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ABSTRACT 

Information about the human spoken and singing voice is con-
veyed through the articulations of the individual’s vocal folds 
and vocal tract. The signal receiver, either human or machine, 
works at different levels of abstraction to extract and interpret 
only the relevant context specific information needed. Tradition-
ally in the field of human machine interaction, the human voice 
is used to drive and control events that are discrete in terms of 
time and value. We propose to use the voice as a source of real-
valued and time-continuous control signals that can be employed 
to interact with any multidimensional human-controllable device 
in real-time. The isolation of noise sources and the independence 
of the control dimensions play a central role. Their dependency 
on individual voice represents an additional challenge. In this 
paper we introduce a method to compute case specific independ-
ent signals from the vocal sound, together with an individual 
study of features computation and selection for noise rejection. 

1. INTRODUCTION 

The human voice is an extremely flexible sound generation 
mechanism and we use it primarily to transfer different catego-
ries of information through acoustic communications. The human 
brain interprets and understands it transparently, while for ma-
chines the task is challenging. The processing of the vocal signal, 
in most human machine application domains, begins with a stage 
of feature computations to obtain a compact representation of the 
audio signal, and is followed by the application of one or more 
statistical models to decode information. Other than well estab-
lished and commonly used applications such as speech recogni-
tion, speaker identification, voice detection, music information 
retrieval (querying by voice) and voice transformation, there are 
more recent applications domains in which the interaction is es-
tablished at sub-verbal level. 

The resulting interaction, when working directly with low 
level features of the voice, is more direct and immediate [1]. The 
“vocal joystick”, presented in [2] and studied in [3], computes 
energy, pitch and vowel quality (vowel recognition) to provide a 
2-D pointer navigation system, underlying the importance of in-
dependence in vocal features selection. Extensions of this work 
are “VoiceDraw” [4] and the “VoiceBot” [5], where a similar 
technique is applied to screen drawing and to the manipulation of 
a robotic arm with 5 degree of freedom. Motor-impaired subjects 
see these voice controlled interfaces as an accessible system, 
while others see these as a hands free extension to traditional 
controllers. However the works mentioned above, even if work-
ing at sub-verbal level, still present limitations due to the pres-
ence of classifiers driving discrete events. 

In [6] and [7] a richer set of low level vocal features, includ-
ing the MFCC, are used to build a more complex voice con-
trolled interface for a wah-wah pedal and for an audio mosaicing 
synthesizer respectively. The Gesture Follower1 and the Wekina-
tor [8] are two machine learning based system for mapping ge-
neric human gesture to real-valued continuous parameters of any 
controllable device. The latter two are not designed to control 
any particular class of devices, but they can implement any na-
ture of sub-verbal interface, computing low-level vocal features 
as a source of gestural input, but noise issues and independence 
of the control dimension remain largely unaddressed. 

In this paper we present a generic method to analyze the low-
level features of the voice with the aim of improving the robust-
ness and the control capabilities of any vocal control system that 
does not make use of classification techniques. The method can 
be applied indiscriminately on spoken voice, singing voice and 
pure sub-verbal sounds. We developed this generic technique to 
improve the control capabilities of the sub-verbal vocal interface 
for digital musical instruments that we proposed in [9]. 

The characteristics of the vocal folds and the vocal tract pre-
sent high variability among different speakers, as do speaking or 
singing style and different individual native languages. The pro-
posed method minimizes the noise and maximizes the independ-
ence of the computed control signals over specific performances 
of individual vocalists, rather than attempt to provide vocalist-
independent study results, which sacrifice optimization for gen-
eralization. In Section 2 we present the method for noise features 
rejection and independence measurements starting from the com-
putation of a large feature set. Experimental result, on different 
vocalists in different environmental conditions, are described and 
in Section 3. Conclusions and usability issues are discussed in 
Section 4. 

2. NOISE AND INDEPENDENCE MEASUREMENT 

Within this work we adapt some terminology from the non-
verbal communication literature, defining: “vocal posture” as the 
action of uttering sound with invariant characteristics over time, 
and “vocal gesture” as the action of uttering sound with charac-
teristics varying over time. We ground the study of noise and in-
dependence for the low level features computed from the vocal 
audio signal on two generic requirements for the sub-verbal inter-
face: 

• The control signals computed over a vocal posture 
must have constant values (static behaviour).  

