
Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2012

DIGITAL AUDIO DEVICE CREATION BY THE USE OF A DOMAIN SPECIFIC
LANGUAGE AND A HARDWARE ABSTRACTION LAYER

Stefan Jaritz

Dept. of Electrical Engineering and Information Technology
Ernst-Abbe-University of Applied Sciences

Jena, Germany
stefan.jaritz@fh-jena.de

ABSTRACT

The present paper deals with a framework destined to manage dif-
ferent aspects of the creation of digital audio devices. By means of
a domain-specific language modelling aspects like signal process-
ing and user interaction are implemented. The problem of different
hardware interfaces is resolved by the definition of a hardware ab-
straction layer. This layer provides different types of variables and
functions. A compiler translates the model referring the functions
and variables defined at the hardware abstraction layer. Further-
more, the compiler is able to split the model into different parts
that can be run on different hardware components. The commu-
nication needed to manage the distributed model is defined and
formalized by the framework. A simple example is presented to
help explain the framework’s parts, as are the compiler and the
execution unit.

1. INTRODUCTION

In cooperation with the local industry the Department of Electrical
Engineering and Information Technology at the EAFH Jena carries
out different research projects. Sometimes, developing digital au-
dio devices is a key part of this partnership. However, developing
audio devices in a short period of time has been proved challeng-
ing especially with regard to students final papers.
The main problem of device development is that it covers a large
subset of aspects like hardware construction, software creation,
communication, etc., and each one of these aspects may turn out
rather complex. To overcome that kind of complexity different
methods have been developed. The crucial point with them is that
most of them focus only on one particular aspect of the device
development. Thus, it is the intention of the present paper to in-
troduce a method that connects the different approaches helping to
structure, simplify and speed-up digital audio device creation.

2. ASPECTS OF DIGITAL AUDIO DEVICE CREATION

Lets consider a common audio device. An audio power amplifier
can be used to demonstrate how chosen aspects of digital audio de-
vice creation work. Such device contains a lot of different sound
processing elements like crossovers, limiters, equalizers, etc.. For
further simplification only one aspect of the sound processing is
picked out. This is done by an equalizer which itself may be con-
sidered as a cascade of simple biquad filters. The filter coeffi-
cients which are calculated from the filter parameters (described
by Zölzer [1]). These are adjusted by the user through a panel

containing buttons, potentiometers, LEDs and displays. All func-
tional elements are connected to a low-cost micro-controller(µC).
As soon as the user adjusts the buttons the filter coefficients at DSP
are updated. The digital filtering is carried out by a DSP. In most
cases the audio power amplifier is part of a larger system. In these
cases a remote control device or software is needed. At the given
example the audio power amplifier is controlled through a software
running on a PC.
To face the challenge of device creation different views are de-
fined. Each view can be handled with existing models and meth-
ods:

• The problem of digital signal processing may be abstracted
by a functional model. A common approach is to use Mat-
lab and the integrated toolbox Simulink. The benefit of this
approach is that the model is ready to be tested and com-
piled to C code. In some cases this code may be deployed
directly into the DSP or the micro-controller.

• Taking user interaction with the device into account, a UML
use case diagram may be used to specify the user interac-
tion. With some tools it is even possible to transfer this
diagram to C++ code.

• Hardware and software connection may be defined in a spec-
ification document. This may lead to a so-called "hardware
abstraction layer" that functions as a software interface be-
tween hardware and software components.

• Data exchange between hardware and software components
may be described with a UML communication diagram.
Furthermore, access to the communication media hardware
may be specified. A common approach is to abstract the
access by means of a software driver.

Dividing the problem of device creation into sub-aspects thus pro-
vokes the idea that it should be possible to carry out the different
tasks of development in parallel, even if the sub-aspects are linked
one to another directly and/or indirectly. As example for the con-
nection of aspects a closer look on the modelling of signal process-
ing is undertaken. The user interface may be developed in parallel,
and the data transfer process from the user interface to the sig-
nal processing unit connects these two aspects. However, the de-
veloper should take into account that the signal processing model
includes some entry points for external data. Also, the real time
processing ability ought to be adjusted to handle the data transfer.
By defining entry points into the model, this itself becomes hard-
ware dependant. As a result, the interface between software and
hardware should be taken into consideration as well. The aim of
the present research is thus to create a platform that handles the

DAFX-1

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

mailto:stefan.jaritz@fh-jena.de

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2012

different problem views dependencies. In the following, ideas and
implementation will be discussed, referring to the example men-
tioned in the beginning from time to time.

