
Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2012

FAUST2ANDROID: A FAUST ARCHITECTURE FOR ANDROID

Romain Michon

CCRMA
Department of Music

Stanford Univeristy, CA 94305-8180
USA

rmichon@ccrma.stanford.edu

ABSTRACT

faust2android is a tool that turns a FAUST program into an
Android application. Signal processing tasks as well as accessing
the audio record and playback resources are done natively in
C++ using the Android Native Development Toolkit (NDK). User
interface and other components of the application are programmed
in JAVA.

The implementation as well as issues related to real-time
signal processing on Android platforms are discussed.

faust2android is part of a larger project whose goal is to
build a full FAUST environment for Android: FAUSTDROID.

1. INTRODUCTION

While the iPhone and the iPad have been for the last few years
privileged platforms to develop applications for real time signal
processing, Android has been left behind, mainly because of
the very bad latency perfomances it provided. However, recent
developments1 show that Google and others2 seem to work at
finding solutions to this problem.

Also, the possibility of connecting an external audio interface
to an Android terminal seems to move forward. In fact, we were
successfully able to use a Behringer GUITAR LINK UCG1023

with a Google Nexus 7 without increasing the record and playback
latency that was even reduced a little bit.

These different observations show that using Android termi-
nals to do reliable real-time signal processing might be possible
in a very near future. This was one of the main motivations for
carrying out this work.

faust2android4 is a tool that turns a FAUST[1] program
into an Android application. It uses a script that embeds the C++
code generated by the FAUST compiler in a template Android app
whose content is totally dynamic.

faust2andoid is part of a larger project (FAUSTDROID)
that aims at providing an environment where musicians can easily
access an online catalog of FAUST objects, download them,
arrange them and use them on their Android terminal.

1http://developer.android.com/about/versions/
jelly-bean.html.

2http://www.sonomawireworks.com/.
3http://www.behringer.com/EN/Products/UCG102.

aspx.
4faust2android is available in the

/tools/ directory of the FAUST repository:
http://sourceforge.net/projects/faudiostream/.

2. ANDROID AND REAL TIME SIGNAL PROCESSING

2.1. The Latency Question

Android has always been infamous in the audio developer
community for its very high latency for audio playback and
recording. However, with the most recent release of this operating
system (Jelly Bean 4.2), Google has made a step toward latency
reduction. On his blog5, Victor Lazzarini reports in a post from
December 2012 that he was able to achieve a “round-trip latency”
of 100ms and a “touch-to-sound latency” of 120ms. We obtained
similar results with faust2android on a Nexus 7 (105ms
for the “round-trip latency” and 130ms for the “touch-to-sound
latency”). In both cases, these performances are greatly surpassing
the one of the previous versions of Android where latency was
generally larger than 300ms.

2.2. C or JAVA?

Android applications are mainly programmed in JAVA and the An-
droid SDK provides an API for real-time audio recording and play-
back. Thus, signal processing classes can be directly implemented
in JAVA which greatly simplifies the overall architecture of the
app. Moreover, FAUST2 can now generate JAVA code instead of
C++.

Several tests where various FAUST generated JAVA snippets
code were “manually” embedded in an Android app were carried
out on both a Samsung Galaxy S2 and a Google Nexus 7. While
results varied greatly between the two devices (for example, we
were not able to record and playback audio simultaneously in real-
time on the Galaxy S2), they were very deceiving because of the
instability of the process and the audio latency that was greater
than 200ms.

On his blog, Victor Lazzarini describes in a post from March
2012[2] a technique to do Android audio streaming with OpenSL
ES6 and Android’s Native Development Toolkit7 (NDK). After
several tests, this technique proved to be far more stable than the
“full JAVA” one and was used to build faust2android.

5http://audioprograming.wordpress.com/category/
android/.

6Open Sound Library for Embedded Systems: http://www.
khronos.org/opensles/.

7http://http://developer.android.com/tools/sdk/
ndk/.

