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ABSTRACT

A new method of Synthesis by Analysis for multi-component sig-
nals of fast changing instantaneous attributes is introduced. It
makes use of two recent developments for signal decomposition
to obtain near mono-component signals whose instantaneous at-
tributes can be used for synthesis. Furthermore, by extension and
combination of both decomposition methods, the overall quality of
the decomposition is shown to improve considerably.

1. INTRODUCTION

The synthesis by analysis approach for sounds with fast chang-
ing attributes still poses problems. These can be traced back up
to a large degree to the fundamental mathematical properties of
the underlying Time-Frequency (TF) analysis methods. This pa-
per introduces two recent methods for wide-band signal decom-
position in the context of audio analysis and synthesis for such
problematic signals. The requirement is that the components con-
tained are sufficiently spaced apart in the spectrum. Similar to the
spectral modeling synthesis introduced by Serra [1]], the analysis
decomposes a given signal into a sum of time-varying sinusoids
plus residual. Here, stochastic components are split into frequency
bands and not necessarily part of the residual. The precision of in-
stantaneous phase information obtained by the analysis facilitates
phase alignment for the synthesis, thus transients can be retained.
Additionally, the involved decomposition methods eliminate the
need to perform peak-continuation of spectral components. First,
the analysis which is intended to be performed offline is shown,
section[3|shows the method of resynthesis which can be performed
online. Finally, the paper concludes with results on the quality of
the method and gives future directions for improvement. Source
code and audio examples can be found at http://bit.ly/MaiBzr .

2. ANALYSIS

Time-Frequency representations give insight into the complex struc-
ture of time series signals by revealing their comprising compo-
nents within temporal and spectral localization. The majority of
algorithms performing such a representation on multi-component
signals consists roughly of linear and quadratic ones. Represen-
tatives for the first group are the Short-Time Fourier and Wavelet
Transformations and, respectively, the Wigner-Ville Distribution
for the latter one. The first group relies on the linear super-position
principle of base functions with which the signal to be analyzed is
compared [2]. As such a basis is chosen a priori, presumptions
are made in regards to the driving mechanisms of the data. In con-
sequence, misfits in respect to the selected basis are assigned to
various orders of harmonics thereof, thus coloring or possibly de-
priving the TF representation of physical meaning, especially if the
data is the non-stationary result of non-linear driving mechanisms.
Besides this, such integral transforms obey the Heisenberg-Gabor
limit, forcing a trade-off for either time or frequency localization.

Quadratic methods, on the other hand, avoid the use of basis func-
tions as templates and generally provide a high-resolution TF rep-
resentation for mono-component signals (defined below). How-
ever, for multi-component signals, the additional presence of in-
terference terms between each pair of individual components can
severely distort the representation. Removing them by means of
filtering comes at the expense of TF resolution.

Alternatively, a signal can be regarded as the result of superim-
posed mono-components. A mono-component is a sinusoid whose
attributes are instantaneous - amplitude and phase vary with time.
It exhibits a well-behaved Hilbert-Transform (HT), so the derived
analytic signal reflects these attributes uniquely and unambigu-
ously. The question is, within the infinite possibilities to decom-
pose a signal, how can multi-component signals be separated into
such mono-components? In the last decade mainly two approaches
towards this have emerged: the Empirical Mode Decomposition
(EMD) [3] and the Hilbert Vibration Decomposition (HVD) [4].
Both are nonparametric and adaptive decompositions with base
functions chosen a posteriori. The reason they will be shown in
a little bit more detail is that the proposed method makes use of
both of them in a way to diminish their mutual downsides.

2.1. Instantaneous attributes of mono-components

One way to obtain the instantaneous attributes of a mono-component
signal z(t), the amplitude A(t) and the phase ¢(t), is by construct-
ing its complex valued analytic signal X (¢). This can be achieved
by composing the original time-domain signal x(¢) with its imagi-
nary Hilbert-Transformed version Z(t) (the quadrature projection).
As a result, the instantaneous amplitude and phase can be deter-

mined as
#(t) = arctan(Z8) (1)

X ()] = Va2(0) + 22(0) = A1), 29

Throughout the rest of the paper ¢(t) denotes the unwrapped in-
stantaneous phase function.

