Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

EFFICIENT DSP IMPLEMENTATION OF MEDIAN FILTERING FOR REAL-TIME AUDIO
NOISE REDUCTION

Stephan Herzog

Dept. of Digital Signal Processing
Technical University Kaiserslautern
Kaiserslautern, Germany

ABSTRACT

In this paper an efficient real-time implementation of a median fil-
ter on a DSP platform is described. The implementation is based
on the usage of a doubly linked list, which allows effective han-
dling of the operations needed for the running computation of a
median value. The structure of a doubly linked list is mapped onto
the DSP architecture exploiting its special features for an efficient
implementation. As an application example, a real-time denoiser
for vinyl record playback is presented. The application program
consists of two main parts, namely a subsystem for click detection
and a subsystem for click removal. Both parts can be implemented
using median filters.

1. INTRODUCTION

Median Filters are well-known signal processing blocks that are
used in various applications like image and speech processing,
sound analysis [[1], vocal separation [2]] and audio noise reduction.
Most applications use median filters for the removal of some sort
of noise, e.g. salt and pepper noise in image processing, which is
probably the most common application.

In audio signal processing, median filters are also commonly used
for denoising, especially for the removal of noise of old vinyl
records [3]], [4]. Several implementations, e.g. as double me-
dian filters [5] and weighted and recursive median filters [6] and
also adaptive variants [7], [8] have been presented in literature.
Software programs for audio restoration of vinyl recordings like
Diamondcut and GramoFile also make use of median filters for
click removal. However, these programs process recorded audio
data offline usually on a powerful computer, so the efficiency of
the implementation is not critical. If a median filter is to be used
online in an embedded DSP system, the performance of the im-
plementation becomes an important issue. Being aware of this,
Jones [9] has investigated and compared the performance of vari-
ous mainly sorting based algorithms for the computation of median
filters on a Texas Instruments DSP using C as the programming
language. Under the term "finger trees" he also used a method
based on doubly linked lists which performed well compared to
the sorting based algorithms. However, the implementation in C
exploits the hardware features of the DSP only as far as the com-
piler is capable. In our implementation we program a DSP directly
in assembly language and make use of the specialized DSP archi-
tecture to efficiently map the structure of a doubly linked list onto
it. Target hardware is a 24 bit Freescale Symphony DSP, namely
the DSP56374 with a core clock frequency of about 150 MHz.

A realtime implementation on a DSP for online usage can be ap-

plied directly during playback of a vinyl record, which has the
advantage that the record hasn’t to be digitized and processed of-
fline before playback and the "vinyl feeling" can be preserved by
the use of the record player. A real-time denoiser can be applied
as a small electronic device that can for example be attached into
a tape record loop of a preamplifier and could be a viable solution
for people who don’t have the possibility to digitize their records.
Furthermore applications outside the audio world, e.g. for the fil-
tering of sensor signals can profit from an efficient realtime imple-
mentation, since the efficiency also affects power consumption in
embedded applications.

2. MEDIAN FILTER FUNDAMENTALS

The median M of a set of values divides the set into two equally
sized halves, so that as many values are smaller than M as there are
values larger than M. If we consider a sorted list of V values z(n),
N odd, the median M is simply the middle element z(~51). Tt is
related to the mean value, but shows some important differences.
The main differences between the median and the mean value are:

e The computation of median is a nonlinear operation.

e The median is robust regarding outliers, i.e. a single value
in the list with a very large magnitude does not influence
the median.

The first property makes it impossible to give a system function
H(z) for a median filter in a signal processing sense, but rather
the definition
x (%) N odd
M= M
S ()42 (X+1)] Newen

Usually median filters are chosen to have odd length N. The ex-
plicit nonlinear nature of the median also makes a closed-form de-
scription of its effects on audio signals impossible in general. For
example a simple moving-average filter, which computes the mean
value of IV samples has a constant delay of 7 = % if N is odd,
as it is a linear-phase FIR-Filter. An analytical expression for the
delay 7 of a median filter can not be given and as it is in the range
0 < 7 < o0, depending on the input sequence. The delay from
the input to the output of the filter is zero, if the incoming sam-
ple represents the new median value and thus appears instantly at
the output. The delay can be infinite, if an incoming value never
equals the median value in a length-/V block and thus will never
be present at the output of the median filter. For many signals the
delay will be close to %, e.g. if a ramp signal is considered as

DAFX-1

http://disi.eit.uni-kl.de/

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

an input.

