest Descent–Newton’s method
(using the same 10 kHz sinusoid input signal) are given in Table 4.

1approximately the square root of machine epsilon in Matlab R2015b
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Table 3: Newton’s Method Common Emitter Amp Simulation
Results

Iterations Backtracking Error
Freq. Amp. Avg Peak Avg Peak Avg Peak
10 Hz 0.01V 1.00 2 0.00 0 0.0001 0.0004
10 Hz 0.1V 1.14 2 0.00 0 0.0015 0.0045
10 Hz 1V 1.69 2 0.00 0 0.0168 0.0630

100 Hz 0.01V 1.90 2 0.00 0 0.0025 0.0039
100 Hz 0.1V 1.98 2 0.00 0 0.0273 0.0588
100 Hz 1V 1.59 11 0.01 5 0.0835 1.1007
1 kHz 0.01V 2.00 2 0.00 0 0.0086 0.0137
1 kHz 0.1V 2.56 3 0.00 0 0.0889 0.4006
1 kHz 1V 2.31 30 0.45 105 0.1063 1.6206

10 kHz 0.01V 2.87 3 0.00 0 0.0093 0.0169
10 kHz 0.1V 3.48 5 0.00 0 0.1609 0.6769
10 kHz 1V N/A N/A N/A N/A N/A N/A

The number of maximum Steepest Descent algorithm iterations
were set to 2, 4 and 8 to illustrate the impact that Steepest Descent
has on reducing the mean number Newton iterations. The amount
of backtracking required by the Steepest Descent portion of the al-
gorithm did appear to increase somewhat rapidly with the increase
in maximum allowable iterations. There are, however, a number of
ways to perform the backtracking line search portion of the algo-
rithm so it may be possible to reduce the amount of backtracking
by implementing one of those different methods.

Overall, the hybrid algorithm achieves a significant reduction
in the number of Newton’s method iterations required, particularly
when combined with oversampling and a modest amount of Steep-
est Descent iterations.

Regarding choice of initial guess, Fig. 2a shows that Newton’s
method required fewer iterations for the asymmetric diode clipper
when using the incident wave value from the previous timestep
in the initial(8). This result was observed over a wide range of
frequencies for tests being run using half-second long sinusoidal
signals with peak amplitude of 4.5 V and was also seen when the
same tests were ran on the symmetric diode clipper WDF.

5. MULTIPORT NONLINEARITIES–BIPOLAR
JUNCTION TRANSISTOR

In this section, a common emitter amplifier is simulated using the
method developed in Section 3.1. The circuit contains an NPN
BJT which has base, collector and emitter terminals (Fig. 3a) and
can be viewed as a two-port network device with ports BC and
BE (Fig. 3b). The BJT’s behavior is completely described by the
voltages across the two terminals: vBE and vBC, which are the volt-
age from base to emitter and base to collector, respectively. The
nonlinear behavior of the BJT was simulated using the Ebers–Moll
model:

iE = −Is[evBC/VT − 1] +
Is
αF

[evBE/VT − 1] (30a)

iC = − Is
αR

[evBC/VT − 1] + Is[e
vBE/VT − 1] (30b)

iB =
Is
βR

[evBC/VT − 1] +
Is
βF

[evBE/VT − 1] , (30c)

where

βF =
αF

1− αF
and βR =

αR
1− αR

. (31)

iB
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iE

B

C

E

(a) BJT Symbol

iBE

iBC

+

+

−

−

VBE

VBC

(b) BJT Port Definitions

Figure 3: Circuit element and network two-port of BJT

Since any one of the three equations in (30) can be derived
from the other two, only two of them are needed to completely
characterize the system. The values iC and iE are chosen in order
to determine the current at the collector and emitter in terms of the
current at the base.

The polarity of the currents given by the Ebers–Moll model
(Fig. 3a) are not identical to the polarities of port currents when
viewing the transistor as a two-port device (Fig. 3b). Port currents
itextBC and iBE are found from the terminal currents iC and iE by

iBC = −iC and iBE = iE .

Following the method of Section 2.2, the reference circuit (Fig. 4a)
was decomposed by isolating the two ports of the transistor above
an R-type adapter with series and parallel connections of linear
components hanging below it (Fig. 4b).

Once the scattering behavior of the R-type adapter was de-
termined, the nonlinear equations were set up in the form of (7)
leading to a complete WDF system; albeit one containing an im-
plicit multidimensional delay-free loop.

The zero-finding equation Fk for (7) is:

Fk(vC) =

 Is
αR

(
evBC/VT − 1

)
− Is

(
evBE/VT − 1

)
−Is

(
evBC/VT − 1

)
+ Is

αF

(
evBE/VT − 1

) , (32)

and vC = (vBC, vBE)
T .

The device parameters used for the simulations are given in
Table 5 and component values for a 2N2222 transistor were used
in the BJT model. Those values are Is = 1.0×10−14 , βF = 200
and βR = 3. The WDF digitization of the common emitter ampli-
fier was analyzed by running a variety of sinusoidal input signals
at different frequencies and peak amplitudes with a sampling rate
of 44.1 kHz. The results are given in Table 3. Figure 2b shows
that using the initial guess given by (9) results in fewer iterations
with this circuit for an input sinusoid with peak amplitude of 0.5
V at a variety of frequencies. This is contrast to the result for both
diode clipper circuits in which (8) performed better.