• The control signals computed over a vocal gesture 
must not be redundant (dynamic behaviour). 

                                                             
1 http://ftm.ircam.fr/index.php/Gesture_Follower 
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The absence of voice can be considered as a special case of vocal 
posture. The inhibition of the control system when no voice is 
present at the input can be considered as a further requirement. 
There are techniques described in the literature which can be ex-
ploited for this purpose that are capable of detecting voice even 
in challenging conditions such as the concurrent presence of 
voice and music [10] [11]. 

The main issue related to vocal postures is the presence of 
noise. Even though a vocalist has the perception of uttering in-
variant sound over time, such as sustained vowels, some low-
level features may still have a significant variance. Features af-
fected by this noise are different across individuals. Therefore we 
define noisy features as those with a statistical dispersion above a 
certain threshold when computed over a set of vocal postures 
from a specific vocalist. An arbitrary number of control signals 
computed from a vocal gesture (selection or transformations of 
the low-level features) should present statistical independence, or 
at least low correlation. If not, the multiple control dimension, 
presumably mapped over different device parameters, would 
vary similarly to one another, providing a trivial control system. 
The vocal folds and the vocal tract can be approximated with a 
source-filter system. These two systems are independent and 
within each system there are independent sub-components as 
well: energy and pitch in the vocal folds, and the first two for-
mants frequencies in the vocal tract representing the vowel space, 
just to mention a few. But given a specific vocal gesture, this in-
dependence assumption may not be valid anymore. In our ap-
proach, we do not use any prior knowledge about the independ-
ence of the vocal features, but we perform a posterior study, 
based on a vocalist-specific gesture (speech, singing or sub-
verbal sounds) using a method to find independence from the 
non-noisy features retained in the system. In [12] Stowell and 
Plumber present a study on the degradation and independence of 
voice timbre features subjected to acoustic degradations, provid-
ing a sort of feature ranking for general purpose usage. They 
provide vocalist-independent results, while defining three differ-
ent vocal categories: singing, speaking and beatboxing. As men-
tioned above, in our approach the study is based on a specific 
individual voice and a specific performance, without introducing 
any categorization. We extend the study on a larger feature set 
and we explore several computing parameters combination. 
Moreover the key concept of feature robustness is substantially 
different from previous work to address a specific feature compu-
tation purpose, which is the generation of robust, independent, 
time and value continuous control signals. 

2.1. Parametric Low Level Features Computation 

Since we assume no prior knowledge about the vocalist’s voice 
characteristics and the kind of vocal gesture used for control pur-
poses, we initially compute a large set of features, including all 
those commonly used in speech processing applications. This 
feature set may present high redundancy, but we leave the feature 
selection to a following stage. The features computed are: 

• Energy; 
• Pitch; 
• Linear Predictive Coding coefficients (LPC); 
• Mel Frequency Cepstrum Coefficients (MFCC); 
• Perceptual Linear Predictive coefficients (PLP) [13]; 
• RelAtive SpecTrAl Perceptual Linear Predictive coef-

ficients (RASTA-PLP) [14]; 
• Delta coefficients; 
• Delta-delta (acceleration) coefficients. 

 

The computation and the post processing of the low level fea-
tures are implemented in MATLAB. Pitch, LPC and MFCC are 
computed using the Voicebox2 package; PLP and RASTA-PLP 
are computed using the Rastamat3 package. Within the feature 
computation process there are several parameters to choose. The-
se affect aspects of the eventual real-time voice controlled inter-
face, such as the latency, the time resolution and the computa-
tional cost. At the same time they may affect the noise and inde-
pendence of the control signals computed from the voice. Instead 
of choosing fixed parameters we perform a systematic study, 
testing different combinations of features computation parame-
ters and picking the one resulting in the better performances. It 
has been previously shown [15] that even in a different applica-
tion domain such as speaker independent speech recognition, the 
optimal performances are obtained for different computation pa-
rameters once the nature of the feature vector is fixed. In this 
study, two quality indicators measure the performances: one is 
computed within the noise detection and rejection phase, the oth-
er one after the independence analysis. 