The second property of the median, it’s robustness to outliers, is
the property, that is exploited in most applications. Impulse-like
noise from various sources can be seen as outliers and a median
filter can be applied for the removal of them. During the time the
wanted signal is superposed by an impulsive noise, the output of
a median filter can then be used as a substitute. The output of the
median filter represents something like the average of the signal
during a time interval [N which includes the impulse, but through
its robustness to outliers, the impulse does not affect the output and
thus can be filtered out completely. If impulses with small magni-
tude are present, lowpass-filtering may be an appropriate method
for denoising. However, a median filter is able to completely sup-
press impulses with large magnitudes.

3. EFFICIENT IMPLEMENTATION ON A DSP

A median filter computes the median M of the input sequence
x(n) over a length-N time window and outputs it as its output
signal y(n). Each time a new sample arrives and the oldest is
discarded, the median computation has to start again. As the me-
dian is the middle value in a sorted list, one approach for median
computation involves sorting of all values in the time window and
taking the middle element. There are several well-known sort-
ing algorithms like quicksort and heapsort in computer science,
which have specific advantages and disadvantages. Sorting is a
task not very well suited to the structure of a digital signal proces-
sor. Additionally, the execution time for a sorting algorithm can
have significant variations, depending on the data and can become
big. Hence the choice of the algorithm for the DSP implementa-
tion should avoid extensive sorting which can be achieved by the
use of a doubly linked list. The processing of the data in a doubly
linked list has the lowest maximum execution time for one sample
of all algorithms compared in [9].

3.1. DSP56374 architecture

To motivate the use of a doubly linked list for the implementa-
tion of a median filter, a short overview of the relevant parts of
the DSP56374 architecture will be given. The main features of the
DSP used for the computation of the median filter are its address
registers and the corresponding address arithmetic. The DSP56374
has eight special address registers rO—r7, associated with offset
registers n0-n7 and modulo registers m0-m7 [10]. The mod-
ulo registers provide an easy and effective way to implement ring
buffers without additional compare operations for the address poin-
ter. If the address pointer is increased beyond the highest address
in the ringbuffer, it automatically wraps around to the lowest ad-
dress in the buffer. This address arithmetic is done in the Address
Generation Unit (AGU), which is separated from the Arithmetic
Logical Unit (ALU), in which the main computations are carried
out and thus produces zero overhead in the main program. Con-
sequently, a ringbuffer is used to hold the input data x(n) for a
window length of NV samples. Inserting a new value into the buffer
automatically overwrites the oldest value in the buffer.

3.2. Doubly linked lists on the DSP

A doubly linked list is a data structure, that consists of sequentially
linked data. The data is stored in nodes, where a node additionally
contains two fields with the addresses of the previous and the next

list node, see fig. [I] The first and last nodes are special since they
only have one neighbour. So one of their address field points to a
special value NIL (Not In List), which marks the beginning and the
end of the list. The advantage of a doubly linked list compared to

prev < prev -t prev
next e » next e > next
data data data

Figure 1: Principle of a doubly linked list.

an array is that elements can be easily inserted into the list and also
removed from the list just by modifying some pointers and without
the need to copy data between different memory locations. Com-
pared to singly linked lists, doubly linked lists are easier to traverse
and sort but need additional storage for a second set of pointers.

In high-level programming languages like C, one list node is a
compound data type containing three elements, the pointers to the
previous and next node and the data of the node. On the DSP
programmed in assembly language, there are no data types at all
and the architecture has to be exploited to reflect a compound el-
ement to represent a list node. For this purpose three memory

rb rb+0p rb+0n
o~ Input o» Pointers o» Pointers
Sample to to
Ringbuffer previous next
data data
data prev next

Figure 2: Data organisation in DSP memory.

