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ABSTRACT

A common assumption that is often made regarding audio signals
is that they are short-term stationary. In other words, it is typi-
cally assumed that the statistical properties of audio signals change
slowly enough that they can be considered nearly constant over a
short interval. However, using a fixed analysis window (which is
typical in practice) we have no way to change the analysis param-
eters over time in order to track the slowly evolving properties of
the audio signal. For example, while a long window may be ap-
propriate for analyzing tonal phenomena it will smear subsequent
note onsets. Furthermore, the audio signal may not be completely
stationary over the duration of the analysis window. This is often
true of sounds containing glissando, vibrato, and other transient
phenomena. In this paper we build upon previous work targeted
at non-stationary analysis/synthesis. In particular, we discuss how
to simultaneously adapt the window length and the chirp rate of
the analysis frame in order to maximally concentrate the spectral
energy. This is done by a) finding the analysis window that leads
to the minimum entropy spectrum; and, b) estimating the chirp
rate using the distribution derivative method. We also discuss a
fast method of analysis/synthesis using the fan-chirp transform and
overlap-add. Finally, we analyze several real and synthetic signals
and show a qualitative improvement in the spectral energy concen-
tration.

1. INTRODUCTION

A typical setup in time-frequency analysis consists of a) segment-
ing the time-domain audio signal into short duration slices; and, b)
performing a spectral analysis on each slice. For example, let us
use h(t) to denote a compactly supported window function cen-
tered at the origin. We can extract a short slice of the audio signal,
y(t), via multiplication with the window function:

ym(t) = y(t)h(t− am) (1)

In this case a is the stride length and m is an integer index. The
windowed slice ym(t) is a snapshot of the signal around time am.
Provided that: ∑

m

h(t− am) = 1 (2)

we can recover the original signal by overlap-adding the windowed
slices. Windows which exhibit this property are often referred to
as constant overlap-add (COLA) [1]. Taking the Fourier trans-
form of the windowed slices yields the short-time Fourier trans-
form (STFT). The STFT may also be viewed in terms of the inner
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products between the audio signal and a set of Gabor atoms:

gm,n(t) = h(t− am) exp(j2πbnt) (3)

where the parameters a and b are the time and frequency sampling
intervals, m and n are integer indices, j =

√
−1 is the imaginary

unit, and t is time. Gabor atoms are a natural choice for modelling
audio since they have a compact time-frequency footprint which
can be used to approximate idealized rectangular ‘tiles’ in the time-
frequency plane.

It is well-known that the time and frequency resolution of any
waveform are inversely related (and this knowledge can be ex-
pressed using the uncertainty principle [2]). In other words, if we
use a long duration window to analyze some phenomenon there
will be some uncertainty as to when that phenomenon occurred.
Likewise, a short window will yield accurate timing information
at the cost of greater uncertainty in frequency. Although the un-
certainty principle cannot be avoided, it is still advisable to choose
a window length that is well-matched to the type of phenomenon
we want to study. The problem with the STFT, however, is that
once a window is chosen it cannot be changed in order to match
the evolving structure of the audio signal.

In this paper we describe a simple adaptation of the COLA re-
quirement for use with time-varying windows. We then show how
this formulation can be used for time-frequency analysis/synthesis
with time-varying chirped atoms. Some previous work has already
been made in this direction, in particular, superposition frames [3]
and non-stationary Gabor frames [4, 5, 6]. However, in [3] rather
strong requirements were placed on the windows that can be used
and in [4, 5, 6] the analysis was restricted to Gabor frames (e.g.,
atoms modulated by a constant frequency exponential). Our for-
mulation, although similar, does not limit one to work with Gabor-
type atoms. In fact, we suggest using chirped atoms in order to
allow the frequency to evolve over the duration of the analysis
window. This allows us to use sheared time-frequency tiles (as
opposed to rectangular ones) to represent basic elements in time-
frequency plane [7]. This can be quite beneficial in a musical con-
text, for example, when analyzing glissando, vibrato, and other
transient phenomena.