The parameters we expose to variation within the features 
computation are: 

• Window size; 
• Window overlap; 
• Pre-emphasis; 
• Order of the various features vectors. 

 
For the window size, we explore the range from 128 to 2046, 
considering only the values power of two. For the window over-
lap the tested values are 25%, 50% and 75%. Three are the val-
ues for the pre-emphasis: high (0.97=H), mid (0.485=M) and ze-
ro (0.0=Z). With order we intend the number of LPC, MFCC, 
PLP and RASTA-PLP coefficients computed, corresponding to 
the number of spectral sub-bands for the cepstral coefficients. 
We vary the order in the range 8 to 16 with a step of 2. We dis-
card the first LPC coefficient because it is constant and the first 
MFCC and PLP coefficients because they are redundant with the 
energy. Therefore the number of computed features depends by 
the order and is equal to: 
 dim(f ) = (3⋅ ((order ⋅ 4)+3))  (1) 

where f represents the feature vector computed for each window 
of the vocal audio signal. The feature computation described 
above leads to 225 different combinations to optimize over. Wid-
er parameter ranges with a finer step help to find a solution closer 
to the absolute optimum. Since the optimal parameters depend on 
the vocalist and the specific gesture, in this paper we aim to pre-
sent a methodology rather than derive parameters that work 
across general cases. 

The audio sampling rate is a flexible parameter in the system, 
however for the experiment described in this paper it has been 
fixed to 16KHz. Such a low audio sampling rate, common in 
speech processing application, is a trade-off between low compu-
tational cost and loss of information at higher frequencies. In a 
real sub-verbal interface implementation, a low computational 
complexity of the processing chain is desirable, because the con-
trol signals are generated from the vocal signal in real-time. Even 
if most of the energy is concentrated below the 8KHz Nyquist 
frequency, singing and speech may have frequency components 
up to 20KHz. Historical and physical reasons for neglecting the 
band above 8KHz in speech processing applications are dis-

                                                             
2 http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html 
3 http://labrosa.ee.columbia.edu/matlab/rastamat/ 
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cussed in [16], where the author investigates its audibility and 
perceptual significance. 

2.2. Robust Features Selection Based On Noise Measurement 

We mark a feature as noisy, and thus we discard it, if its statisti-
cal dispersion, computed over perceptually vocal posture, is 
above a certain threshold. As a measurement of statistical disper-
sion we use the Relative Mean Difference (RMD) (2), because it 
is scale invariant. 

 RMD = xii=1

n
∑ (n−1)( )

−1

xi − x jj=1

n
∑i=1

n
∑  (2) 

In (2) n represents the number of samples, which in our case cor-
responds to the number of analysis windows over a single vocal 
posture, while x represents the feature under question. The first 
summation in (2) comes from the arithmetic mean and taking its 
absolute value produces only positive RMD values, facilitating 
the subsequent operations. Given a database of voice recordings, 
each containing different vocal postures by an individual vocal-
ist, we compute the low level features. For each feature we com-
pute the RMD over a single recording, and we compute the aver-
age of the RMDs to measure the statistical dispersion over the 
whole database. Features with the average RMD over the thresh-
old are marked as noisy and thus discarded. 

We ran this study for all the possible combinations of the fea-
ture computation parameters. As a Robustness Quality Measure 
(RQM) of every combination we choose the inverse of the aver-
age RMD of all the non-rejected features, normalized by the 
number of non-noisy features (3), 

 RQM = E[RMD] feat.( )
−1  (3) 

where E[RMD] represents the average of the RMD of the robust 
features, and |feat.| represents the number of robust features. In 
(3) we promote cases in which the number of non-rejected fea-
tures is higher because it may potentially increase the quantity of 
independent information in the subsequent study. In (3) we com-
pute the inverse to obtain a RQM value growing with the overall 
quality. This method addresses the individual inability to utter 
sustained invariant sounds, called vocal postures in this work, 
even when having the subjective perception of doing so. 