sections are used to store the three components of a list node and
are accessed via the DSP address registers (fig[2). The pointer rb
points to the base address of the sample ringbuffer which contains
the data. The memory regions which contain the pointers of the
nodes are accessed relative to rb with two constant offsets. If we
look at the three memory sections side by side, a node can be in-
terpreted as a horizontal selection consisting of the input sample
x (rb), the prev pointer prev (rb+0p) and the next pointer
next (rb+0n). The background of this data organization are the
addressing capabilities of the DSP, which make it possible to ac-
cess the offset memory sections with the use the offset registers
n0-n7 without changing the base pointers rO-r7, for example
MOVE x: (r0+n0) ,x0 leaves r0 unchanged. Since the offsets
Op and On are constant for a given filter length, only two differ-
ent values have to be loaded into the offset register to access all
elements of a node. For offsets smaller than 128, the DSP also
offers the possibility to add an immediate displacement to an ad-
dress, for example MOVE x: (r0+63) ,x0. Thus list nodes can
be organized and accessed very efficiently using this structure.

3.3. Median filter algorithm

The median filter algorithm involves the standard operations for a
doubly linked list like insertion and deletion of nodes and the cor-
responding pointer operations. In addition to the pointers to the
smallest and largest element a pointer to the median element can
be maintained. The idea behind the use of this pointer is, that once

DAFX-2

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

the median is found, it only can change its position by one or stay
in place if a new input sample is sorted into the list. Maintaining a
pointer to the median avoids a new search after a new input value
has been sorted into the list, only the pointer update is necessary.

To describe the median filter algorithm using a doubly linked list,
the notation given in table[I)is used in the pseudocode. At the be-

Table 1: Notation

ra Adress of sample x(a).

{ra} Node which contains the sam-
ple z(a)

x{ra} Sample z(a)

x{r=ra.prev}
x{r=ra.next}
{ra}.prev

Sample previous to x(a)
Sample following sample z(a)
previous address field of the
node containing z(a)

next address field of the node
containing z(a)

{ra}.next

rL, x{rL} Position and value of the largest
element in the list

rsS, x{rS} Position and value of the small-
est element in the list

rM, x{rM} Position and value of the me-

dian element

ginning, the data fields of all nodes are initialized with zeroes and
the pointers are initialized with increasing values. For the compu-
tation of the median, the following procedures must be carried out
on the doubly linked list:

e Replacement of the oldest audio sample in the length-N
ringbuffer. The ringbuffer is handled automatically by the
DSP address generation unit.

e Check if the case has occurred that the new sample over-
writes one of the special values smallest or largest sample.
Adjustment of pointers if this is the case.

e Search address where the new sample has to be sorted into
the list. If the actual median has been overwritten, check
if the new sample is smaller or larger than or equal to the
actual median. Adjust median pointer accordingly.

e Sort the new sample into the list. Three cases have to be
distinguished. Sorting into the left or right edge of the list
and sorting somewhere into the middle of the list.

e Update of the median value (pointer) depending on the po-
sition of the newly inserted sample.

The first task in a new cycle of the median filter is the insertion
of the new sample x_new into the ringbuffer by overwriting the
oldest sample in the buffer. To keep the oldest sample it is stored
in x_old before being overwritten. Furthermore the pointers to
the smallest and largest value rS and rL are stored. x{r0} now
holds the current input sample.

a) x_old := x{r0};
b) x{r0} := x_new;
c) rS_old := rS; rL_old := rL;

If the new sample overwrites the smallest or largest value in the
list, the pointers rS and rL are updated to {r0} .next and
{r0} .prevrespectively. This means that the pointer rS is changed
to point to the second smallest value (d1) and rL is changed to
point to the second largest value (d2). The check if the new input
data will be the new largest or smallest value will be carried out in
the next step.

If the new value neither overwrites the smallest nor the largest
value in the list (d3), the pointers of the nodes next to {r0} are
changed to point to each other, meaning that the node {r0} is
temporarily deleted from the list.

d) (1) 1f rO = rS then

rS := {r0}.next;
(2) if rO = rL then

rL := {r0}.prev;
(3) else

{r0}.next;
{r0}.prev;

{{x0}.prev}.next
{{r0}.next}.prev
end;

Exemplary for a list operation, the deletion of an element (d3) is
illustrated in fig. 3]

<o (-2 < e r0-1 < e 10 e
o> r0 . > rQ+1 o > r0+2 of»>
data{r0-1} data{r0} data{rQ+1}

< r(0-2 | e r0-1 |=
o> rO+1 e > r0+2 ot
data{r0-1} data{r(Q+1}

Figure 3: Deletion of a node (d3).