2.2. The EMD and HVD

At the core of the EMD is a sifting process that creates almost
mono-components [4]. The sifting is performed by identifying the
innate undulations belonging to different relative frequency scales
and recursively discerning waves riding on top of each other using
repeated approximation. By means of this scale separation, intrin-
sic modes of oscillations are extracted from signal s(t). These are
called intrinsic mode functions (IMFs), h(t), if they fulfil:

(a) for hg(t) the number of extrema points (min/max) and zero-
crossings are equal or differ at most by one

(b) the mean of the lower envelope defined by the local minima
and the respective upper envelope of hy(t) is at any point zero

With the global residue (or trend) 7 (¢), s(¢) can be expressed as:

s(t) =Y hi(t) +r(t) =D Ap(t)cos i (t) +r(t)  (2)
k=1 k=1
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where n is the number of IMFs extracted. As equation [2] sug-
gests, an IMF has variable amplitude and frequency as functions
of time and therefore constitutes the opposite of a mono-harmonic
signal. Figure |I| exemplifies such a decomposition. The objec-
tive to find IMFs is performed by a sifting process, starting with
r(t) =rp(t) = s(t)and i = k = 0:

Al find all local minima and maxima of r(t)

A2 create interpolant emin(t) through the local minima and re-
spectively emax (t) through the local maxima

A3 set m(t) as local average with m(t) = M

A4 define a “proto-mode” function p;(t) = rp(t) — m(t),
setrp(t) =pi(t)andi =i+ 1

AS5 repeat steps Al-4 until p;(¢) meets stopping criterion S; then
an IMF is found, hx(t) = p:(t)

A6 set r(t) = r(t) — hi(t); if stopping criterion 7T is fulfilled
then terminate, else ¢ = 0, k = k + 1 and rp(t) = r(t);
restart from step Al.

Here, steps Al-4 create a k-level IMF and step A5 controls the
global sifting process. In this way, the EMD repeatedly removes a
wave riding on top of the local residue 7 (t) as it identifies the wave
through local extrema points and treats the residue at each level as
global trend. At the whole, the behavior of the EMD is similar to
a filter-bank: performing as high-pass filter for the first IMF and
as band-pass for successive IMFs. Yet the characteristic is that the
cut-off/center frequencies are non-stationary. Albeit the EMD is
still of algorithmic nature, some theoretical work has been put into
it to describe its behavior. When analyzing white noise-like wide-
band signals, the EMD behaves like a dyadic filter-bank [5]], while
for bi-component signals of harmonics there exists a theoretical
limit for separation of %(%)2 = 1 [6]. Hence, the EMD does
not perform well when th components’ frequencies are close or
differ little in amplitude. The existence of a plethora of implemen-
tations for the EMD make further theoretical assessment difficult
as some tackle core issues of the algorithm like the choice of the
interpolation technique or the construction of the envelope differ-
ently. As suggested by Huang [3]], the cubic spline interpolation is
used here. The condition criteria for the envelope are currently not
completely understood [7]], leading to various contributions how
extrema points ought to be chosen. Instead of finding the local
extrema of s(t) itself, it is proposed to find them in the inverse
of the second derivative of s(t). Hence, first the “frequency res-
olution” is increased for riding waves that are partially immersed
in the local trend and thus do not produce local extrema (e.g sad-
dle points), and second, for pure sinusoids the positions stay the
same. This approach, however, comes at the danger of producing
artificial vibrations, especially in lower IMFs. Consequently it is
applied for the first IMFs only (K < 5) where most of the high fre-
quency contents of s(t) are to be expected. In ﬁgurean example
is given where this method helps to uncover positions of extrema.
Regarding the stopping criteria: for the number of IMFs gener-
ated, 7 can be either set to a fixed amount of iterations, com-
monly k < log, N with N being the number of data points of
s(t), or an indicator that the residue still contains oscillations.
Here, the former criterium was applied as for the used test signals
(N > 22050), the final residue always showed a non-oscillatory
trend. For S a number of stopping criteria have been suggested,
the original recommendation being to set the number of iterations
to the order of tens. Accordingly, the number of iterations was set
to ¢ = 30. However, they are terminated before the cubic splines
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Figure 1: A chirp sinusoid riding on top of a frequency invariant
sinusoid (a) and its decomposition resulting in two IMFs contain-
ing most of the signal (red & black), the residue(s) are also shown
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Figure 2: Local extrema (green markers) of a signal and the ex-
trema of the inverse of its second derivative (red markers); a) the
wave cycle at the beginning of a sound where parts of an HF-
component are immersed while the red markers indicate their po-
sitions; b) shows the later development of the wave-cycle where
some of the green markers indicate previously non-tracked posi-
tions and vice-versa

