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ABSTRACT 

This paper provides a method for comparing phase angles of 

harmonic sound sources. In particular, we propose an algorithm 

for decomposing the difference between two sets of phases into a 

harmonic part, which represents the phase progress of harmonic 

components, and a residue part, which represents all causes of 

deviations from perfect harmonicity. This decomposition allows 

us to compare phase alignments regardless of an arbitrary time 

shift, and handle harmonic and noise/inharmonic parts of the 

phase angle separately to improve existing algorithms that han-

dles harmonic sound sources using phase measurements. These 

benefits are demonstrated with a new phase-based pitch marking 

algorithm and an improved time-scale and pitch modification 

scheme using traditional harmonic sinusoidal modelling. 

1. INTRODUCTION 

Pitched, or harmonic, sound sources produce periodical wave-

forms that can be represented as the sum of time-varying sinu-

soids (partials) whose frequencies are multiples of a fundamental 

F0[1][2]. This sinusoidal representation appears in audio proc-

essing either explicitly, e.g. in sinusoidal modelling[3], or im-

plicitly, e.g. in the phase vocoder[4]. At any point each partial is 

associated with a phase angle that determines its positioning in 

time. 

While each phase angle hardly makes any audible difference 

by itself, the alignment between phases affects the audio quality 

in various ways. Phase alignment between harmonic partials ef-

fects audible sub-period energy distribution [5], while that be-

tween binaural channels helps establish the perceived direction 

of the sound source [6]. A third type of phase alignment. i.e. that 

between phase angles sampled from the same partial at different 

time instants, affects sound quality via the frequency-phase rela-

tion. In particular, the perception of harmonicity relies on the 

partial frequencies being perfect multiples of a fundamental, 

which in turn requires the phase angles at different instants be 

aligned in a special way. An audio processing routine that does 

not preserve such phase alignment breaks the harmonicity, and 

possibly creates a chorus effect. 

In this paper we address this third type of phase alignment in 

the context of pitched sounds. In particular, we compute a de-

composition of the difference between two sets of phase angles 

into a harmonic progression and a least-square residue, the for-

mer evaluating how much progress the signal has made from one 

set of phases to the next, the latter evaluating whether the two 

sets are harmonically aligned, and if not, how far they are from 

being so. While being surprisingly simple, this treatment is useful 

in a variety of applications involving the handling of pitched 

sound sources. 

2. HARMONIC PHASE ALIGNMENT AND 

MISALIGNMENT 

Consider a set of M harmonically related sinusoids 

 sm(t) = am∙cos φm(t), t∈R, m = 1, …, M, (1a) 

where 

 φm(t) = 0
m  + 2πmf0t, m (1b) 

is the phase angle of the mth harmonic partial. We define 

 φ(t) = (φ1,…, φm)
T
, φ0 = ( 0

1 ,…, 0
m )

T
, m = (1,…, M)

T
. (2) 

It is trivial to show that  

 φ(t) − φ0  = 2πf0t m, (3) 

in which f0t counts the number of periods between 0 and t. Phase 

values we encounter in actual computations are often subject to 

arbitrary modulo-2π shifts, so it’s better to write (3) as  

 φ(t) − φ0 = 2πf0t∙m + 2kπ, k∈ZM (4a) 

or 

 φ(t) − φ0 ≡ 2πf0t∙m (mod 2π). (4b) 

We say two vectors of phases φ1∈RM and φ2∈RM are har-

monically aligned (aligned for short) if δ∈R, so that  

 φ2 − φ1 ≡ δ∙m (mod 2π). (5) 

By this definition, the phase vector φ(t) in (4b) sampled at any 

time t is aligned to the initial φ0, while those sampled at any pair 

of t1, t2 are aligned between themselves. For various reasons, in 

real-world tasks the phase angles associated with harmonic sinu-

soids may not always satisfy (5), but carry an error term ε: 

 φ2 − φ1 ≡ δ∙m + ε (mod 2π). (6) 