The next step in the algorithm is the first part of the median track-
ing, where it is tested if the median was overwritten by the new
input value. The basis for this is the identification of the position
the new sample will take in the list. It is searched and the address
stored in ra (e). The median tracking itself distinguishes between
two cases. In the first case, the new value is smaller than the actual
median value, in the second case it is equal to or larger than the
actual median value. If the new value is smaller than the actual
median value, the pointer rM is replaced with the pointer to the
next smaller value (f1). One can imagine this operation as if the
values in a sorted list would have been shifted to the right and the
pointer stayed fixed. If the new input value is equal to or larger
than the actual median, rM is replaced with the pointer to the next
value (f2). One can imagine this operation as a left-shift of the
values.

e) Search ra with (x{{ra}.prev} <= x{r0}
and x{ra} > x{r0})
f) Part 1 of the median tracking, 2 cases:
if rM = r0 then
(1) if x{r0} < x{rM} then
rM := {rM}.prev; end; end;
(2) if x(r0) >= x{rM} then

DAFX-3

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

rM := {rM}.next; end; end;

After the cases where the special values smallest, largest or me-
dian value have been overwritten are now handled, the sorting
of the new value into the list can be processed. If the new sam-
ple replaces the smallest or largest value in the list, its insertion
into the list is quite simple, since the ordering of the list does not
change. Just one of the border elements is affected by the oper-
ation. So the sorting is checking three cases. The first case is
given when x{r0} is equal to or smaller than the smallest value
and rS_old != r0or when x{r0} is smaller than the second
smallest value and rS_old = r0. If the first set of criteria is
met, a new node has to be appended at the left or the smallest
value has to be replaced with the new one. In both cases the next
field of { 0} has to be set to point to {rS} and the prev field of
{rS} has to be set to point to {r0}. Then rS is updated with r0
which represents the actual smallest value (g1).

The second case occurs if x{r0} is larger than or equal to the
largest value or if it is larger than the second largest value with
corresponding conditions for rI,_o1d as in the first case. Here a
new node has to be appended at the right or the largest value has
to be replaced with the new one. Operations involved are analogue
to the operations for the left side of the list (g2).

Finally the third part (g3) covers the case where none of the above
conditions are fulfilled, i.e. the new value has to be sorted in some-
where in the middle of the list. Here the node {ra} found in step
(e) pointing to the first node that contains data x { ra } bigger than
x{r0} and its neighbour { {ra}.prev} are updated for the in-
sertion of {r0}.

g) Sort in new element, 3 cases:
(1) if (x{r0} <= x{rS_old}
and rS_old != r0)
or (x{r0} < x{{rS,old}.next}
and rS_old = r0) then

{r0}.next := rS;
{rS}.prev := r0;
rS := r0;
(2) if (x{r0} >= x{rlL_old}
and rL_old != r0)

or (x{r0} > = x{{rL_old}.next}
and rIL_old = r0) then

{n}.prev := rL;
{rL}.next := r0;
rL := r0;
(3) else
{{ra}.prev}.next : =r0;
{r0}.prev := {ra}.prev;
{r0}.next := raj;
{ra}.prev := r0;
end;

The final step is the update of the median value after the new input
value has been sorted into the list. In the first step of the median
tracking it has been checked if the old median value has been over-
written. Now we have to determine the new median value after the
new sample has been sorted into the list. The most simple case is
when the newly inserted value by chance has been written to the
place where it would have been sorted in. Then we don’t have to
update anything and the algorithm is terminated. Since only one
new value has been inserted into the list, the median pointer rM has
to be changed only by one, depending if the new inserted value is

smaller or larger than the value x { rM}. Depending on the (oldest)
value that has been overwritten, the median pointer is then updated
and the new median x { rM} value can be sent to the output.

h) Part 2 of the median tracking, 2 cases:
(1) if x{r0} < x{rM} then
if x_old > x{rM} then
rM := {rM}.prev; end;
end;
(2) if x{r0} >= x{rM} then
if x_old <= x{rM} then
rM := {rM}.next; end;
end;

3.4. Performance

The described median filter has been evaluated on the DSP56374
running at an internal clock of 147.456 MHz with an audio sam-
pling frequency of 48 kHz resulting in 3072 cycles that can be exe-
cuted per sample. The performance has been estimated by tracking
of the longest path in the algorithm and addition of the cycles the
DSP needs to execute this path [12].