In the remainder of this paper we present a system for adaptive
analysis of audio using time-varying windows and chirped atoms.
This work brings together several separate contributions from the
literature into a single analysis/synthesis system. The structure of
this paper is laid out as follows. In the next section we introduce
the concept of time-varying windows, and then discuss the neces-
sary requirements for perfect resynthesis via overlap-add. We also
examine the consequences these requirements have on the overall
shape of the windows. Then in Sec. 3 we discuss a method for
selecting a set of windows that match the underlying signal struc-
tures using the Renyi entropy. The resulting framework allows us
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Figure 1: A set of time-varying windows adapted around the attack portion of a note onset.

to perform time-varying analysis/synthesis. In Sec. 4 and 5 we ex-
amine how to efficiently perform analysis/synthesis with chirped
atoms by using the fan-chirp transform in conjunction with the
distribution derivative method. Finally in Sec. 6 we present some
experiments followed by a summary of our work.

2. TIME-VARYING WINDOWS

In order to allow the analysis window to vary over time we can
replace h(t−am) by hm(t−am). In other words, at time position
am we window the signal with function hm. This means that the
set of windows is now time-varying, which affords us considerable
flexibility. For example, we may adjust the window’s scale and
shape in order to better match a given phenomenon at a specific
point in time. This adaptability can be quite beneficial in a musical
context, for example, we could analyze a sharp attack followed by
a sustained resonance using a short window followed by a set of
longer windows. This type of scenario is depicted in Fig. 1.

2.1. Window restrictions

In order to allow for perfect re-synthesis we require the set of time-
varying windows to satisfy the following set of inequalities

0 < A ≤ z(t) ,
∑
m

|hm(t− am)|2 ≤ B ∀t (4)

This requirement is tantamount to forcing the set of windows to
overlap to some degree (as we will see in the following section
more overlap is typically better). The bounds A and B ensure that
z(t) is bounded away from zero which allows z(t) to be stably in-
verted [5]. When Eq. (4) is satisfied we can perfectly reconstruct
the signal from its windowed segments ym(t) = y(t)hm(t−am).
That is to say, if we multiply each segment by the window a second
time, overlap-add the segments, and finally divide by z(t) (which
is required to be non-zero) we will recover the original signal y(t).

We can avoid the final division by z(t) by normalizing the win-
dows as follows:

h̃m(t) =
hm(t− am)√

z(t)
(5)

This normalization is convenient because it allows us to use the
same set of windows for both analysis and synthesis.

2.2. Window shapes

It is interesting to study how the degree of overlap changes the
shape of the normalized windows. For example, Fig. 2 shows
how the prototype window shape changes as a function of the
overlap factor for a fixed (non time-varying) set of windows. As
the amount of overlap decreases the normalized windows become
increasingly rectangular (and as a result the height of the side-
lobes will increase as well). Thus, not having enough overlap may
lead to problems distinguishing between nearby components in the
spectrum when using normalized windows. Furthermore, it is well
known that insufficient overlap will lead to aliasing of the subband
signals, which may not be perfectly cancelled if the spectral rep-
resentation is modified (e.g., when implementing spectral audio
effects) [8].

Insufficient overlap will lead to similar effects when the set
of windows is time-varying. However, in this case the normalized
windows may not be symmetric (even if the prototype windows
were symmetric). This is because z(t) is less regular when the set
of windows and overlap factors are subject to change over time.
For example, we can see that some of the normalized windows in
Fig. 1 are not perfectly symmetric. Note that normalizing the win-
dows as suggested in the previous section is only required if we
want to use the same set of windows for both analysis and synthe-
sis. If symmetric analysis windows are required (e.g., for a linear-
phase filterbank analysis), then the windows hm(t − am)/z(t)
may be used for synthesis.
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Figure 2: Illustration of the window shape vs. overlap factor for a
fixed analysis window. The dashed line shows the shape of the nor-
malized windows; the solid line shows the shape of the synthesis
windows when no normalization is used.