We say φ1 and φ2 in (6) are harmonically misaligned (misaligned 

for short) by ε. The following statements are equivalent: 

i. φ1 and φ2 are harmonically misaligned by ε; 

ii. φ2 is harmonically aligned to φ1 + ε; 

iii. φ2 − φ1 is harmonically aligned to ε; 

iv. δ∈R, k∈ZM, so that  

 ε = φ2 − φ1 − δ∙m + 2kπ. (7) 

Statement iv shows that (6) does not uniquely quantify ε: any 

pair of misalignments ε1 and ε2 are equivalent as long as they are 

aligned to each other. To compare phase alignments quantita-

tively, we’d like to quantify ε so that smaller ε is associated with 

phase vectors closer to perfect alignment. Particularly, if φ1 and 
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φ2 are harmonically aligned then ε should be 0. This leads to the 

minimum misalignment detailed below. 

3. MINIMUM HARMONIC PHASE MISALIGNMENT 

Equation (7) gives the general form of misalignment between φ1 

and φ2. The minimum misalignment method seeks to minimize ε, 

constrained by (7), as the unique quantification of ε. Different 

forms of the minimum can be defined by specific choices of the 

minimization criterion. In this paper we consider two of them, 

based on L2 and weighted L2 norms, respectively. 

3.1. Minimization by L2 

The L2 norm of ε is  

 ||ε||2 = ε
T
ε. (8) 

Define εo = φ2 − φ1, we can rewrite (7) as 

 ε(δ, k) = εo − δ∙m + 2kπ. (9) 

Once δ is fixed, the minimization of ||ε||2 with regard to k is triv-

ial: we only need to take the minimal absolute residue of εo − δ∙m 

modulo 2π: 

 mink ε(δ, k) = )2,res(  mε o ,  (10)  

where res(x, y) is the minimal absolute residue of x modulo y, 

obtained by shifting every entry of x by a multiple of y into the 

interval [-y/2, y/2). Since ε is periodical with regard to δ with 

period 2π, the task of minimizing ||ε||2 is simplified to finding 

δ∈[-π, π) so that  

 ||ε(δ)||2 =



M

m

o
m m

1

2)2,res(   (11) 

becomes minimal, where o
m  is the mth entry of εo.  

 

Figure 1 Minimal absolute residue modulo 2π 

Since res(x,2π) is a piecewise linear function of x (Figure 1), 

||ε(δ)||2 in (11) is a piecewise quadratic function of δ, whose 

minimum over the finite-length interval [-π, π) can be found by 

enumerating all quadratic pieces within this range.  

3.2. Minimization by weighted L2 

L2 minimization in 3.1 assumes equal impact from each partial. 

In practice it is often reasonable to emphasize some partials 

while deemphasizing some others. For example, some musical 

instruments have weaker even partials than odd ones, so that the 

phase angles measured for the odd partials are generally more 

reliable. It makes sense to emphasize the contribution from the 

stronger partials in formulating the minimization criterion. 

The weighted L2 norm of ε is  

 2|||| wε  = ε
T
∙diag(w)∙ε. (12) 

where w=(w1, …, wM)
T
, wm0, m, contains the partial weights 

and diag(w) is a diagonal matrix whose main diagonal is speci-

fied by w. 2|||| wε  reduces to ||ε||2 when all entries of w are 1. 

The minimization of the weighted L2 norm follows the same 

path as that of the L2 norm. It is eventually reduced to finding 

δ∈[-π, π) that minimizes 

 2||)(|| wε   = 



M

m

o
mm mw

1

2)2,res(   (13) 

A routine for the computation of δ in (11) is suggested in Appen-

dix A, which also works for (11) if all weights are set to 1.  

3.3. Interpretation 

The minimum-by-L2 method provides a least square solution to 

(6), which breaks the phase difference φ2−φ1 down to a harmonic 

progression δ∙m and a least square mismatch term ε.  

If φ1 and φ2 are sampled from the same harmonic source, 

then δ estimates the phase progress (modulo 2π) of the funda-

mental frequency between the sampled positions, and ε evaluates 

their difference in phase sampling error. If φ1 and φ2 are sampled 

from different harmonic sources then δ estimates how much pro-

gress the first source has to make to be optimally aligned with the 

second source at the sampled position, and ε evaluates how well 

they can match in terms of phase alignments. 