interpolation leads to degenerated results. This condition is met
as soon as the area under the cubic splines increases in succeed-
ing iterations ¢. This is an indicator for large overshoots of the
interpolation caused by ill-conditioned extrema points. Thus, the
possibility of degenerated envelopes creating artificial vibrations
for succeeding IMFs is reduced.

A major problem that exists for the EMD is the phenomenon of
mode-mixing that results in a) an IMF containing signals of widely
disparate scales or b) signals of similar scale residing in different
IMF components [[7]. This happens when the intermittency in the
extrema detected belongs to different signals as caused when parts
of the riding wave are completely immersed in the local trend. Sev-
eral methods have been proposed to alleviate this problem, com-
monly the aim is to emphasize “lost” extrema points of the riding
wave. In general, there are two approaches to this: either calculate
the mean of an ensemble of decompositions that have different in-
stances of noise added to the signal (EEMD) [8]], or add masking
signals in the decomposition that approximate the riding waves in
the problematic areas [7 9]]. Initial attempts to use the EEMD re-
sulted in less mode mixing of type b) but more of type a), when
components reside closely in a frequency band with similar ampli-
tudes. Therefore, the use of masking signals has been chosen.
Suppose that a masking signal #(¢) that contains the riding wave
in r(t) at a certain k-level has been found, then the sifting process
of the EMD of one k-level can be altered in the following way:

Bl calculate IMF hy(t) from 7(t) using Al-4
B2 similarly, calculate }AI](:) (t) from Ay (t) + 7#(¢) and
B3 A\?(t) from hy(t) — ()
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A i ()
B4 set hi(t) = M

starts at step B1

go to step A5, the next k-level

In this way Ry () contains an IMF as in the original algorithm with
possibly additional components or missing parts. For BS) (t) and

ﬁ,(f) (t) it is expected that the undesired components are either -
in comparison to the supposed component - suppressed or that the
missing parts of the component are now included. Step B4 ensures
that the masking signal is finally cancelled out for h(t). Since
the method by Hu [7] to generate time variant masking signals did
not yield satisfying results for all of our test signals (narrow band
components), it is proposed to use the HVD to generate masking
signals.

For the sake of brevity, the HVD is only superficially presented
here. As opposed to the EMD, the HVD is entirely based on the
HT. Therefore, the HVD does not depend on a dissimilar harmon-
ics amplitude ratio as does the EMD. The method is based on the
observation that, in a multi-component signal, the instantaneous
attributes of the component with the highest energy change more
slowly in comparison to the sum of those of the underlying compo-
nents. In order to rid a signal of these fast oscillating instantaneous
attributes and thereby performing the decomposition, the instanta-
neous attributes derived by means of the HT are low-pass filtered.
The filtered result is seen to constitute a mono-component. The
residue can again be used in the decomposition process leading to
a set of basis functions that similarly express s(t) as in equation
By applying the HVD for only one iteration (to obtain the singular
highest energy component) on r(t) from the EMD, the masking
signal #(t) is generated.

The reason the HVD is not used principally for the decomposition
is that the HT is very sensitive to false spikes or random noise that
leads to the distortion of transients in the instantaneous attributes
or smearing [4]. The EMD, on the other hand, is capable of decom-
posing noisy signals [S]]. Also, due to practical limitations of pre-
cise low-pass filtering in the HVD, the number of extracted compo-
nents is limited (n < 7) [4]. However, in general the HVD is able
to better separate components in a narrow band than the EMD. By
combining both methods this way the HVD helps increasing the
frequency resolution of the EMD and reducing mode-mixing er-
rors. To compare the performance of this approach to the original
EMD one, the quality of the decomposition of a bi-component sig-
nal was measured in the same way as discussed in [6]. Due to the
recursive nature of the EMD such comparison gives insight into the
overall decomposition performance for complex multi-component
signals. Figure[3|allows the comparison of the ability of both meth-
ods to identify a high frequency signal z, (¢) within a composition
z(t) of z(t) and a low frequency signal z;(t). As can be seen
in plot[3|a), the proposed method performs close to the theoretical
limit in the area 0.67 < f < 1, —2 < log;y,a < 0, where the
original EMD is unable to decompose.