Newton’s method with backtracking performed very well at
frequencies up to 1 kHz with peak amplitudes up to 1 V. The
method began to break down at higher frequency and amplitude
combinations due to the procedure producing numbers which were
unable to be represented by Matlab’s double precision data type.
Thus, the breakdown was not in Newton’s method being unable
to converge based on the provided initial guess but in a limitation
of the numerics of the system being used for simulation. Using
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Figure 4: Common Emitter Amplifier Schematic and WDF Structure

Table 4: Hybrid Steepest Descent–Newton’s Method Diode Clipper Iteration Results

Steepest Descent Newton’s Method
Iterations Backtracking Iterations Backtracking

Circuit Oversampling Max Mean Mean Peak Mean Peak Mean Peak
Clipper 1 1×fs 2 2.00 2.39 25 2.61 9 1.42 13
Clipper 1 1×fs 4 3.07 22.54 89 1.55 8 0.77 11
Clipper 1 1×fs 8 3.99 43.65 135 0.35 5 0.00 0
Clipper 1 8×fs 2 2.00 7.45 31 1.20 6 0.03 3
Clipper 1 8×fs 4 2.60 36.32 95 0.18 3 0.00 0
Clipper 1 8×fs 8 2.63 42.09 107 0.00 1 0.00 0
Clipper 2 1×fs 2 2.00 5.37 25 3.79 7 0.76 4
Clipper 2 1×fs 4 3.73 36.60 91 1.50 5 0.01 1
Clipper 2 1×fs 8 4.44 78.80 121 0.01 1 0.00 0
Clipper 2 8×fs 2 2.00 11.05 29 2.01 5 0.01 1
Clipper 2 8×fs 4 2.92 57.84 81 0.15 2 0.00 0
Clipper 2 8×fs 8 2.94 61.60 99 0.03 1 0.00 0

Table 5: Common Emitter Amp
Component Values

Component Value
B1 18 V
Rin 1 kΩ
Cin 50 µF
R1 27.35 kΩ
R2 2.65 kΩ
RE 220 Ω
CE 100 µF
RC 1.78 kΩ
C2 10 µF
RL 1 kΩ

Steepest Descent to improve the initial guess provided to Newton’s
method had no affect on the numerical limitation.

It should also be noted that the common emitter amplifier is
designed to purely amplify small amplitude signals and is not de-
signed to clip them. Since asymmetry can be seen in the peaks
of a sinusoidal signal with amplitude of 0.2 V, it should be noted
that a 1 V peak amplitude test signal would probably not be used
in this circuit in practice and was used as a means of investigat-
ing the limits of the performance of Newton’s method on a WDF
containing an Ebers–Moll transistor model. A time domain out-
put comparison of LTspice and the WDF simulation is given in
Figure 5.

6. CONCLUSION

In this paper an iterative zero-finding technique was incorporated
into a generalized WDF approach to digitizing analog reference
circuits of arbitrary topology containing multiple/multiport nonlin-
earities. We elaborated on the work in [12, 13] by introducing two
variations of Newton’s method that show promise towards the real-
ization of real-time WDFs with multiple nonlinearities. Newton’s
Method with backtracking was employed in addition to a variant
where the Steepest Descent algorithm obtains better initial guesses
and increases the speed of convergence.

Two different types of initial guesses were proposed for which
(8) resulted in fewer iterations in both the asymmetric and symmet-
ric diode clipper WDFS and (9) resulted in fewer iterations for the
common emitter amplifier WDF. For the circuit simulated in [11],
tests also indicated fewer iterations using (9) 2. Both initial guess

2Private Communication with W. Ross Dunkel, Jun. 10, 2016
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Figure 5: Two cycles of output voltage from 1 kHz input sinusoid

types should be tested to determine which one performs better for
a particular WDF implementation.

We were able to show that the Shockley diode equation meets
the requirements for global convergence with Newton’s Method
and that both algorithms employed in this paper yielded rapid con-
vergence in an asymmetric diode clipper test circuit. Numerical
results additionally indicated that a pair of identical antiparallel
diodes treated as a singular nonlinearity exhibited good conver-
gence characteristics even when tested with high frequency and
amplitude test signals in a symmetric diode clipping circuit.
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Additionally, the numerical performance of the Ebers–Moll
model of a BJT was studied via implementation of a common emit-
ter amplifier circuit. Newton’s Method with backtracking performs
efficiently for signals that fall within and slightly outside the stan-
dard operating range of the amplifier circuit.

While the recent work of Schwerdtfeger and Kummert [17]
preserves the modularity of the WDF structure, the convergence
rate of the methods can be sensitive to the values chosen for the
port resistances of the nonlinear elements.

The choice of port resistances for nonlinearities in the pro-
posed approach does not exhibit that same sensitivity. Since the
delay-free loop being resolved is restricted to the system of non-
linearities and isolated from the rest of the WDF, impedance mis-
matching does not occur in the presented approach. The only re-
striction on the nonlinear port resistances is that they must be cho-
sen such the F matrix does not get set to zero. There is no inherent
restriction on the number of nonlinearities that can be included.

While this paper focused on developing the theory and simple
examples illustrating the proposed technique, higher dimensional
nonlinearities have already been successfully tested. These include
the first clipping stage of the Big Muff Pi distortion pedal [12] and
the preamp of the Fender Bassman amplifier [11]. A real-time
WDF software library using the presented approach has also been
recently developed [31].

The only caveats of the presented method for handling nonlin-
earities in WDFs are that the properties of the multivariate nonlin-
ear systems must allow them to be solved with iterative techniques
and that the iterative techniques are computationally tractable.
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