Although our discussion had started with steady tones, all 

formulations since (5) also apply to time-varying harmonic sound 

sources with amplitude and frequency modulations as well as 

timbre evolution. In the last case the phase vectors become land-

marks during the transition from one timbre to the next, which 

can be used later to resynthesize the same transition. 

Once we have estimated δ and ε we can write 

 φ2 − φ1 = (δ + 2kπ) ∙m + ε, k∈Z (14) 

The difference from (7) is that the arbitrary factor is now k∈Z 

instead of k∈ZM in the original equation. This disambiguation 

comes from an implicit phase unwrapping during the minimiza-

tion of ε with harmonicity constraint. This avoids possible loss of 

harmonicity during explicit phase unwrapping of each individual 

partial, e.g. in conventional sinusoidal synthesis [3]. 

4. APPLICATIONS IN PROCESSING HARMONIC 

SOUND SOURCES 

The main advantage of our handling of the phase difference is 

that we may now attribute all pitch-related information to the 

harmonic progression part and focus on the residue part for han-

dling non-harmonic aspects. By treating these two parts sepa-

rately we can avoid the negative influence brought by one part to 

algorithms designed to handle the other. 

In this section we demonstrate, in two unrelated applications, 

how we make use of the decomposition to handle harmonic 

sound sources. In a pitch marking example, we use the harmonic 

part to clock specific time instants within a period, and the resi-

due part to inform on the degree of harmonicity. In another time-

sale modification example, we demonstrate how we eliminate 

phase dispersion artefacts by avoiding frequency pollution from 

the misalignment part, while perfectly preserving wave shape 

evolution embedded in the misalignment. 

π  

-π  

0  π  2π  -π  -2π  t 

res(t,2π) 
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4.1. Pitch marking 

Pitch-synchronized processing, such as pitch-synchronous over-

lap-add (PSOLA)[7], operates on pitched sounds on the period 

level, offering quick response to period-to-period changes that is 

common in non-stationary quasi-harmonic signals like human 

speech. These algorithms rely on pre-determined time instants, 

known as pitch marks, as landmarks to synchronize their opera-

tions to. The basic requirement for pitch marking is that the in-

terval between two adjacent pitch marks be precisely one speech 

period. Exactly where within a period the pitch mark should be 

placed has been a matter of the designer’s choice: positions like 

prominent waveform peaks [8], significant excitation instants [9] 

and glottal closure instants [10] have all been reported for pitch 

marks. The chief concepts behind these choices are one: to clock 

the pitch marks consistently across periods and, if possible, 

across different sounds. The phase angle, by nature, handles ex-

actly the clocking of an instant within the duration of a period. 

This motivates the new pitch marking algorithm presented below. 

The standard procedure of pitch marking includes an initiali-

zation step, which places the first pitch mark, and a propagation 

step, which iteratively “grows” the existing set of pitch marks 

forward and backward to cover the whole length of a pitched 

sound. We will present our phase-based solution to the two steps 

in reverse order.  

First let us define the phase vectors used in our algorithm. 

Let s(t) be a periodical signal with period T1. Given any time t1, 

we consider the two-period interval (t1−T1, t1+T1). A pitch-

synchronized spectrum can be computed from the interval with 

 







11

11

12/2
11 )()/();(ˆ

Tt

Ttt

Tktj
etsTtwtks

 , k = 0, 1, …, T1  (15) 

where k is the harmonics index and w(t) is an analysis window 

supported on [-1, 1]. The phase vector of s(t) of size M (M<T1) at 

t1 is then taken as 

  T);(ˆarg,),;2(ˆarg),;1(ˆarg 1111 tMststs φ  (16)  

Now we let t1 be where we have placed a pitch mark, and 

consider where to place the next. Ideally at point t1+T1 we should 

be able to sample the same phase vector φ1, which is rationale 

enough to place the next pitch mark there. However, in real tasks 

the signal is hardly exactly periodic, the estimate of T1 is rarely 

perfect, and the period itself may have changed from T1. Conse-

quently at t1+T1 we only get some φ2≠φ1 which is not enough to 

signal the next pitch mark. 