First the median filter algorithm without median tracking is con-
sidered. In our implementation the algorithm has an overhead with
a fixed amount of 231 cycles independent of the length of the me-
dian filter and the longest path consumes 19 cycles per list element.
Thus its performance allows to run a stereo median filter of length
N = 149 in realtime. Without median tracking, the new median
has to be searched in the list every time a new sample has been
inserted, which increases the computation time needed per list el-
ement.

When the median tracking with the additional pointer rM to the
median value is added, the computational load needed per list el-
ement reduces significantly to 9 cycles. However the overhead
increases from 231 to 410 cycles. Using median tracking a stereo
median filter with a length up to N = 295 can be realized. Due
to the larger overhead median tracking is useful only for bigger
values of N.

4. APPLICATION EXAMPLE

The median filter in its described implementation has been used
for the removal of click and crackle sounds from old vinyl records
in real-time [11]. Target system is the Freescale DSP56374 in-
stalled on a self-developed DSP-Board [12], programmed directly
in assembly language.

The structure of the implemented system is shown in fig. [As

De-Click Medianfilter
X(n)

o
L Click Detection 4T

Figure 4: Structure of the crackle removal system.

l(n)

can be seen, the system has two audio data paths, one direct path
and one path through the median filter. A click detection algo-
rithm in the sidechain switches the output signal y(n) between
these two signal paths. The separate path for the click detection is

DAFX-4

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

necessary, since the application of the median filter to the whole
music signal would degrade audio quality too much [13]. Practi-
cally the switching between the direct and the median-filter path is
done using crossfading to avoid the introduction of switching arte-
facts. Several approaches for the detection algorithm have been
evaluated in [11]. Among the algorithms are linear prediction, the
application of a short median filter, a statistical approach and the
usage of fixed and dynamic thresholds. The short median filter
and linear prediction were both implemented on the DSP for click
detection, where the median filter worked well with a length of
N =5 as a click detector and a static threshold. With this short
filter length a direct implementation using sorting was used. For
short filter lengths sorting is better or similar in performance com-
pared to the use of a doubly linked list since there is no overhead
for the handling of the pointers.

Clicks on vinyl recordings can have several different characteris-
tics mainly regarding amplitude and duration. Furthermore it is not
trivial to distinguish between impulsive sounds and unwanted click
noise. Hence parameter setting for the click detection and also the
click removal is a very important and extensive task. The use of a
relatively simple algorithm like a median filter as a click detector
is in most cases not able to detect all kinds of clicks properly with-
out reacting to sharp musical transients. Besides its detection it
must be considered how a click is replaced with the median filtered
signal in a way that this process does not generate any additional
sound degradation. This operation includes the determination of
the click’s parameters as e.g. its length. It is clear that the choice
and parametrization of the click-detection algorithm mainly deter-
mines the performance of the whole click removal system.

Original signal

0.5 1 1.5 2 25 3 3.5 4 4.5 5 5.5

Restored signal
T T

0.5 1 1.5 2 25 3 3.5 4 4.5 5 5.5
x10°

Figure 5: Click removal from a piece of music with a median filter.
Top: Original signal. Bottom: Restored signal.

Another crucial parameter is the length of the de-click median fil-
ter. It determines besides the click detection algorithm the per-
formance of the system. If the filter length is chosen to be very
short, the application of the median filter may not be able to re-
move a detected click sound, if the sound persists for a relatively
long time. On the other hand if the filter is chosen to be too long,
it will not be able to restore the original waveform by filtering out
short transients but rather smooth it too much. Generally it can be
said that the length of the median filter must be at least twice as
big as the length of the click to ensure that the disturbed samples
do not influence the median value. In other words the median filter
filters out any transients with durations less than half the length

0.5]

-0.5]

-0.5]

of the filter. Apparently the choice of the filter length has to be a
compromise between the ability to remove clicks and the preser-
vation of sound quality. In our application good results have been
obtained with filter lengths of about 25 samples for clicks of short
to medium duration and crackle noise.