2.3. Independent Control Signals Computation 

The study of the independence is performed over an individual 
and specific vocal gesture consisting of speech, singing or pure 
sub-verbal sounds. The independence measurement retrieved 
from the training examples can be then applied to implement live 
vocal control, where the vocalist does not necessarily have to 
stick to the same training gesture in terms of temporal unfolding. 
We compute the low level features over the training recordings, 
then we keep only the ones marked as robust from the previous 
study and we apply the Independent Component Analysis (ICA) 
method for the independence signals computation. We repeat 
these measurements for five parameter combinations correspond-
ing to the local maxima of the robustness quality measurement 
for the five different order ranges. 

ICA is a statistical technique assuming a nongaussian distri-
bution of the sources and their statistical independence [17]. In 
this case we assume that the P robust features fi are a linear com-
bination of J random variables sj, statistically independent and 
nongaussian, as in (4). In (5) the linear combination is expressed 
in matrix notation. 

 

 fp =α p1s1 +α p2s2 +...+α pJsJ     for p =1,...,P  (4) 

 f = As  (5) 

 s =Wf  (6) 
In (5) A represents the mixing matrix while in (6) W is the un-
mixing matrix. The ICA algorithm iterates until convergence on 
a matrix W that gives the maximally nongaussian sources. The 
ICA requires a number of observations f at least equal to the 
number of sources s. This condition always holds in our study 
because we consider a maximum number of independent compo-
nent at least 1 order or magnitude smaller than the number of fea-
ture computation windows. We use the FastICA4 [18] package 
for the MATLAB computation of the independent component 
analysis because of its efficiency. 

2.4. Test and Evaluation Method 

A global evaluation method, as well as a metric to compare 
among the different feature computation parameters combina-
tions, is based on three different testing conditions, from which 
we compute a triplet of quality parameters Q1, Q2 and Q3. We 
extract the independent control signals performing the feature 
computation, robust feature selection and the ICA unmixing on: 

• Vocal postures to measure how constant the control 
signals are (Q1); 

• Vocal gestures similar to the one used for the W esti-
mation, to measure control signal independency (Q2);; 

• Vocal gestures with a different temporal unfolding 
from the one used for the W estimation, to measure 
control signal independency (Q3); 

 
The vocal recordings used for the testing differ from the ones 
used for the noise measurement and ICA. In the first test the in-
dependent signals are computed from a new set of vocal postures 
and we measure the RMD for each sj, taking their sum as in (7). 

 Q1 = RMD(sK (t))k=1

J
∑  (7) 

In the second and third tests we compute the sj from a different 
instance of the same vocal gesture used to estimate W, and from 
others gestures which differ in some aspects. Other than chang-
ing the temporal unfolding we tested also other gesture variation 
such as singing performance presenting different lyrics over the 
same score, or vice versa. In both tests we measure the independ-
ence of the obtained sj. As independence measure we use the dis-
tance correlation, defined in (8), (9) and (10), which is a measure 
of the statistical dependence between two random vectors which 
do not necessarily share the same dimensionality [19]. A null dis-
tance correlation implies independence, while a null correlation 
implies independence only if the random variables are Gaussians, 
which is not our case. The distance correlation depends on the 
distance covariance, equivalent to the Brownian covariance [20]. 
 dCor(X,Y ) = dCov(X,Y ) dVar(X) ⋅dVar(Y )  (8) 

 dVar2(X) := E[ X − "X 2 ]+E2[ X − "X ]+...

...− 2E[ X − "X ⋅ X − ""X ]
 (9) 

 
dCov2(X,Y ) := cov X − "X , Y − "Y( )+...

...− 2cov X − "X , Y − ""Y( )
 (10) 

                                                             
4 http://research.ics.tkk.fi/ica/fastica/ 
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In (9), (10) and (11), ||.|| represents the Euclidean norm, while 
(X,Y), (X’,Y’) and (X’’,Y’’) are independent and identical distrib-
uted random variables. We compute the distance correlation 
dCor(sj,Sj) between every independent signal sj and all the re-
maining, denoted by Sj. 