 
Figure 2 Pitch mark propagation by phase alignment 

However, we can still place the next pitch mark near t1+T1 by 

harmonically progress φ2 by some δ∙m to optimally match φ1. In 

other words, we put φ1−φ2 on the left side of (6) and solve for δ 

using the proposed routine (Appendix A). The new pitch mark is 

then placed at the adjusted position 

 
 2/1

, 1
2212




T
TTtt . (17) 

In (17) T1 is multiplied by 2π/(2π−δ), the ratio between the fun-

damental phase progression expected over a period and that ob-

served over the duration of T1. If the adjustment is large (i.e. |δ| is 

above some threshold), it makes sense to repeat the above ad-

justment process until δ is contained. Once the position of t2 is 

determined, pitch marking may proceed from t2 onwards with the 

new period T2, until some termination criterion is met, such as 

the phase mismatch ε between pitch marks getting too large, or 

the correlation between marked periods getting too small. Back-

ward propagation of pitch marks can be handled in exactly the 

same way. 

We observe that the initial pitch mark provides a phase vec-

tor to which all other pitch marks are aligned, so its choice more 

or less determines what most pitch marks will be like. To better 

prepare for later stages that will use pitch marks, we would like 

all initial pitch marks have a consistent look. In [8], [9] and [10], 

this took the shape of waveform peak, excitation peak or glottal 

stop. For the phase-based pitch marking, we propose to initialize 

the first pitch mark at a position that is optimally aligned to the 

zero phase vector 0M. This keeps the initial pitch mark close to 

minimum phase, which is related to high energy concentration 

and smooth spectral envelope preservation in PSOLA. 

Let t1 be a point around which the signal s(t) has its period T1 

estimated with high periodicity, e.g. via autocorrelation. Let φ1 

be the phase vector at t1 given by (15)(16). We find out the har-

monic phase progression δ∙m for φ1+δ∙m to optimally match 0. 

This is achieved by setting φ2=0 on the left side of (6) and solve 

for δ with the proposed routine (Appendix A). We then update t1 

with 

  2/111  Ttt .   (18) 

This update may be repeated a few times if it brings the match 

closer to zero phase, which can be observed from the value of |ε||2 

before and after each update. 

 
(a) waveform and pitch marks of “that’s” 

 
(b) detail of (a) 

Figure 3 Pitch marking example 1 

Figure 3(a) shows the pitch marking result for part of a spoken 

sentence in which a female speaker says “that’s …”. Pitch marks 

are plotted onto the waveform as vertical lines. As we may expect, 

the pitch marks span the duration of the voiced (i.e. periodic) 

part of the speech, leaving the fricative /s/ clear. Each period of 

t 
t1 

φ1 

t1+T1 

φ2 

t2 

+ ~2πm 

 +δm 
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the signal contains exactly one pitch mark. An inspection into the 

details (Figure 3(b)) reveals that the pitch marks are placed at the 

same position within its period. Each pitch mark sits between 

two secondary waveform peaks riding on top of the highest of the 

four primary peaks of each period. This agrees with the common 

understanding of minimum phase, as well as that of the ideal po-

sition for the waveform grain centres in PSOLA. 

 

Figure 4 Pitch marking example 2 

Figure 4 shows another pitch marking result during timbre 

evolution, in this case a change of phoneme without resting the 

vocal folds. We see that as the change progresses, the pitch mark 

shifts from one competing secondary peak (front peak at t1) to 

another (rear peak at t2). This is a common phenomenon with all 

landmark-based pitch markers: if each period contains two quali-

fied landmarks, one slowly diminishes across the periods, and the 

other slowly rises, then a switch of the pitch mark between the 

two is sure to take place at least once during the transition. The 

advantage of our minimum phase pitch marking is that it also 

computes the fundamental phase progression from t1 to t2, so we 

are informed that t2−t1 exceeds a period’s length, and by how 

much it does so. This information gains us better ground for 

adapting later processing stages, such as PSOLA, to handle such 

shifts properly.  