DAFX-1

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

http://ccrma.stanford.edu
mailto:rmichon@ccrma.stanford.edu
http://developer.android.com/about/versions/jelly-bean.html
http://developer.android.com/about/versions/jelly-bean.html
http://www.sonomawireworks.com/
http://www.behringer.com/EN/Products/UCG102.aspx
http://www.behringer.com/EN/Products/UCG102.aspx
http://audioprograming.wordpress.com/category/android/
http://audioprograming.wordpress.com/category/android/
http://www.khronos.org/opensles/
http://www.khronos.org/opensles/
http://http://developer.android.com/tools/sdk/ndk/
http://http://developer.android.com/tools/sdk/ndk/

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2012

2.3. Real-time audio with faust2android

As mentioned in 2.2, the Android NDK makes possible the use of
functions written in C or C++ in a JAVA app by wrapping them as
a shared library using SWIG8 that creates the elements to interface
these two programming languages.

In an app generated by faust2android, the different tasks
are shared between C++ and JAVA as follow:

JAVA C++
- Android application - DSP
- dynamic user (process one audio frame)
interface - information about
- send the values of the DSP parameters and the
the different DSP parameters user interface
at every audio - audio resources
frame management

Accessing and managing audio resources is carried out using
Victor Lazzarini’s simple but very useful API9 that makes available
OpenSL ES on Android for real-time audio recording and play-
back. As a result, Android apps generated by faust2android
operate audio streaming and signal processing natively which is
far more efficient than if these tasks were done directly in JAVA.

3. FAUST2ANDROID IMPLEMENTATION

3.1. Generating the Code

Unlike other FAUST architectures, faust2android can’t gen-
erate a single file containing all the elements needed by the C com-
piler to create an object. Indeed, as mentioned before, the gener-
ated apps are based on JAVA, C++ and XML files which doesn’t
make the task easier.

faust2android uses a simple bash script to carry out the
different tasks that will turn a FAUST program into an Android
application. It first calls the FAUST compiler that generates
C++ code. This code is then embedded into an architecture file
that interfaces it with a template Android app whose content is
dynamically changed according to the user interface specifications
contained in the C++ code produced by FAUST.

Finally, the Android cross compiler is called by the script to
generate the binary file of the app. A simple option allows to load
the app on the default Android device connected to the computer
that execute the script. Another option creates an eclipse project in
the current directory if the user wishes to “manually” modify the
content of the app.

An overview of faust2android is given in Figure 1.

3.2. User Interface and Parameters Control

Although the diversity of the standard user interface widgets
provided with the Android SDK is rather limited, it is currently
used to build the different parameter controllers of an app
generated by faust2android. Indeed, while standard FAUST
architectures allow the creation of vertical and horizontal sliders,
knobs, digital entries, buttons, check boxes and vertical and
horizontal groups, only horizontal sliders, digital entries, buttons,

8Simplified Wrapper and Interface Generator: http://www.swig.
org/.

9https://bitbucket.org/victorlazzarini/
android-audiotest.

Figure 2: Example of a user interface generated by
faust2android running on a Google Nexus 7.

check boxes and vertical and horizontal groups can be currently
used with faust2android. Therefore, if a vertical slider or
a knob is declared in the FAUST code, it will be automatically
converted to a horizontal slider.

Figure 2 shows an example of a user interface of an app
generated by faust2android with the following code that
implements a simple FM synthesizer:

import("music.lib");
import("filter.lib");

freqMod = hslider("v:Modulator/Frequency",
440, 20, 15000, 1);

modIndex = hslider("v:Modulator/Modulation
Index", 0, 0, 1000, 0.1);

freq = nentry("v:Carrier/Frequency", 440,
20, 8000, 1);

vol = hslider("v:General Parameters/Volume"
, 0, -96, 0, 0.1) : db2linear;

bal = hslider("v:General Parameters/Balance
",0.5,0,1,0.1);

gate = button("gate");

process = osc(freqMod)*modIndex+freq : osc

* gate * vol <: *(bal),*(1-bal);

Finally, every parameter of a faust2android app can be
controlled by one of the axes of the built-in accelerometer of
the Android device. To do so, the user just has to touch the
name of one of the parameters which will open the accelerometer

DAFX-2

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

http://www.swig.org/
http://www.swig.org/
https://bitbucket.org/victorlazzarini/android-audiotest
https://bitbucket.org/victorlazzarini/android-audiotest

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2012

Faust File

Faust Compiler

UI XML

JAVA App

C DSP Functions

C DSP File

UI XML JAVA App Shared Library

SWIG C Compiler

JAVA API to Call the Functions
of the Shared Library

opensl_io.c

Android App Source Files

Template Android App

JAVA Compiler

Android App

faust2android (Bash script)

Android App Source Files or

Figure 1: faust2android overview.