3. CREATION OF A PLATFORM TO HANDLE
DEPENDENCIES BETWEEN DEVELOPMENT

METHODS

As mentioned in section 2 modelling digital audio devices implies
different technical aspects. These technical aspects scale from lit-
tle problems like realizing a simple filter till the interconnect of
many different devices like a sound system for a festival. Figure
1 shows the correlation of the aspects and gives a first impression
of the platform to be invented. The left side represents the digital
audio device whose creation process may be classified into three
categories.

The "functionality" category approaches device creation from a

Figure 1: Approach to handle different aspects

functional behaviour perspective. Referring to the example given
in section 2, this involves the filtering of the input signals("sound/
audio processing") - a process which is controlled by the "user in-
terface".
The "communication" category focuses on how data are passed in-
side of the devices. In the given example, the user interface passes
any new coefficients of the equalizer to the DSP. The communica-
tion may be seen from a "protocol" side that focuses on the timing
of the data transfer, but also includes "media interfaces" like I/O
pins, CPU registers or software drivers.
The focus of the "device creation" category lies on the interaction
between "software" and "hardware" elements. The several tasks of
a device are dedicated to different hardware components. In many
cases, a DSP is used for signal processing. If the computing power
of this DSP is inadequately or it not enough I/O pins are available
a µC might be the best option for the user interface.
The new approach is shown on the right side of figure 1. The divi-
sion given on the left side is mixed up into several sub-categories
of the new method. These categories are handled by a framework.
The description of the devices behaviour is done in a textual form.
The syntax necessary for that is provided by the so-called "Audio
Language". This language contains common structures and key-
words that are used for digital audio engineering and thus can be
considered as a "domain-specific language".
All aspects of communication are abstracted into "drivers" and
"communication processes". Communication data frames and the
processes using them are described by means of a simple domain-
specific language. The drivers associate the communication frames
with the communication hardware like UARTs, Ethernet, etc.
Any connection between hardware and software elements is for-
malized by a "hardware abstraction layer", containing common

functions and data types used to create digital audio devices. More-
over, a skeleton of the digital audio system is created. In the
following this skeleton will be filled with implementations of the
hardware abstraction layer elements as well as with some common
code, including interpreters, message handling state machines, mem-
ory management units, etc. Together, all these elements are called
"Audio Processor" which is in fact a soft CPU core. "Audio Pro-
cessor" and audio device model, described by means of the "Audio
Language" are connected by a compiler. This compiler translates
the model into hardware abstraction layer functions. In case the
model is split into pieces, these pieces will be executed on dif-
ferent "Audio Processors", being connected with each other and
communicating via the defined communication processes.

4. ASPECTS OF THE APPROACH

The following section takes the example from section 2 and couple
it with the new approach explained in section 3. This is shown in
figure 2. The figure represents different views of device develop-

Figure 2: Creating an audio device according to the new approach

ment. One is about the process, starting with the idea and ending
up with the package: "model piece", "Audio Processor" and hard-
ware. The "Audio Processor" is bonded to the dedicated hardware.
The other views are shown in the center of the figure. The area
"framework" between the idea and the digital audio device shows
the new method’s parts listed in section 2. The connections be-
tween these parts visualize their interdependencies.
Showing the benefits of this method necessitates a deep under-
standing of how computing devices are structured. Tannebaum [2]
gives an excellent overview over that topic. Figure 2 displays the
modelling of a digital audio device by means of a domain-specific
language [3]. Tannebaum calls that language a "problem-oriented
language" and sets it to level 5 of his computer structure. Using
a compiler the model then is translated into assembler code (level
4). The new method thus includes two domain-specific languages:
the "Audio Language" and the "Audio Language Assembler". The
device’s description in the assembler language is interpreted in the
processor. Following Tannebaum this interpretation of code is di-
vided into three levels. Level 3 corresponds to the operating sys-
tem level. The instruction set architecture is set on level 2, and the
micro-architecture on level 1. These levels are mixed together in
the "Audio Processor" which abstracts the hardware components
with the help of a hardware abstraction layer. By the use of this