Original signal

o

1.2 1.4 1.6 1.8 2 22 2.4 26 28

Restored signal
T

o

1.2 1.4 1.6 1.8 2 22 24 2.6 2.8
5
x 10

Figure 6: Detail of fig.5. Click removal in the presence of tran-
sients. Top: Original signal. Bottom: Restored signal.

The results of the described system are shown in figs. [5|and[6] The
system is able to remove most of the clicks from the music signal.
However at the beginning of the signal, not all clicks are removed,
which is caused by the parameter setting and the relatively low
complexity of the click detection algorithm in the sidechain. How-
ever the performance in distinguishing between musical transients
works satisfactory as can be seen in[f]

5. CONCLUSIONS

A median filter can be efficiently implemented as a doubly linked
list on a DSP in assembly language by mapping the structure of
the list onto the DSP architecture. In combination with a click de-
tection algorithm it can be successfully applied as a real time click
and crackle removal tool for vinyl playback. The click removal
performance is good enough to remove short clicks and crackle
noise. However the determination of the parameters for click de-
tection and removal is an extensive task. In a real-time system
there is no possibility to analyse the noise characteristics in a first
pass to determine the parameters as can be done in an offline ap-
plication. For a real-time implementation, an adaptive parameter
control would be a possibility to further improve the performance.
Since the de-click median filter runs very efficiently, sufficient re-
sources are available to implement a more complex click-detection
algorithm.

6. ACKNOWLEDGMENTS

Many thanks to the staff and students at the department of digi-
tal signal processing that were involved in the development and
implementation of the median filter.

DAFX-5

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

7. REFERENCES

[1] W. Sethares, A. Milne, S. Tiedje, A. Prechtl, and J. Plamon-
don, “Spectral tools for dynamic tonality and audio morph-
ing,” Computer Music Journal, vol. 33, pp. 71-84, 2009.

[2] D. Fitzgerald and M. Gainza, “Single channel vocal sepa-
ration using median filtering and factorisation techniques,”
ISAST Transactions on Electronic and Signal Processing,
vol. No.1, Vol.4, pp. 62-73, 2010.

[3] T. Kasparis and J. Lane, “Adaptive scratch noise filtering,”
IEEE Journal on Consumer Electronics, vol. Vol. 39, No. 4,
pp. 917-922, 1993.

[4] M. Kahrs and K. Brandenburg, eds., Applications of Digital
Signal Processing to Audio and Acoustics. Kluwer, 1998.

[5] J. A. Bezemer, “Signal Processing in GramokFile,” tech. rep.,
TU Delft, 1998.

[6] R. Holopainen, “Nonlinear Filters,” tech. rep., Norwegian
Network for Technology, Acoustics and Music.

[7] A. Nieminen, “Suppression and detection of impulse type in-
terference using adaptive median hybrid filters,” in Acoustics,
Speech, and Signal Processing, IEEE International Confer-
ence on ICASSP ’87, 1987.

[8] A. Nieminen, P. Heinonen, and Y. Neuvo, “Median-type fil-
ters with adaptive substructures,” in IEEE Transactions on
Circuits and Systems, 1987.

[9] M. B. Jones, “Real-time speech enhancement using me-
dian filters,” in Proceedings of SST 1994 Volume 1, vol. 1,
pp. 406-410, 1994.

[10] Freescale, www.freescale.com, DSP56300 Family Manual.

[11] S. Scholl, “Robuste Unterdriickung von Storsignalen fiir die
Schallplattenwiedergabe,” Master’s thesis, Technical Univer-
sity Kaiserslautern, 2009.

[12] S. Schorz, “Entwicklung und Aufbau eines DSP-Boards fiir
ein digitales Medianfilter,” Master’s thesis, Technical Uni-
versity Kaiserslautern, 2008.

[13] C. Chandra, M. S. Moore, and S. K. Mitra, “An efficient
method for the removal of impulsive noise from speech and
ausio signals,” in ISCAS 98 - Proceedings of the 1998 IEEE
International Symposium on Circuits and Systems, 1998.

DAFX-6

	1 Introduction
	2 Median Filter Fundamentals
	3 Efficient implementation on a DSP
	3.1 DSP56374 architecture
	3.2 Doubly linked lists on the DSP
	3.3 Median filter algorithm
	3.4 Performance

	4 Application example
	5 Conclusions
	6 Acknowledgments
	7 References