 Q2,3 = dCor(sK (t),SK (t))k=1

J
∑ )  (11) 

From the way we defined the three different quality parameters 
in (7) and (11), better performance is obtained for small values of 
the Q1,2,3. Hence we define a global quality parameter ISQM (In-
dependent Signals Quality Measurement) in proportion to per-
formances, as the inverse of the sum of Q1,2,3, as in (12). 

 

€ 

ISQM = (Q1 +Q2 +Q3)
−1  (12) 

3. EXPERIMENTAL RESULTS 

In this section we present experimental results based on inde-
pendent signals computed on different performances of different 
vocalists. Since the noise and independence study is based on 
individual vocalists, we do not aim to provide generic results val-
id across vocalists, but we identify only recurrent trends. We use 
three different vocalists in our experiments to highlight the capa-
bility of this method to adapt itself to the individual voice charac-
teristics, and to highlight differences across optimal settings 
when changing the subject. The three vocalists, two adult males 
(Voc.1, Voc.3) and one adult female (Voc.2), differ in their na-
tive language, which may influence the speaking or singing style 
as well. None of them is a professional singer or speaker. We 
used a MOTU UltraLite recording interface, and selected a dif-
ferent microphone for each vocalist (Crown CM311-A, Shure 
SM58 and Rode NT55) to increase variation between speakers. 
The recordings were performed in silent conditions; performance 
degradations due to noisy recording environment are presented 
later. 

3.1. Robustness Analysis 

The size of the vocal postures recordings database we use for 
each vocalist is different (22, 14 and 17 recordings). Each record-
ing has a length of about 3 seconds. The vocal postures are cho-
sen by the vocalist themselves and they may differ across the in-
dividual dataset. For the robust feature selection we use the 
whole database for each vocalist except 2 recordings, randomly 
chosen, which we use later on for testing purposes. As a thresh-
old value for the feature rejection we choose 0.5, but it can be 
changed to be compliant with specific application requirements. 
Figure 1 shows the average RMD and the standard deviation for 
each feature for the worst and best cases across the 225 computa-
tion parameters combination cases, computed on the vocalist 1 
database. Each segment in Figure 1 (features in blue, delta in red, 
and delta-delta in green) contains features in the following order: 
energy, pitch, LPC, MFCC, PLP, RASTA-PLP. The difference in 
the x-axis is due to the different order between the worst and best 
RMD case, which generates feature vectors of different size. As 
expected, we observe across speakers that the delta and delta-
delta differential features are very noisy and therefor not useful 
for this purpose. In Figure 1 their RMD is not visible when they 
exceed the value of 10. Energy, pitch, low-order MFCC, PLP and 
RASTA-PLP are usually more robust than LPC. RASTA-PLP is 
the most robust features set. In Figure 2 we show the RQM 
across the 225 cases, computed over 3 vocalist’s dataset. 

 

Figure 1: Worst case (a) and best case (b) features aver-
age RMD with standard deviation across the vocalist 1 
dataset. 

 

 

Figure 2: RQM for three different vocalist dataset over 
225 features computation parameters combinations. 
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In the computation we iterate over window overlap, window size, 
pre-emphasis, and features order parameters. The periodicity of 
the RQM in Figure 2 is due to the specific computation loop 
nesting. We observe that in general the local maxima for each 
order range are not shared across vocalists. This, as expected, 
demonstrates that an individual vocalist approach is necessary to 
find the optimal features computation parameters. Since RQM 
promotes cases with a higher number of robust features, we can 
observe a rising trend due to the increase in the order of the fea-
tures. In general with higher order the probability of having a 
higher number of features with the RMD below the threshold is 
higher, hence we expected and obtained higher RQMs. As we 
will discuss and present later, the absolute maximum of the RMQ 
may not coincide with the maximum of QT. Details of the RQM 
local maxima for each order are reported in Table 1. In Table 2 
the robust features, always for the order’s local maxima, are cat-
egorized into their class and differential, and as mentioned, it is 
possible to observe the delta and delta-delta differential features 
are not robust. Energy and pitch are never rejected, and usually 
the majority of the robust features belong to the RASTA-PLP 
group, followed by the MFCC and PLP. However the specific 
composition of the robust feature vector is different across vocal-
ists, again supporting the individual vocalist approach. 