4.2.  Time-scale modification with sinusoidal model synthesis  

Sinusoidal modelling [3] and its variants [2][11][12] represent 

sinusoids by sampling their amplitude, frequency and phase an-

gle at predefined measurement points t=(t0, …, tL)T. In this part 

we consider only harmonic sinusoids. Let the angular frequency 

and phase angle of the mth partial sampled at tl be m
l  and m

l , 

respectively, and let T),,( 0
m
L

mm  φ , T),,( 1 M
lll  φ , 

T),,( 0
m
L

mm  ω , T),,( 1 M
lll  ω . For each partial m, the 

sinusoidal model synthesis (SMS) reconstructs a new pair of fre-

quency and phase functions )(~ tm  and )(~ tm  by jointly inter-

polating φm and ωm with phase unwrapping, so that )(~ tm  is 

continuous and  

 )2(mod)(~
1

1

 m
l

m
l

t

t

m dtt
l

l

 


, l.  (19) 

In the original SMS [3] )(~ tm  was constructed as piecewise 

quadratic. Finally the synthesizer reconstructs the phase with 

  dt
t

t

mmm


0

)(~)(~
0 .  (20) 

We consider the interval [tl, tl+1], on which )(~ tm depends on 

m
l , m

l 1 , m
l  and m

l 1 . Let  T))(~,),(~)(~ 1 ttt M
l  ω . We 

write ),,;(~)(~
1 llll tt φφΩωω  to emphasize the dependency of 

)(~ tlω  on φl and φl+1, with Ω representing the frequencies. For 

all phase-aligned synthesizers, the dependency of )(~ tlω on φl 

and φl+1 is via their difference, so we can rewrite (19) in the fol-

lowing vector form: 

 )2(mod),;(~
11

1

ll

t

t
lll dtt

l

l

φφφφΩω  


.   (21) 

Ideally, for harmonic sinusoids the phase angles are always 

aligned, so that the right side of (21) is aligned to 0. In practice, 

due to inaccuracies of sampled frequencies and phases,  φ(tl+1) is 

rarely perfectly aligned to φ(tl), so that )(~ tω  cannot be perfectly 

harmonic on [tl, tl+1]. This deviation from harmonicity is tolerable 

most of the time, as the misalignment of phase does not go much 

further beyond the magnitude of estimation error, so that the par-

tials remain safe from destructive waveform interferences. How-

ever, this may not be the case when time-scale modification is 

involved. 

The method 

Sinusoidal modeling represents the time scale by the meas-

urement points t. Time-scale modification in this case involves 

selecting a new sequence 't  and synthesizing a sound whose 

qualities (other than speed) at every lt   are similar to those of the 

unmodified sound at tl. In this paper we only consider the sim-

plest type of time-scale modification, i.e. constant-rate time scal-

ing, with 

 tt  ' .  (22) 

where ρ is the scaling rate. The time scaling preserves the fre-

quency value of )(~ tm  at point ρt, which we write as 

  ),,;(~)(~
1 llll tt φφΩωω 
 ,  (23) 

where )(~ tlω is the modified frequency function on ],[ 1

ll tt . 

Since the modified frequencies are linear stretching of the origi-

nals, the phase misalignment between φl and φl+1 is multiplied by 

ρ. This change of misalignment can propagate across frames. As 

ρ becomes large the accumulated misalignment may incur de-

structive interference, which leads to deformed wave shape and 

eventually audible artefacts. This is known as phase dispersion 

and was well studied in [13]. 

From (23) we know that the phase progression of )(~ tlω be-

tween lt   and 1

lt  is ρ times that of )(~ tω between tl and tl+1, in-

cluding both the harmonic progression and the misalignment. 

However, for a harmonic sound source only the harmonic pro-

gression represents the true frequencies, which are what we aim 

to stretch by time scaling. The misalignment, on the other hand, 

represents estimation error and timbre evolution, neither a part of 

the true frequency, and should be left outside the integration of 

stretched frequency. As long as the misalignment is not multi-

plied by ρ, but remains unchanged between measurement points, 

there will be no extra misalignment to propagate across frame, 

therefore phase dispersion will not occur. 