DAFX-2

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2012

layer it is possible to access I/O pins of the processing unit as well
as functions of the operating system (assumed the fact that an OS is
run on the device). Popvici [4] describes well the approach of such
a hardware abstraction layer closely connected to low cost hard-
ware. Solving audio signal processing problems by the use of a
domain-specific language and an interpreter has also been worked
out by Boulanger [5]. Furthermore, PC-based platforms may ben-
efit from tools like Pure Data, SuperCollider, FAUST, Csound, etc.
In contrast, the new approach targets mainly small computing plat-
forms like µC or DSP. Generally there is only few work that deals
with planting code within non-PC hardware (like at FAUST pro-
gramming language in 2006 [6] and in 2009 [7]).
Creating an "Audio Processor" is managed by a self-developed
framework. This is based on a SQLite SQL database to store data
and thus contains the definition as well as the implementation of
the "Audio Processor" components. A gtk+-based GUI is used
to provide a developer-friendly backend to fill the database. All
software used for generating "Audio Processors" and "Audio Lan-
guage" compilers is written in python. The compilers dealing with
the "Audio Language" are implemented by means of the PLY [8]
module. By doing so, benefits are drawn from python extras and
the powerfulness of language creation with the tools lex and yacc.
The "Audio Processor" is generated in C code. Afterwards this C
code is put into a C compiler provided by the DSP, CPU or µC
manufacturers. One reason to use C code is that most of the exter-
nal software tools/libraries are equipped with a native C interface.
Thereby it is possible to integrate them into the "Audio Processor"
creation system without writing complicated wrappers.
So called "groups" should help the developer to manage depen-
dencies between the drivers, types of variables and functions. A
group is a collection of implementations of previously defined in-
terfaces. Any implementation in the database may refer to such
a group. In the example given in section 2 uses the ADSP and
MSP430 groups which already includes the core functions of a
DSP(ADSP) and µC(MSP430). As one result, the implementation
of the "readSample" for ADSP becomes very short by using the
functions provided by the ADSP group.
As mentioned before it is possible to define the hardware abstrac-
tion layer at the configuration tool. This formalized information
about the interface is stored in the database and will be used to au-
tomatically generate the "Audio Language Assembler" language.
The assembler generated then is able to check the assembler code
against type and formal errors.
In conclusion, the new method is about running digital audio de-
vice models with different hardware. To archive these processes
it is necessary to create a communication system. As shown in
figure 2 communication consists of two parts. A process defines
when and how data are exchanged. The data exchange itself is
handled by drivers, whereby each driver provides access to the
physical layer. The interface between driver and data exchange
process consists of data frames defined by the developer at the
framework. The set of data in such a frame is called message.
Through a simple syntax the developer can use message frames to
set up the processes handling these messages. In general there are
two types of message processes. "RX" processes are designed to
handle incoming messages. "TX" processes are started when data
shall be transmitted. It is possible to automate the "RX" and "TX"
processes. The "RX" process is triggered by receiving a message
through a driver. Afterwards, the message is passed to what is
called a "Message Handling System". This system searches the
correct message handler and organizes the persistence of the data

at the model interpreter. Referring to the given example, hazards
are possible if the biquad filter of the equalizer is processed while
coefficients change at the same time. The "Message Handling Sys-
tem" will prevent this. The "TX" processes are mapped into the
"Audio Processor" as common C functions. These functions may
be used for implementing the functions of the hardware abstraction
layer or in the common code for the "Audio Processors". In the ex-
ample, the PC as remote control or the MSP430 as user interface
will send new coefficients of the filter to the DSP. The "update"
function defined in the hardware abstraction layer uses the "TX"
functions to perform this task.
After taking a close look at several parts of the method the next
paragraph describes how the model of the audio device is build in
the example. This is done in a special domain specific language
called "Audio Language", which recognizes typed variables and
functions. Each variable has a context and may describe global,
local or functional parameters. There are two types of functions.
One type is called "main". In the example there are three main
functions. Among them is one which is called "ADSP" and used
for signal processing. This process is performed on an ADSP
21369 DSP from Analog Devices. Another main function is la-
belled "MSP430" and describes the behaviour of the user interface.
It has been built to run on a MSP430-169STK kit from Texas In-
struments. The last function labelled "PC" implements a remote
control and has been designed to run on a standard PC.
Listing 1 shows the complete code for the signal processing carried
out by the DSP.