3.2. Independent Control Signal Analysis 

We compute the ICA over three instances of the same vocal ges-
ture, choosing a number of independent components equal to 4. 
Each instance has a length of about 10 seconds. As described in 
2.4, after computing the unmixing matrix W, we run test in three 
different conditions, computing quality parameter for each case. 
Since the computational load of the distance correlation is ex-
tremely high, we ran these tests using only 20 different parame-
ters configurations for the features computation, coming from the 
top four RQM over the five different orders. In Table 3 we report 
the ISQM results, as well as the Q1,2,3, obtained for different 
speech, singing and pure sub-verbal gestures. For the best ISMQ 
in Table 3, we always obtain a low variance of the independent 
control signals over vocal postures, while the independence of 
the sj, measured by the distance correlation, is typically below 
0.3. In general we observed that we obtain better performances 
with a lower feature computation order and with large windows. 
However the best parameter configuration is vocalist and gesture 
dependant. In Figure 3 we show the spectrogram versus the inde-
pendent control signals over a speech gesture for vocalist 1 (a), 
with the corresponding stable control signals for vocal posture 
(c), and the best case of singing gesture for vocalist 2 (b). 

 

Table 1: Robustness Quality Measurement local maxima for each order, with relative feature computation parameters (w=window size, 
s=window step, p=pre-emphasis) and number of robust features (r.f.), over three vocalists postures dataset. It can be observed the rising 

trend of the RQM and r.f. with the feature computation order. 

Order Voc.1 - RQM Voc.2 - RQM Voc.3 - RQM 
8 127.6 (20 r.f.; w=1024; s=25%; p=M) 124.6 (25 r.f.; w=2048; s=75%; p=M) 101.2 (19 r.f.; w=256; s=25%; p=H) 

10 130.3 (26 r.f.; w=2048; s=75%; p=Z) 125.6 (27 r.f.; w=256; s=25%; p=H) 101.0 (20 r.f.; w=256; s=25%; p=H) 
12 147.2 (31 r.f.; w=2048; s=75%; p=Z) 134.1 (31 r.f.; w=256; s=25; p=H) 106.3 (21 r.f.; w=256; s=25%; p=H) 
14 150.1 (32 r.f.; w=2048; s=75%; p=M) 147.1 (34 r.f.; w=2048; s=75%; p=M) 109.3 (21 r.f.; w=256; s=25%; p=H) 
16 151.6 (33 r.f.; w=2048; s=75%; p=M) 158.4 (36 r.f.; w=2048; s=75%; p=M) 109.7 (22 r.f.; w=256; s=25%; p=H) 

 
 

Table 2: Percentage of robust featured across features class (capital case columns, where EN.=Energy, PTC.=Pitch, 
R.PLP=RASTA-PLP) and differential class (lower case columns, where d.=delta, d.d=delta-delta ) for local maxima for each 
order over three vocalists dataset. RASTA-PLP has higher percentage among the feature classes followed by MFCC and PLP. 

Energy and Pitch are never rejected. Delta and delta-delta are always marked as noisy in the vocal postures.  

 Order EN. PTC. LPC MFCC PLP R.PLP feat. d. d.d. 
  8 5.0 5.0 10.0 15.0 25.0 45.0 100.0 0.0 0.0 
  10 3.8 3.8 11.5 23.0 26.9 30.7 100.0 0.0 0.0 

Voc.1 12 3.2 3.2 9.6 22.5 32.2 29.0 100.0 0.0 0.0 
% 14 3.1 3.1 6.2 25 31.2 31.2 100.0 0.0 0.0 
  16 3.0 3.0 6.0 27.2 30.3 30.3 100.0 0.0 0.0 
  8 4.0 4.0 16.0 24.0 20.0 32.0 100.0 0.0 0.0 
  10 3.7 3.7 7.4 29.6 22.2 33.3 100.0 0.0 0.0 