3. WINDOW SELECTION

Although we have discussed a framework for time-varying analy-
sis/synthesis, a central question that remains unanswered is: how
do we select the set of time-varying windows? The method used to
select the time-varying windows should be signal adaptive, since
we want the windows to be well-matched to the signal content. In
[5] a method for selecting windows was proposed based on on-
set detection. For example, we can use short duration windows
near each onset and progressively longer windows as we move fur-
ther away from each onset. Although this method works well for
sounds with well-defined onsets it is more problematic for sounds
with weaker forms of non-stationarity. Furthermore, an onset de-
tector will make a hard (binary) decision with regard to the pres-
ence/absence of a note event, which can upset the continuity of the
time-frequency representation (especially when false positives are
made).

Another approach for window selection is to select the set of
windows that leads to the most concentrated spectrum (e.g., the
set of windows that spreads the energy the least among the time-
frequency coefficients). For example, in [9] the spectral kurtosis
was proposed as a tool for adapting time-frequency representa-
tions. The kurtosis can be used to measure the ‘peakiness’ of a
probability distribution; therefore, selecting a set of windows in
order to maximize the kurtosis should result in a high energy con-
centration.

In this work we propose using the Renyi entropy as a measure
of spectral concentration. This same approach was recently pro-
posed in [6] as well, although our use of the Renyi entropy was
inspired by [9] and [10]. It is well-known that the more diffuse a
density is the higher its entropy will be (and the maximum entropy
distribution on an interval is achieved by the uniform distribution).
Thus, like the spectral kurtosis, the Renyi entropy can be used as
a measure of energy concentration. We employ the following def-

inition of the discrete short-term Renyi entropy

Hn[m] =
1

1− γ log2

∑d
l=−d

∑
k |Sm[l − n, k]|2γ(∑d

l=−d
∑
k |Sm[l − n, k]|2

)γ (6)

where γ is a non-negative real number, Sm[n, k] is the STFT using
the mth window and n and k index points on the time-frequency
grid. We require each STFT to be sampled on the same time-
frequency grid so that the extent of the summation is the same in
each case. This in turn requires some oversampling of the STFTs.
The parameter d controls the number of time-frames over which
the short-term entropy calculation ranges. We also note that a
smoothing window could be included in this equation in order to
de-emphasize the spectral frames further from the central time in-
stant1.

At a given time-frame we can select the window that leads to
the minimum short-term entropy as

mn = arg min
m

Hn[m] (7)

Thus at each time-frame we have a method by which to select a
window (and this window should concentrate the spectral energy).
The set of windows can be optionally pruned, for example, if the
overlap between windows is too great due to the oversampling re-
quired for the entropy calculation.

When using the Renyi entropy to choose a set of windows we
have found that setting γ ≤ 1 tends to lead to more satisfying
results. This is due to the fact that high frequency energy in au-
dio tends to be quite weak relative to the low frequency energy,
however, (owing to the large dynamic range of the human auditory
system) this energy is still perceptually relevant. In the entropy
calculation the spectral coefficients are raised to the power of γ,
so when γ is greater than 1, small coefficients will be given less
weight in comparison to large coefficients. This means that the
entropy calculation will tend to preference the large coefficients,
which are predominately in the lower frequency bands. Using
a value of γ less than 1 gives small coefficients relatively more
weight in the entropy calculation, which allows low energy coef-
ficients in the upper frequency bands to have more of an influence
on the window selection. The experiments in Sec. 6 help to verify
this claim.