global {
biquad filter[2];

}
main (ADSP) {

local {
rational fs;
rational f;
rational x[512];

}
code {

fs = 48000.0;
f = 1000.0;
biquad[obj=filter, index=0, type=LP, fs=fs, fc=f];
biquad[obj=filter, index=1, type=LP, fs=fs, fc=f];
for [;;] {
sampleIO[operation=read ,dest=x, channel=1];
x = filter * x;
sampleIO[operation=write ,src=x, channel=2];

}
}

}

Listing 1: DSP code

Signal processing starts with the definition of a global variable. Its
name is filter, and it represents a vector with two elements of
the biquad type. It must be global because it is changed by the
"MSP430" and "PC" main functions. In contrast, the main func-
tion "ADSP" defines three local variables. fs stands for the sample
frequency of the system. f represents the cut-off frequency of the
lower pass filter. x is a vector of 512 single precision float values
which are used to store the samples of the input channel, resulting
from the signal processing. The code consists of two parts. One of
them initializes the filter variable as low pass. The other one repre-
sents an endless loop, reading 512 samples from the first channel
of the system. Finally, the x sample vector is convoluted with the
filter biquad vector. The result of the operation is stored at x and
written to the second output channel.
Listing 2 shows the "UI" function. This function is called by the
two main functions "MSP430" and "PC".

function UI {
interface {}
local {

panel p;
button bLeft;
button bMiddle;

DAFX-3

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2012

button bRight;
led lRed;
led lGreen;
display d;
string tstr;
rational fs;
rational f;
rational f2;

}
code {
// init UI
// the panel
ui[obj=p, index=0, func=dim, x=0, y=0, xle=550, yle=500];
ui[obj=p, index=0, uuid=1, func=initPanel];
// the display
ui[obj=d, index=0, func=dim, x=10, y=10, xle=500, yle=300];
ui[obj=d, index=0, uuid=11, func=initDisplay, parent=p, pIndex=0];
...
// open string
tstr = "left=LP LP;middle=HP LP;right=HP HP";
// init constants
// set sample frequency to 48kHz
fs = 48000;
// UI behavior
ui[obj=d, func=print, text=tstr];
ui[obj=lRed, func=LED, on=0];
ui[obj=lGreen, func=LED, on=0];
for [;;]{

checkButtonPressed(bLeft) {
f = 70.0;
biquad[obj=filter, index=0, type=LP, fs=fs, fc=f];
biquad[obj=filter, index=1, type=LP, fs=fs, fc=f];
ui[obj=lRed, func=LED, on=1];
ui[obj=lGreen, func=LED, on=0];
update(filter);

}
checkButtonPressed(bMiddle) {

f = 1000.0;
f2 = 2000.0;
biquad[obj=filter, index=0, type=HP, fs=fs, fc=f];
biquad[obj=filter, index=1, type=LP, fs=fs, fc=f2];
...
update(filter);

}
checkButtonPressed(bRight) {

f = 4000.0;
biquad[obj=filter, index=0, type=HP, fs=fs, fc=f];
biquad[obj=filter, index=1, type=HP, fs=fs, fc=f];
...
update(filter);

}
}

}
}

Listing 2: User interface code

The "UI" function has no interface parameters, so consequently
the "interface" section is left empty. Seven variables are declared
under the "local" section. They are used to provide controls for
the user interface. These declarations are followed by some helper
variables which are used as parameters in several functions. The
"code" section contains two code parts. During the endless loop
the user interface is defined and initialized, and some action han-
dlers for the controls are implemented. First a closer look is taken
at the initialization of the user interface. Every single user inter-
face control may be initialized through two functions. The "init..."
functions assigns one parent control as well as one unique identi-
fier(uuid) to every control. By means of the uuid and the parent
control it is possible to connect one to another. Figure 3 shows the
evaluation board of the MSP430 µC which serves as user inter-
face. Controls are labelled with numbers. The displays uuid is 11.