3. POST-PROCESSING AND SYNTHESIS

Once the decomposition has been performed, the IMFs hy(t) are
Hilbert-Transformed to obtain their instantaneous attributes Ay (¢)
and ¢ (t). Using equation s(t) can be (nearly perfectly) recon-
structed, limited to the errors introduced by the spline interpolation
and the Hilbert-Transformer FIR.

As stated before, IMFs are not necessarily mono-components, hence
they can include asymmetric wave forms which is reflected by the
instantaneous attributes that contain modulations down to the in-
terval of single wave-cycles. One cause of this is that higher spec-

sound diff. diff. pp. diff. pp.
0.99/0.95 0.7/0.7
bass-drum | 4.53-10°° | 1.92-107° | 3.47-10°
snare 1.15-107° | 4.78-107% [ 1.56-10""
cow-bell 739-1077 | 7.88-10"% | 4.50-107°
piano 81910 ° [ 2.3730-10 7 | 8.10-10°°

Table 1: Sum of squared differences of power spectra between
original and resynthesized (no pitch-shift and time-stretching) sig-
nal. Column 2 and 3 use post-processing with the given phase and
amplitude reduction coefficients.

a)

Figure 3: Decomposition performance of bi-component signals;
the modified EMD presented a) and the original EMD (taken from
[6]) b) using an identical color scale; the input x(t) consists of
a fixed parameter high frequency signal xy(t) and a variable pa-
rameter (the axes of the plots) low frequency signal x,(t) relative
to xp(t). A lower z-value means that the first IMF extracted is
more similar to mh(t). The red lines demonstrate the theoretical

limit (a; f2 = 1) of the decomposition for the parameters of x; (t).

tral components can be periodically immersed by the oscillations
of lower spectral components. While asymmetric wave-forms may
be desired in the analysis of a signal, e.g. to understand damped or
driven oscillators, for the synthesis this poses a serious threat. If
such instantaneous attributes were to be altered for pitch shifting
or time stretching of s(¢), it would result in phase distortions and
double-sideband modulations with the amplitude envelopes per-
forming as modulators. One solution to alleviate this problem is to
remove the modulation by low-pass filtering at the cost of possibly
losing relevant information. However, since the instantaneous at-
tributes themselves contain time variant spectral components, such
as the rate of change of phase for a chirp signal, this filtering has
to be performed in a frequency adaptive manner. Luckily, with the
proposed EMD method, we already have such a tool at hand.

In this vein, attributes are filtered using the EMD and an approach
similar to lossy compression schemes: Per original pair of instan-
taneous amplitude and phase functions of an IMF h(t) two sets
of IMFs Ay (t) and ¢, are obtained. The IMFs in these sets
are treated similarly to coefficients by summing their overall en-
ergy. Finally, only those IMFs are kept which contribute most
to a percentage of the overall sum of energy in their respective
sets, the others are rejected. The remaining IMFs are then used
to reconstruct Ax(t) and ¢ by equation [2f of the original IMFs
hi(t). This also helped reducing errors that the FIR implemen-
tation of the Hilbert-Transformer introduced, namely frequencies
missing in the Hilbert-Transform below or above the FIR’s pass-
band which may lead to distortions in the phase functions. A
comparison between resynthesized signals with and without post-
processing are shown in table[T]

3.1. Pitch shifting

The IMFs h(t) can be seen as partials of s(¢) with the instan-
taneous attributes describing their properties. To perform pitch-
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shifting in a simplistic way, all of the unwrapped phases can be
scaled by the pitch-shift factor «, so ¢x(t) becomes ai(t) in
equation[2] Further manipulation of the spectral slope requires the
identification of the fundamental frequency and the harmonic re-
lationships. The component of fundamental frequency is declared
here as the IMF with the largest amplitude at a time instant ¢, as the
mode-mixing phenomenon can be still existent so that the funda-
mental may reside in sections of different IMFs. When the relative
distance of the phase function of h(t) to the fundamental com-
ponent at time instant ¢ is determined, one obtains the harmonic
ratio function for hy(t), Ax(t). Furthermore, an operator o can
be defined that generates a phase scale function by the arguments
Ay (t) and a. Depending on the definition of o, it can be used for
pitch shifting with spectrum dilation, frequency shifting, treating
some of the partials as fixed formants or a mix of these. Except for
the latter these have been implemented with satisfying results.