4. CHIRP BASIS

After we have chosen a set of analysis windows we may proceed
to analyze the spectral content of each windowed slice. We could,
for example, analyze these slices using the Fourier transform (as in
[4, 5, 12]). In this work, on the other hand, we propose to perform
the analysis using chirped atoms:

φf,α(t) ,
√
|1 + αt|ej2πf(1+ α

2
t)t (8)

As shown in [13] the atoms in Eq. (8) form a basis over the interval
[−T/2, T/2] if the chirp parameter α is restricted to |α| < 2/T .
This constraint can be easily satisfied by constraining the chirp
parameter based on the duration of the analysis window. The
atoms in Eq. (8) fan out in frequency and thus are ideal candidates
for modelling and/or approximating non-stationary harmonic phe-
nomena (e.g., glissando, vibrato, and other transient events).

1we have not shown this explicitly to avoid cluttering the notation [11].
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Performing the analysis using the atoms in Eq. (8) is referred
to as the fan-chirp transform (FChT) [13]. In continuous-time the
FChT of a windowed slice is

〈ym, φf,α〉 =

∫
y(t)h̃m(t− am)

√
|1 + αt|e−j2πf(1+ α

2
t)tdt

(9)

=

∫
ym(t)

√
|1 + αt|e−j2πf(1+ α

2
t)tdt (10)

As recognized in [14] and outlined in [13] fast computation of the
FChT can be carried out by appropriately warping the signal. This
may be done by making the following change of variables: τ =
Υ(t) = (1 + αt/2)t. Thus the integral in Eq. (10) becomes∫ ∞

τ=Υ(−1/α)

(
ym(Υ−1(τ))√
1 + αΥ−1(τ)

)
e−j2πfτdτ (11)

where Υ(t) has the following inverse (on t ≥ −1/α)

Υ−1(τ) = − 1

α
+

√
1 + 2ατ

α
(12)

In this form, the FChT can be seen as the Fourier transform of the
warped (and normalized) signal. As such we may compute the dis-
crete FChT by first warping the signal and then performing an FFT.
However, the warped sample points Υ−1(τ) will not typically lie
on the sampling grid. In this case we must use interpolation to find
the intersample values. As was suggested in [13] we opt to use cu-
bic spline interpolation, which is very fast, although less accurate
than bandlimited interpolation for audio signals [15]. Imperfect
interpolation in the signal warping is a source of error in the (fast)
FChT. Furthermore, when working in discrete-time we must be
careful to avoid aliasing of the chirped atoms. This can be done
by oversampling the signal such that aliasing occurs in an unused
portion of the spectrum. For example, if we limit |α| < 1/T , we
require 2× oversampling in order to avoid aliasing.

Figure 3 illustrates the spectrum of the FChT on a windowed
slice of a synthetic chirp signal with five harmonics. The funda-
mental frequency was swept between 400 Hz and 800 Hz over 256
ms. The fundamental frequency at the midpoint of the chirp was
thus 600 Hz. We note that the highest harmonic was swept be-
tween 2000 Hz and 4000 Hz making it the most non-stationary
component of the signal. The windowed slice for the FFT and
FChT were each centered at the midpoint of the chirp and were
512 samples long (the sampling rate was 8000 Hz). The chirp pa-
rameter α was set by an oracle. In comparison with the FFT we
see that the FChT better concentrates the energy of the chirp. Fur-
thermore, we can observe a progressive widening of the main-lobe
as the frequency increases with the FFT (this is due to the fact that
the higher harmonics are increasingly non-stationary). The FChT
main-lobes on the other hand are more clearly resolved and remain
relatively constant in width.