Back to synthesizer design, we break the phase difference 

ll φφ 1  into the sum of a harmonic progression and a least 

square residue: 

 εmkφφ  21 ll , k∈ZM.  (24) 

Then we construct )(~ tlω  in two parts: 

 
),;(~)(~),,;(~)(~

),(~)(~),;(~

//

//
1

ε0ωωmΩωω

ωωφφΩω

tttt

ttt

llll

lllll











.  (25) 

t1 t2 
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)(~ // tlω  represents the harmonic frequencies which should be 

stretched;  )(~ tl


ω  represents the residue frequency whose contri-

bution to phase should be stretched. These two different types of 

stretching are implemented in a simple combined form: 

 )(~)(~)(~
//

1// ttt ll
 ωωω  ,  (26) 

which replaces (23) in time scaling. An intuitive interpretation of 

(26) is that we multiply the residue )(~ tl


ω  by ρ-1 to counteract 

the ρ times stretching, so that its integration between measure-

ment points remain unchanged. A similar solution exists for han-

dling phase in constant rate pitch scaling, which faces the same 

phase dispersion issue. 

Example 1: artificially synthesized sound 

We illustrate the time scaling algorithm above using synthe-

sized harmonic sinusoids with M=3, L=3. We place the meas-

urement points at 0, T, 2T and 3T, T=128.The fundamental fre-

quency is constant at 0.005. The frequency and phase values at 

the measurement points are given to the synthesizers with simu-

lated errors: (0.15,0.15,-0.15,-0.15)/T for the fundamental fre-

quency and (0.1,0.1,-0.1,-0.1)π for the fundamental phase. For 

the 2nd and 3rd partials the errors are rotated by 1 and 2 slots, re-

spectively. We use scaling rates ρ=1, 2 and 4, and compare the 

results with a baseline synthesizer that runs the same workflow 

but without the proposed phase handling, and Ninness and Hen-

riksen’s method [13], which implemented “phase invariant” time 

scaling to address the phase dispersion issue. 

 

Figure 5 Phase misalignment during time scaling 

(a)(b)(c)Ninness-Henriksen method; (d)(e)(f)baseline method; 

(g)(h)(i)baseline+proposed. 

 Figure 5 shows the harmonic misalignment in each setting, 

computed between the error-free initial phases and the synthe-

sized phases. Each curve in Figure 5 shows the misalignment of 

one sinusoidal partial against time (x-axis). Results from the 

Ninness-Henriksen method are given in the first row, those from 

the baseline in the second, those from the baseline with proposed 

phase handling in the third. We see that the method of [13] does 

offer smaller misalignment than the baseline at ρ=2, but both de-

grades to similar level at ρ=4. The performance of the proposed 

method, on the other hand, is not affected by time scaling. 

 
Figure 6 Waveforms before and after scaling 

(a)(b)(c)natural extension; (d)(e)(f)Ninness-Henriksen method;  

(g)(h)(i)baseline method; (j)(k)(l)baseline+proposed. 

Figure 6 shows the synthesized waveforms. The partial am-

plitudes are assigned the ratio 1:2-1/2:3-1/3, and the initial phases 

of the three partials are 0, π/7 and 4π/7. The first row gives the 

time scaling result obtained by natural extension of the ground 

truth signal; the second to fourth rows give the results from the 

phase invariant method of [13], the baseline synthesizer, and the 

baseline with proposed phase handling, respectively, using accu-

rate amplitude values and inaccurate frequency and phase values 

at the measurement points. We see that Ninness and Henriksen’s 

phase invariant method has succeeded to preserve better wave 

shape than our baseline at ρ=2, but at ρ=4 both lose hold of the 

waveform. The proposed method, on the other hand, preserves 

the waveform equally well for ρ=1, 2 and 4. 