Figure 3: Accelerometer assignement control pannel.

assignment control panel that can be viewed in Figure 3.

4. LOOKING FORWARD

faust2android was the first step made in the framework of a
larger project that aims at filling the gap between musicians and
the open source FAUST community. This system will be based
on an android application: FAUSTDROID where users will easily
access an online catalog of FAUST objects, download them on their
Android terminal and finally connect them together and use them
through a user interface as simplified as possible. This project is
summarized in Figure 5.

4.1. FAUSTDROID

Recent developments made at Grame around the FAUST Online
Compiler [3] make the use of a RESTFull API to remotely compile
FAUST code possible for different architectures and operating
systems10. Also, the FAUST Online Compiler provides a catalog
of FAUST objects that can be edited by anyone to add new items.

FAUSTDROID will provide users with an environment that
will easily access the catalog of objects of the FAUST Online
Compiler, compile them using faust2android and use the
resulting signal processors in a workspace where they could be
arranged and plugged together.

4.2. The FAUSTBOX

Another important feature of the FAUSTDROID project is the
FAUSTBOX. This device will be based on an Arduino Uno and an
Arduino Wifi Shield11 (see Figure 4) and will be battery-powered.
It will enable the use of sensors to control the different parameters
of the object generated by FAUST running in FAUSTDROID.

The FAUSTBOX will send OSC messages through WIFI to
communicate with FAUSTDROID.

Finally, every sensor will be powered and output its signal
through stereo 1/8 inches jacks that will be easily connectable to
the FAUSTBOX. These signals will be in the same range in order
to easily permute the sensors.

10git://faudiostream.git.sourceforge.net/
gitroot/faudiostream/FaustWeb.

11www.arduino.cc.

DAFX-3

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWeb
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWeb
www.arduino.cc

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2012

Figure 4: Arduino Uno with a Wifi Shield.

FaustDroid

Faust Online Compiler and
Software Catalog

Android Device

Audio Interface

Audio In Audio Out

FaustBox

OSC

WIFI

Sensors

Analog Signal

Jack 1/8”

faust2android

Figure 5: Summary of the FAUSTDROID project.

5. CONCLUSION

While dozens of Android applications for asynchronous signal
processing are available on the Google Play Store12, only a few
of them allow real-time signal processing. It is easy to guess that
the reason of this lack is related to the audio playback latency
problems of Android.

However, it seems that Google is willing to solve this problem
and made a step toward lower latency in the most recent Android
release.

We can guess that the more people will show interest in this
topic, the more Google will try to increase the performances of
their operating system for real-time audio recording and playback.

faust2android is just one more brick in the wall and we
can hope that more works involving real-time signal processing on
Android will be carried out in the future.

6. REFERENCES

[1] Yann Orlarey, Dominique Fober, and Stephane Letz, “An
algebra for block diagram languages,” in Proceedings
of the International Computer Music Conference (ICMA),
Gothenburg, Sweden, 2002, pp. 542–547.

[2] Victor Lazzarini, “Android audio streaming with opensl es
and the ndk,” in The Audio Programming Blog, March 2012,
http://audioprograming.wordpress.com/2012
/03/03/android-audio-streaming-with-opensl
-es-and-the-ndk/.

[3] Romain Michon and Yann Orlarey, “The faust online com-
piler: a web-based ide for the faust programming language,”
in Proceedings of the Linux Audio Conference (LAC), Stanford
University, USA, 2012, pp. 111–116.

[4] Romain Michon and Julius Smith, “Faust-stk: a set of linear
and nonlinear physical models for the faust programming
language,” in Proceedings of the Conference on Digital Audio
Effects (DAFx-11), IRCAM, Paris, France, 2011, pp. 199–204.

12https://play.google.com/store.

DAFX-4

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

https://play.google.com/store

	1 Introduction
	2 Android and Real Time Signal Processing
	2.1 The Latency Question
	2.2 C or JAVA?
	2.3 Real-time audio with faust2android

	3 faust2android Implementation
	3.1 Generating the Code
	3.2 User Interface and Parameters Control

	4 Looking Forward
	4.1 FaustDroid
	4.2 The FaustBox

	5 Conclusion
	6 References