Figure 3: User interface panel with the control uuids

The buttons are numbered 21, 22 and 23. The LEDs between the
numbers are assigned to the numbers 31 and 32. To provide the
opportunity to generate a GUI out of the user interface the "dim"
function is called. This function assigns dimensions in pixel to
each of the controls. The MSP430 port ignores this function, but
the PC port is able to create a window with buttons and edit fields.
The assignment of the user interface controls is followed by the
initialization of several variables and the basic setup of the user
interface. This setup includes setting the displayed text as well as
turning-on the LEDs.
After the setup of the user interface an endless loop will check
the state of the buttons. If one of them is pressed, the biquad fil-
ter coefficients will be recomputed, and the LEDs will switch on.
Finally, the global filter variable will be updated through the "up-
date" function. This function relies on the defined TX processes
which use a communication driver unique for every hardware plat-
form.
In the following, only a short look is dedicated to the complexity
of communication inside that simple system. The physical com-
munication is realized by the use of serial ports. The ADSP serial
driver takes into account that the ADSP device is only able to han-
dle 32Bit Integer values internally. These values are stored like at
the 16Bit RISC architecture of the MSP430 in big endian format.
The data stream of a serial port transmits and receives 8Bit values.
If a hardware component will only handle 2 or 4 Byte numbers it
will become crucial that they are put in the right order on the lane.
Another problem occurs on the Windows OS PC platform. The
PC audio processors use a TCP/UDP-based driver to communicate
with each other, and thus communicate client-server-based. Due to
the limitations of Windows OS - which allows not more than one
process to open a UART port - a UART to TCP/IP bridge has been
developed. The challenge here was that the PC endianness is little
endian. But luckily the endianness could be handled by the mes-
sage handling system framework. The solving of the endianness
issue demonstrates the possibilities of the driver/communication
process approach. These class of problems can be solved on driver
level or through "Message Handling System". Just because of this
separation it is possible to create lean drivers.
Listing 3 represents the two main functions for the PC hardware
and the MSP430-169STK evalboard.

main (MSP430) {
local {
}
code {

[] = UI[];
}

}
main (PC) {

local {
}
code {

[] = UI[];
}

}

Listing 3: Code for the MSP430 and PC user 2interface

There were no local variables used except the "UI" function given
in listing 2. And as this function has no input or output parameter,
the square brackets have been left empty.

5. CONCLUSION

The total amount of code lines written to model the problem of
an equalizer that can be controlled by a µC and a PC as remote
control is 132. This simple example demonstrates a new approach
to handle digital audio device creation. It covers issues of hiding

DAFX-4

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2012

complex communication behind user-friendly functions as well as
the reuse of code via functions. Devices which are able to execute
parts of the program are generated in C code. For the ADSP this
corresponds to approximately 6000 lines of code needed (com-
pare: MSP430: approximately 7000, PC: approximately 8000).
This C code is generated by a framework that combines different
approaches to create digital audio devices. Compiled these codes
are called "Audio Processors" and are capable to run parts of the
model in the given example. As well they are capable to execute
other models of different digital audio devices.

6. REFERENCES

[1] Udo Zoelzer, Digitale Audioverarbeitung, Teubner, 1996.

[2] Andrew S. Tanenbaum, Structured Computer Organization
(5th Edition), Prentice Hall, 2005.

[3] Marjan Mernik, Jan Heering, and Anthony M Sloane, “When
and how to develop domain-specific languages,” ACM com-
puting surveys (CSUR), vol. 37, no. 4, pp. 316–344, 2005.

[4] Wolfgang Ecker, Wolfgang Müller, and Rainer Dömer,
Hardware-dependent Software: Principles and Practice,
Springer, 2009.

[5] Richard Boulanger and Victor Lazzarini, The Audio Program-
ming Book, The MIT Press, 2010.

[6] Robert Trausmuth, Christian Dusek, and Yann Orlarey, “Us-
ing faust for fpga programming,” in Proc. of the Int. Conf. on
Digital Audio Effects (DAFx-06), Montreal, Quebec, Canada,
2006, pp. 287–290.

[7] Yann Orlarey, Dominique Fober, and Stéphane Letz, “Faust:
an efficient functional approach to dsp programming,” New
Computational Paradigms for Computer Music, 2009.

[8] David Beazley, “Ply (python lex-yacc),” 2001, http://
www.dabeaz.com/ply/.

DAFX-5

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

http://www.dabeaz.com/ply/
http://www.dabeaz.com/ply/

	1 Introduction
	2 Aspects of digital audio device creation
	3 Creation of a platform to handle dependencies between development methods
	4 aspects of the approach
	5 conclusion
	6 References