Example 2: voiced speech 

In this example we time-stretch a recording of a female voice 

saying “Offal is now thought to be very nutritious.” Using simple 

harmonic sinusoidal modelling without the residue, we extract 

the voiced part whose spectrogram and waveform are shown in 

Figure 7(a) and Figure 7(b). To visualize the details Figure 7(a) 

only contains the “-fal is now” part and Figure 7(b) only a few 

periods. Three time stretchers are applied to the sentence with 

ρ=3, including a plain phase-aligned synthesizer, the time 

stretcher proposed by Ninness and Henrikson [13], and our pro-

posed approach. Their results are given in Figure 7(c) ~ Figure 

7(h), aligned to their corresponding parts in the original in Figure 

7(a) and Figure 7(b). The plain synthesizer combats phase dis-

persion by enforcing phase alignment at measurement points, at 

the cost of frequency instability. Ninness and Henrikson’s ap-

proach smoothes out most frequency problems of the former but, 

judged from by the change in wave shape, has not managed to 

avoid phase dispersion. Our proposed time stretcher based on 

harmonic phase decomposition produces no less smooth result 

while perfectly maintains the wave shape. 
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Figure 7 Spectrograms and waveforms (partial) before and 

after time scaling 

(a)(b) original; (c)(d) plain phase-aligned synthesis;  

(e)(f) Ninness-Henriksen; (g)(h) proposed. 

Example 3: piano 

In another experiment we time-stretch a piano note extracted 

from a polyphonic recording using harmonic sinusoidal model-

ling, using the same three stretchers as above with ρ=3. As far as 

subjective listening and wave shape comparison are concerned, 

our results for the piano note are very similar to those for the 

spoken sentence above. However, a closer look into spectrogram 

details in the frequency range above the first few reveals a vi-

brato-like structure in some partials synthesized using harmonic 

phase decomposition, which is absent from those synthesized 

using the Ninness-Henriksen method (Figure 8). Our informal 

listening has not detected audible traces of this frequency modu-

lation, probably because the modulation has not affected the 

strongest partials sufficiently. 

We attribute the modulation to the fact that the piano sound is 

intrinsically inharmonic, so the harmonic phase progression does 

not accurately model the relationship between its partial frequen-

cies. When the phase angles are manipulated during time scaling 

using (26), the computed phase progression between measure-

ment points may deviate significantly from what would be made 

at the actual frequency. The synthesizer makes up for the dis-

crepancy by bending the instantaneous frequency between adja-

cent measurement points, creating a frequency modulation with 

period ρT.  

More detailed analysis (using very large DFT size) of the av-

erage partial frequencies in Figure 8(b) reveals that the frequency 

values maintain harmonic ratios between themselves in groups. 

For example, the frequencies of the 8th, 7th and 6th partials have 

the ratio 8:7:6, those of the 10th and 9th partials have 10:9, while 

between the 9th and 8th the ratio is larger than 9:8. In other words, 

the harmonic rule may predict the average frequency of some 

partial from the immediate predecessor with a significant gap. 

This gap turns out to cover whole frequency bins, which is the 

result of phase unwrapping during sinusoidal synthesis.  

 
Figure 8 Spectrogram details of time-stretched piano note 

(a) Ninness-Henriksen method; (b) proposed. 

5. CONCLUSION AND FUTURE WORK 

In this paper we proposed comparing two sets of harmonic phase 

angles by decomposing their difference into a harmonic progres-

sion and a least square residue, computed by minimizing a 

piecewise binomial function. The method does not mind how the 

phase angles are computed, nor requires the phase angle of every 

partial be available. One is allowed to attach weights to the phase 

values during the decomposition to suppress the contribution 

from the inaccurate phases, particularly those of weak partials. 

Compared to raw phase values, this harmonically decom-

posed representation has several advantages: it allows compari-

son of phase vectors regardless of an arbitrary time shift; it al-

lows clocking the difference between two phase vectors using 

information from all partials; it allows algorithms designed for 

processing periodic signals to focus on harmonic phase, those for 

non-periodic aspects on the residue. In two unrelated applica-

tions involving harmonic sound sources, we have demonstrated 

the use of our analysis approach to phase in two different man-

ners, both achieving expected results. However, since phase 

alignment is such a common presence with harmonic and quasi-

harmonic sounds, the proposed method is surely applicable in 

many more circumstances. For example, we have already demon-

strated in Figure 5 the use of harmonic misalignment to track 

timbre change, which is probably more revealing than comparing 

waveforms, such as Figure 6. 