5. ESTIMATING THE CHIRP PARAMETER

Since in practice we cannot set the chirp parameter using an oracle,
we need a method by which to estimate it. There are several ways
we could attempt to estimate the chirp rate, including intra-frame
and inter-frame techniques. The later approach would involve try-
ing to find spectral peaks in consecutive frames that are connected
to the same underlying sinusoid [13, 16]. The chirp rate could
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Figure 3: Comparison of FFT and FChT spectrums on synthetic
chirped signal with five harmonics. The chirp parameters are de-
scribed in the text.

then be estimated based on the trajectory of these peaks, much like
in a partial tracking system. Another approach is to estimate the
chirp rate based on a single frame of data. This approach relieves
some of the complexities/difficulties of peak tracking and allows
one to estimate a new chirp rate at every frame. This could become
important in rapidly changing signals, where peak tracking algo-
rithms would face difficulty. Intraframe approaches include the
quadratically interpolated FFT (QIFFT) [17], reassignment (RA)
method [18], derivative method (DM) [19], and distribution deriva-
tive method (DDM) [20]. An extensive review and comparison of
these estimators can be found in [21].

In this work we have chosen to use the DDM method to es-
timate the chirp rate since it only requires us to perform a single
derivative on the analysis window, and this can be accomplished
analytically for many parametric windows. The RA and DM meth-
ods, to the contrary, require us to compute multiple derivatives ei-
ther on the signal or on the window. In the former case, one must
estimate the signal derivative from discrete-time samples, and in
the latter case one must use windows that are continuously differ-
entiable at high orders.

5.1. Distribution derivative method

The DDM is a method for estimating the parameters of a signal
model based on the relation〈

y′, gm,n
〉

= −
〈
y, g′m,n

〉
(13)

which equates the signal derivatives with the derivative of a test
function (in this case the test function is a non-stationary Gabor
atom). For this relation to hold the test function must be supported
on a finite interval and be once differentiable as described in [20].
In the DDM the signal, y(t), is typically modelled as a polynomial
phase sinusoid:

y(t) = exp

(
Q∑
q=0

ζqt
q

)
(14)

where ζq are complex coefficients whose real part corresponds to
amplitude modulation and whose imaginary part corresponds to
frequency modulation. In this case we may find y′(t) analytically

y′(t) =

(
Q∑
q=1

qζqt
q−1

)
y(t) (15)

We can also find g′m,n(t) analytically, so long as the Gabor atoms
we use are once differentiable. Subbing Eq. (15) into Eq. (13), we

DAFX-4

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

get
Q∑
q=1

ζq
〈
qtq−1y, gm,n

〉
= −

〈
y, g′m,n

〉
(16)

where

g′m,n(t) = h′m(t− am)ej2πft + j2πfhm(t− am)ej2πft (17)

In order to find the right-hand side of Eq. (16) at a given time and
fixed set of frequencies we may compute two FFT’s a) the FFT of
the signal pre-windowed by the derivative window; and, b) the FFT
of the windowed signal. The inner products on the left-hand side
can be calculated using a third FFT, of the signal pre-multiplied
by the ramp qtq−1. For our application (chirp rate estimation), we
consider a quadratic phase polynomial, i.e., Q = 2. In general
we pick the largest magnitude peak2 in the energy spectrum and a
few adjacent bins to perform the estimation. We may then solve
Eq. (16) by finding the best set of parameters ζi, i = 1, 2 in the
least-squares sense. We are ultimately interested in the quantity

α̂ = 2
I{ζ2}
I{ζ1}

(18)

which is an estimate of the chirp parameter for our time-varying
chirped atoms (the operator I{·} returns the imaginary part of its
argument).

6. EXPERIMENTS

In this section we analyze several real and synthetic signals. We
have used the Renyi entropy in order to determine the set of time-
varying windows and the DDM to estimate the chirp parameter.

We begin by examining the time-varying transform of a syn-
thetic audio signal. This signal consists of a sequence of five dif-
ferent phenomena, each with a distinct time-frequency footprint:

1. a short pulse;

2. a medium duration harmonic oscillation;

3. a long duration harmonic oscillation;

4. a harmonic glissando; and,

5. a harmonic vibrato.

