
Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK, September 17-21, 2012

 DAFX-1

ANALYSIS OF SOUND FIELD DISTRIBUTION FOR ROOM ACOUSTICS: FROM THE
POINT OF VIEW OF HARDWARE IMPLEMENTATION

Tan Yiyu, Yasushi Inoguchi, Yukinori Sato Makoto Otani

Research Center for Advanced Computing In-
frastructure, Japan Institute of Science &

Technology, Ishikawa, Japan

Faculty of Engineering, Shinshu University
Nagano, Japan

otani@cs.shinshu-u.ac.jp
yiyu-t@jaist.ac.jp
inoguchi@jaist.ac.jp

Yukio Iwaya
Faculty of Engineering, Tohoku Gakuin University

 Hiroshi Matsuoka Takao Tsuchiya

Research Institute of Electrical
Communication, Tohoku University

Department of Information Systems Design
Doshisha University

Sendai, Japan Kyoto, Japan
matsuoka@riec.tohoku.ac.jp ttsuchiy@mail.doshisha.ac.jp

ABSTRACT

Analysis of sound field distribution is a data-intense and
memory-intense application. To speed up calculation, an alterna-
tive solution is to implement the analysis algorithms by FPGA.
This paper presents the related issues for FPGA based sound
field analysis system from the point of view of hardware imple-
mentation. Compared with other algorithms, the OCTA-FDTD
algorithm consumes 49 slices in FPGA, and the system updates
536.2 million elements per second. In system architecture, the
system based on the parallel architecture benefits from fast com-
putation since the sound pressures of all elements are obtained
and updated at a clock cycle. But it consumes more hardware
resources, and a small sound space is simulated by a FPGA chip.
In contrast, the system based on the time-sharing architecture
extends the simulated sound area by expense of computation
speed since the sound pressures are calculated element by ele-
ment.

1. INTRODUCTION

Modeling the acoustical behavior accurately in a room is compli-
cated because it is affected by the dimensions of a room and the
boundary properties. To address it, many methods have been
proposed and developed for computer simulation, such as geo-
metrical analysis based acoustical ray tracing [1], and beam trac-
ing method [2], and wave equation based Finite Element Method
(FEM) [3], Boundary Element Method (BEM) [4], and Finite
Difference Time-Domain (FDTD) method [5]. Moreover, some
physical equivalent methods were derived, such as transmission
line matrix [6], and digital waveguide mesh (DWM) [7]. Alt-
hough these methods have advantages in some applications, their
common disadvantages are intense computation and high
memory requirement as a sound space increases so that the simu-
lations will take a long time by using current computer systems,
even if they are much faster.

Analysis of sound field distribution is data-oriented. To calcu-
late the sound pressure of an element, the sound pressures of its
neighbors and its own at previous time steps are needed. During
calculation, amounts of data are read and written into the
memory system, thus in general-purpose computers, memory
systems do not work effectively due to the intensive data re-

quirements, lots of data misses in cache, and limited memory
bandwidth. To solve this problem, graphics processor units
(GPUs) [8] or FPGAs are applied to speed up such type of data-
oriented applications [9][12]. In GPU, streaming multiprocessors
work in parallel to speed up computation, and data are exchanged
by the on-chip shared memory in each streaming multiprocessor
rather than the traditional cache or external memory.

FPGA provides another way to analyze the sound field distri-
bution. In FPGA based solution, the wave equations are imple-
mented by programmable logic cells directly, and the temporary
data are stored by D flip-flops or block memories. In our previ-
ous work, a sound field analysis system based on the two-
dimensinal Digital Huygens’s Model (DHM), and theoretical
analysis for three-dimensional applications were investigated
[9][11-13]. In this paper, from the point of view of hardware im-
plementation, design issues about the FPGA based sound field
analysis system are discussed. The rest of this paper is organized
as follows. Section 2 will discuss the design issues in the FPGA
based sound field analysis system. Section 3 will introduce some
algorithms for three-dimensional sound field analysis briefly.
Section 4 will presents the performance comparison. Finally,
conclusions are drawn in Section 5.

2. DESIGN ISSUES IN THE FPGA BASED SOUND
FIELD ANALYSIS SYSTEM

In order to achieve high system performance in the FPGA based
sound field analysis system, some design issues are considered,
such as the algorithm, data dependency and system architecture.
(1) Algorithm. The algorithm determines the architecture of a

computing cell. In hardware implementation, complex arith-
metic operations consume more hardware resources, and de-
crease the system clock frequency due to long route delay.
Generally, additions, subtractions, and shift operations are
implemented by hardware easily and require small hardware
resources, while multiplication and division operations are
complicate and consume more hardware resources. Thus an
algorithm with no or few multiplication and division opera-
tions involved is suitable for hardware implemention.

(2) Data dependency. One of the advantages of hardware im-
plementation is to realize the analysis system in parallel to

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK, September 17-21, 2012

 DAFX-2

speed up calculation. However, if data dependency exists,
calculations can not be carried out in parallel, instead it oc-
curs in series. So during implementation, data flow in the
system needs to be analyzed carefully.

(3) System architecture. System complexity and memory re-
quirement depend on the system architecture, which is an-
other key factor to affect system performance.

2.1. Algorithms for three-dimensional sound field analysis

Many algorithms have been proposed to analyze the sound field
distribution. Among them, the FDTD method and its extensions
are applied widely, where the wave equations are discretized by
the central differential method on staggered grids. Recently,
some algorithms were proposed for hardware implementation,
such as Yee-FDTD, DHM, and compact explicit FDTD.