Voc.2 12 3.2 3.2 6.4 29.0 25.8 32.2 100.0 0.0 0.0 
% 14 2.9 2.9 11.7 23.5 32.3 26.4 100.0 0.0 0.0 
  16 2.7 2.7 11.1 25.0 30.5 27.7 100.0 0.0 0.0 
  8 5.2 5.2 5.2 21.0 21.0 42.1 100.0 0.0 0.0 
  10 5.0 5.0 5.0 20.0 15.0 50.0 100.0 0.0 0.0 

Voc.3 12 4.7 4.7 4.7 19.0 14.2 52.3 100.0 0.0 0.0 
% 14 4.7 4.7 4.7 19.0 14.2 52.3 100.0 0.0 0.0 
  16 4.5 4.5 4.5 18.1 18.1 50.0 100.0 0.0 0.0 
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Table 3: Three independent control signal quality parameters over different vocal gestures (speech, singing and pure sub-verbal), in-
cluding noisy environment conditions, of different vocalists. The best two ISQM for each gesture are presented with the relative parame-
ters combinations parameters (o=order, w=window size, s=window step, p=pre-emphasis). One can clearly see how the best parameter 
combination is vocalist and vocal gesture dependant. In general, lower orders and larger windows give the best ISQM. Q2 and Q3 values 

show consistency in most of the test cases, while Q1 values are usually low. 

Voc.1 Speech Voc.1 Sub-verbal 
Q1 Q2 Q3 ISQM Params. Q1 Q2 Q3 ISQM Params. 

0.29 0.81 0.85 0.5 o=10; w=1024; 
s=75%; p=M 0.52 0.80 0.85 0.45 o=10; w=1024; 

s=75%; p=M 

0.65 0.95 0.78 0.41 o=14; w=2048; 
s=75%; p=Z 0.60 0.87 0.78 0.44 o=8; w=1024; 

s=25%; p=M 
Voc.2 Sing Voc.2 Sub-verbal 

Q1 Q2 Q3 ISQM Params. Q1 Q2 Q3 ISQM Params. 

0.37 0.89 1.15 0.41 o=8; w=2048; 
s=50%; p=M 0.64 0.79 0.92 0.42 o=12; w=128; 

s=25%; p=M 

0.32 1.02 1.23 0.38 o=14; w=2048; 
s=75%; p=M 0.65 1.21 1.56 0.29 o=16; w=2048; 

s=75%; p=M 
Voc.3 Speech   Voc.3 Sub-verbal 

Q1 Q2 Q3 ISQM Params. Q1 Q2 Q3 ISQM Params. 

0.31 0.71 0.69 0.58 o=12; w=1024; 
s=75%; p=M 0.37 0.67 0.64 0.45 o=12; w=1024; 

s=75%; p=M 

0.47 0.98 0.88 0.42 o=14; w=1024; 
s=50%; p=M 0.53 0.89 0.94 0.41 o=8; w=1024; 

s=50%; p=H 
Voc.1 Speech Noisy Voc.2 Sing Noisy 

Q1 Q2 Q3 ISQM Params. Q1 Q2 Q3 ISQM Params. 

0.18 0.94 0.88 0.49 o=10; w=512; 
s=25%; p=H 0.73 0.97 1.10 0.35 o=10; w=2048; 

s=75%; p=Z 

0.39 0.86 0.85 0.47 o=8; w=2048; 
s=25%; p=H 0.98 0.93 1.08 0.33 o=10; w=2048; 

s=50%; p=M 
 
 

 
Figure 3: Three details of spectrogram and independent control signals, obtained by the ICA unmixing matrix, computed on a 

short interval of two vocal gestures (a) (b) and one vocal posture (c). 

 
 

Table 4: Robustness Quality Measurement local maxima for each order, with relative feature computation parameters 
(w=window size, s=window step, p=pre-emphasis) and number of robust features (r.f.), over vocalists 1 postures dataset com-

paring silent and noisy recording conditions. It is possible to observe how the number of robust features and the RQM values are 
lower, while the feature computation parameters are similar except differences in the step size. 