The sampling frequency of this synthetic signal was set to
8kHz. Figure 4 illustrates this signal and three different spectro-
grams computed using short, medium, and long window lengths.
As can be seen, none of the spectrograms can simultaneously con-
centrate all of the different phenomena. For example, the long
window smears the short pulse and the short window smears the
longer oscillations. Figure 5 shows the time-varying analysis of the
same signal. In this case the short pulse and longer oscillations are
simultaneously concentrated. We note that, as expected, there is
some spreading of energy in the glissando and vibrato since these
phenomena do not remain constant over the duration of the analy-
sis window. Figure 5 also shows how the window length changes
in order to adapt to the degree of non-stationarity present in the
signal at each time instant. The results for γ ≤ 1 are slightly more
satisfying than for γ > 1 as predicted in Sec. 3.

Figure 6 shows the same synthetic signal analyzed with time-
varying windows and the FChT. The glissando and vibrato appear

2this is the maximum likelihood frequency estimate for a stationary
sinusoid [22].
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Figure 4: A time-varying synthetic signal and three spectrograms
computed using short, medium, and long analysis windows, re-
spectively.

to be more concentrated in this case (especially the higher harmon-
ics). We can also see that the DDM is able to provide a relatively
good estimate of the chirp parameter (despite the fact that the syn-
thetic signal has several harmonics). We can observe a slight aber-
ration of the chirp estimate near the boundaries of the different
phenomena (e.g., near note onsets).
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Figure 5: Analysis of the synthetic signal from Fig. 4 with time-
varying windows selected using the Renyi entropy. Left column:
γ = 0.5, Right column: γ = 2. Top row: time-varying spectro-
grams, Bottom row: selected window lengths at each time instant.

In Fig. 7 we consider a real glockenspiel signal which has
well defined transient and tonal parts. We can observe that the
time-varying spectrogram has as a frequency resolution compara-
ble with that of the spectrogram calculated with a long duration
window. Furthermore, the transients are well concentrated in the
time-varying spectrogram (in contrast the note onsets are smeared
by the long duration spectrogram).
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Figure 6: Analysis of a the synthetic signal from Fig. 4 using time-
varying windows and fan-chirp atoms. Top row: time-varying
spectrogram. Bottom row: estimated chirp rate (using the DDM).

Finally, we present an example of a real signal analyzed with
time-varying windows and the FChT. Figure 8 illustrates the analy-
sis of a male vocal excerpt. This figure shows a fixed window spec-
trogram, a time-varying spectrogram, and a time-varying FChT. In
this example, the time-varying FChT seems to more clearly con-
centrate the signal information (especially the fast glissando and
other vocal modulations). For example, consider the region be-
tween 2000 and 2500ms: the upper harmonics of the vibrato are
most clearly resolved when using the FChT. A similar observa-
tion can be made regarding the upper harmonics of the glissando
around 500ms.

7. CONCLUSIONS

In this paper we presented a new adaptive analysis system bring-
ing together several techniques which have been discussed sepa-
rately in the literature. First, we discussed how to perform analy-
sis/synthesis with time-varying windows. A key point of our for-
mulation was to present the time-varying analysis/synthesis setup
such that any invertible transform could be used for the analysis
(e.g., Fourier transform, fan-chirp transform, and so on). We then
discussed how to adapt the set of analysis windows in order to
maximally concentrate the spectral energy (i.e., using the Renyi
entropy). Finally, we showed how to estimate the chirp parameter
and then efficiently perform analysis/synthesis with time-varying
chirped atoms using the FChT. We ended with several real and
synthetic examples which showed qualitative differences between
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Figure 7: Analysis of glockenspiel with time-varying windows.
(The sampling frequency was 11025 Hz).

the different analysis methods proposed (e.g., fixed window, time-
varying window, and time-varying window with adapted chirp rate).
We may conclude from this investigation that the time-varying
FChT is indeed quite useful for the analysis of audio since we are
able to a) adapt the window length to track the evolving struc-
ture of the audio signal; and b) adapt the chirp rate to model non-
stationary and transient phenomena that evolve over the duration
of the analysis window.
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