3.2. Time stretching

Time stretching can be accomplished by resampling A (t) and
¢x(t). To compensate for phase scaling that comes in conjunc-
tion with resampling, ¢ (¢) has to be scaled by the time stretching
factor (. Finally, the altered signal spew () is composed using:

n

snew(t) = Y AL (1) cos [6)7 (1) B(Ak 0 ) ()] + 7V (1) (3)

k=1

where Agf)(t), qggf)(t) are resampled versions of Ay (¢), ¢x(t)
and 7 (t) of the residue 7(t). It should be noted that the forward
approach to construct snew (¢) does not yield a bandlimited signal,
therefore measures have to be taken that avoid aliasing.

4. RESULTS & CONCLUSION

The quality of the resynthesis depends very much on the effective-
ness of the post-processing and the presence of mode-mixing in
the obtained components. For example, the resynthesis of a mono-
phonic (synthetic) bass-drum (cp. table[I) without post-processing
led to a change of the originally sinusoidal signal to a more square
wave-like one due to the errors introduced by the Hilbert FIR. With
post-processing, the resynthesized audio had no perceivable differ-
ences. For the piano sample, the decomposition introduced mode-
mixing errors in the decay phase of the sound as extrema of the
previously correctly tracked high-frequency components were im-
mersed in lower frequency harmonics. This resulted in perceivable
phase distortions (bursts) when pitch-shifting or time-stretching;
on reducing the value of the post-processing coefficients the resyn-
thesis expectedly introduced perceivable glissandi around such sec-
tions of mode-mixing. When disregarding these sections the re-
sults were satisfactory as the timbre of the sound was preserved
(£ 1 octave, 2x time-stretch) once the post-processing removed
the unwanted modulations. Since the EMD is able to decompose
noisy signals, the sample of a (real) snare could be decomposed
into separate IMFs containing noise (dyadic frequency bands) and
a tonal component. Similarly, the sample of a (real) cowbell was
successfully decomposed into fundamental and harmonics. For all
of these percussive samples, the fundamental could be well sepa-
rated without the phenomenon of mode-mixing. Depending on the
used operator o, the results of the pitch-shifting can sound con-
vincing, especially since no artifacts of blurred transients were in-
troduced. This was true even with extreme settings in the case of
the snare (—1 to +2 octaves) and bass drum (—1 to +3 octaves, 8x

time-stretch), if the harmonics were treated as formants. Expect-
edly for extreme settings, the resynthesis of the snare drum pro-
duced audible artifacts for the noise components if they were al-
tered by time-stretching or heavy post-processing, since they were
interpreted as sinusoidals. Hence, their modelling as noise partials
would be preferable.

The additions to the original EMD method presented here have
shown that the quality of the decomposition can be improved con-
siderably. With it, a post-processing method has been introduced
that helps to remove some of the errors introduced by the Hilbert-
Transform and to condition the IMFs for synthesis by removing
low-energy modulations of phase and amplitude. Finally, a rough
summary of the quality of the synthesized sounds has been given.
Hence, to conclude, the shown approach can be very well used to
resynthesize wide-band signals with partials that have fast chang-
ing instantaneous attributes and are sufficiently spaced apart in the
spectrum (as indicated in figure [3). An improvement to this ap-
proach would be to add a dedicated noise model to the sinusoidal
one in order to be able to alter the behavior of noisy partials prop-
erly. As in the case of resynthesizing a piano sound, there are
remaining problems regarding the quality of the decomposition,
most importantly the frequency and amplitude resolution. How-
ever, this may change with future developments of the EMD and
HVD decomposition methods or other combinations thereof.
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