Order Voc.1 - RQM - Silent Env. Voc.1 - RQM - Noisy Env. 
8 127.6 (20 r.f.; w=1024; s=25%; p=M) 94.7 (20 r.f.; w=2048; s=50%; p=H) 

10 130.3 (26 r.f.; w=2048; s=75%; p=Z) 101.6 (21 r.f.; w=2048; s=50%; p=H) 
12 147.2 (31 r.f.; w=2048; s=75%; p=Z) 109.8 (24 r.f.; w=2048; s=75%; p=H) 
14 150.1 (32 r.f.; w=2048; s=75%; p=M) 109.3 (28 r.f.; w=2048; s=75%; p=M) 
16 151.6 (33 r.f.; w=2048; s=75%; p=M) 110.2 (29 r.f.; w=2048; s=75%; p=M) 
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The method, tested with a different number of independent com-
ponents and with a threshold value different by 0.5, consistently 
shows the capability to identify the vocalist and gesture depend-
ent configuration to compute the independent control signals 
with highest independence and lowest noise. In particular, with a 
less severe threshold, such as 1, the number of robust features 
increases by about 50%. The threshold determines the trade-off 
between the value of Q1 and the values of Q2 and Q3. Moreover 
we observed that in general small orders produces higher Q1, 
even if the performances on the Q2 and Q3 are slightly better for 
higher orders. 

3.3. Noisy Environments Performances 

The proposed method presents only a slight performance de-
crease when the database is recorded in noisy environments. We 
duplicated the database performing the same vocal gesture and 
posture recordings in different environmental conditions. Eight 
loudspeakers simultaneously reproducing music and the micro-
phone signal were surrounding the vocalist. To increase the ran-
domness, the background music was rapidly crossfading across 4 
different genre songs every 5 seconds. In Figure 4 we compare 
the RQM, for vocalist 1, over the 225 different cases, in silent 
and noisy recording conditions. The RQM decrease in absolute 
value is evident, while the rising trend as well as the local maxi-
ma and minima are similar. In Table 4 we present a comparison 
of RQM local maxima details, for each order, for the two differ-
ent recording conditions. Since we did not add artificial noise to 
the database, but we performed new recordings in a noisy envi-
ronment, the consistency of the results for the two environments 
supports the validity of this approach.  
 

 
Figure 4: Robustness Quality Measurement for vocalist 1 
silent and noisy dataset over 225 features computation 
parameters combinations. 

 
In the performances measurements over the independent signals, 
the Q1 values show a decrease due to a lower RQM nominal val-
ue, as presented in the bottom part of Table 3. Therefore noisy 
environments lead to performance degradation as expected, but 
the method shows its capability to reject external sources of noise 
without an excessive penalization of the overall performances. 

4. CONCLUSIONS AND FUTURE WORK 

We presented a method based on individual vocalists, to compute 
a set of time and value continuous control signals with high inde-
pendence and low noise, for particular performance datasets. We 
run a blind search of the computation parameters to minimizing 
four quality parameters. Experimental results over different vo-
calist and performances presented coherent results. Additional 
experiments with different values of the features rejection 
thresholds and number of independent computed signals also led 
to result consistency. In general we showed how feature robust-
ness is dependent for the individual voices, and that the best 
computation parameters must vary according to the vocalist. The 
computation of independent signals strongly depends on the spe-
cific vocal performance and must be tuned accordingly. Moreo-
ver we found and highlighted recurrent pattern in the RQM and 
ISQM measurements across different features and feature com-
putation parameters. Additional work on alternative techniques to 
generate independent signals may further improve this method. 

The capability of computing noise-free and independent sig-
nals from the voice cannot be taken as providing evidence of 
their “human-controllability”. This important HCI issue is still 
open and we will investigate it in the future. Moreover, since this 
method can be considered unsupervised, it is necessary to pro-
vide the user with information about how the independent signals 
are extracted from the voice in order to support user control of 
the system. To address these two issues we developed a real-time 
application for the independent signal computation, but it needs 
to cooperate with a system that provides feedback to the user in 
acoustic and visual forms. 
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