On the other hand, we have seen that the harmonic phase de-

composition comes with a few limitations. First, it requires har-

monic sinusoidal analysis to provide reasonably accurate phase 

values of harmonically related partials, which can be a hard task 

in itself, especially in complex acoustical environments. Whether 

and how the proposed technique may be applied to more readily 

available forms of phase angles, such as that from the Fourier 

transform, remains a question to be looked into. Second, success-

ful decomposition of the phase progression relies on good phase 

estimates of all participating partials, which in turn requires a 

mechanism to tag each phase estimate with a confidence label. In 

this paper we have included partial weights in section 3.2 to fill 

this role, but how the weights are to be best evaluated remains 

another question for future investigation. Moreover, the piano 

example shows that the proposed method does not accurately 

model sound sources with inharmonicity. In the case of time scal-

ing, this has lead to additional frequency modulation of some 

partials, and has the potential to create audible artefacts. The ad-

aptation of the proposed harmonic phase decomposition to sound 

sources with inharmonicity, therefore, may become another di-

rection of future research into this world of aligned and mis-

aligned phase angles. 

 

(a) ρ=3 (b) ρ=3 

(a) ρ=1 (b) ρ=1 

 

(e) ρ=3 (f) ρ=3 

(g) ρ=3 (h) ρ=3 

(c) ρ=3 (d) ρ=3 
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APPENDIX A: COMPUTING MINIMUM HARMONIC 

PHASE MISALIGNMENT 

Given εo=( o
1 , …, o

M )
T
, w=(w1, …, wM)

T
, wm0, m, find 

δ∈[-π, π) that minimizes 

 D(δ)=



M

m

o
mm mw

1

2)2,res(  . (A.1) 

Notice that (A.1) gives δ a different sign from (13), which needs 

be switched back should the value of δ be required afterwards. 

Because res(x,2π) is a piecewise linear regarding x, D(δ) is 

piecewise quadratic regarding δ. Let δ0 = -π < δ1 <…< δL = π be 

the section points marking the end of these quadratic pieces, and 

let the left and right derivatives of D(δ) at δl be )(' lD   and 

)(' lD  , then D(δ) has a local minimum in (δl, δl+1) if and only if 

0)(' lD   and 0)(' 1 lD  ; D(δ) has no minimum at any δl 

other than –π and π as it has -∞ derivative as such points. To find 

δ that minimizes D(δ), we first locate all the section points and 

compute the left and right derivatives, then enumerate the quad-

ratic pieces for local minima, from which the smallest one is 

picked as the global minimum of D(δ). 

Below is a routine for minimizing D(δ) that iteratively lo-

cates the section points contributed from each partial m and up-

dates a section point list with derivatives. 

routine 1: minimum harmonic phase misalignment 

This routine maintains a list of section points {pl, al, bl} indexed 

by l, in which pl is the position of a section point and al, bl are 

the left and right derivatives at pl. 

1º Initialize a sorted section point list with initial members –π 

and π, both with left and right derivatives set to 0; 

2º for m=1, …, M, do 3º~8º; 

3º compute the first section point of partial m: 

 sp0← -π + (π – res(-mπ + o
m )) / m; (A.2) 

4º for sp=sp0, sp0 + 2π/m, …, sp0 + 2π(m−1)/m,  do 5º; 

5º if sp does not coincide with an existing point in the list, 

let the two listed section points immediately before and 

after sp be pl and pl+1, then we insert sp into the list with 

identical left and right derivatives given as  

 
ll

llll

pp

apspbspp









1

11 )()(
; (A.3) 

6º for all points pl, l=0, 1, …, in the updated list, do 7º~8º; 

7º if pl is a section point of partial m, do 

 al ← al + mπ∙wm, (A.4) 

 bl ← bl − mπ∙wm; (A.5) 

8º if not, do 

 al ← al + m∙res(mpl +
o
m ,2π)∙wm,  (A.6) 

 bl ← bl + m∙res(mpl +
o
m ,2π)∙wm; (A.7) 

9º initialize the minimum δmin←-π; 

10º for l=1, 2…, do 11º~13º; 

11º if bl-1<0 and al>0, do 

12º compute local minimum 

 δ←
1

11









ll

llll

ba

bpap
; (A.8) 

13º if D(δ) < D(δmin), δmin←δ. 