2.1.1 Yee-FDTD algorithm

In the Yee-FDTD algorithm [9], the propagation of a sound wave
is governed by equation (1).

																											

2 0

1
0

P
c u

t
u

P
t






  




  






																																										(1)	

Where P is the sound pressure, t is time, ߩ is medium density, u
is particle velocity, and c is sound wave velocity. When equation
(1) is discretized by the central differentiate method, and the as-
sumption x y z l       is applied, equations (2) and (3)

are derived to calculate the sound pressure of an element.

   

1 1

2 2

1 1
1 2 2 2

1 1

2 2

1 1
, , , ,

2 2

1 1
i, j, k i, j, k , , , ,

2 2

1 1
, , , ,

2 2

n n

x x

n nn n
y y

n n

z z

u i j k u i j k

P P u i j k u i j k

u i j k u i j k



 

 

 

              
 
             

    
 

                

 (2)

    
1 1

2 21 1
, , , , i+1, j, k i, j, k

2 2

n n n n
x xu i j k u i j k P P
           

   
 (3)

Where l is the grid size, xu , yu , zu are the virtual particle ve-

locity at the center point between two neighbor elements, and
c t

l  
 is the courant number. If  is 1

2
, the multiplication

operation in equation (2) is replaced by a right shift operation.
From equations (2) and (3), 13 operations, including five addi-
tions, seven subtractions, and one right-shift operation, are re-
quired to calculate the sound pressure of an element. The ad-
vantage of the Yee-FDTD algorithm is without multiplication
operations invovled. However, data dependency exists. For ex-
ample, the sound pressure ܲ௡ሺ݅, ݆, ݇ሻ must be calculated before

the calculation for
1

2 1
, ,

2

n

xu i j k
   

 
 is carried out.

2.1.2 Compact Explicit FDTD

A general formulation of the compact explicit FDTD scheme was
presented by K. Kowalczyk [10], and the related parameters were
given for different stencil grids. Among them, the algorithm for
the octahedral grid, namely OCTA-FDTD, is easily implemented
by hardware because it is simple and without multiplication op-
eration. Although the algorithms for other stencils can be also

implemented by hardware, they are more complex than the
OCTA-FDTD algorithm shown in equation (4).

1

1

1
(, ,) ((1, 1, 1) (1, 1, 1)

4

(1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 1, 1) (1, 1, 1) (1, 1, 1))

(, ,)

n n n

n n n

n n n

n

P i j k P i j k P i j k

P i j k P i j k P i j k

P i j k P i j k P i j k

P i j k





       

           

           



 (4)

In equation (4), nine operations, including seven additions, one
subtraction, and one right shift operation, are required to calcu-
late the sound pressure of an element. Especially, no data de-
pendency problem exists during computation.

 2.1.3 DHM

In the DHM [11][12], a sound space was divided into small
acoustic tubes. When a sound pulse is incident into the crossed
junctions of acoustic tubes, scatterings occurred because of the
impedance discontinuity. Some parts of the incidence are trans-
mitted to the neighbor tubes in six directions, and the rest is re-
flected back along the incident direction. The relations between
the scatterings and incidences are shown in equation (5).


































































































n

n

n

n

n

n

n

n

n

n

n

n

P

P

P

P

P

P

S

S

S

S

S

S

6

5

4

3

2

1

6

5

4

3

2

1

211111

121111

112111

111211

111121

111112

3

1

(5)

Fig. 1 An three-dimensional DHM element
For an element at the position (i, j, k), the relations between n

mS

and 1n

mP (m =1, 2, … 6) are shown as follows:

),,1(),,(2

1

1 kjiSkjiP nn ),,1(),,(1

1

2 kjiSkjiP nn 

),1,(),,(4

1

3 kjiSkjiP nn ),1,(),,(3

1

4 kjiSkjiP nn 

 (6)

)1,,(),,(6

1

5  kjiSkjiP nn

)1,,(),,(5

1

6  kjiSkjiP nn
According to equations (5) and (6), the sound pressure of an ele-
ment is calculated through the incidences and scatterings. The
calculation requires twelve operations, including five additions,
six subtractions, and one multiplication. This is the original
DHM algorithm. To speed up calculation, the updated DHM al-
gorithm shown in equation (7) is derived by inserting equations
(5) and (6) into the sound pressure formula and eliminating the
pulses 1(, ,)n

mP i j k . Equation (7) is same as the FDTD expres-

sion in the case of SLF stencil scheme (SLF-FDTD)[10].

),,())1,,()1,,(),1,(

),1,(),,1(),,1((
3

1
),,(

2111

111

kjiPkjiPkjiPkjiP

kjiPkjiPkjiPkjiP

nnnn

nnnn









(7)

In our previous work [11][12], a two-dimensional DHM algo-
rithm was proposed and implemented by FPGA, where the divi-
sion by two is replaced by one-bit right shift operation. But in
equation (7), the division by three can not be eliminated, thus
seven operations are required to calculate the sound pressure of
an element, including five additions, one subtraction, and one

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK, September 17-21, 2012

 DAFX-3

multiplication. The advantage of the updated DHM algorithm or
SLF-FDTD is only seven operations are required, but the multi-
plication operation can not be removed.

In principle, the multiplication operations are eliminated by
choosing the suitable courant number in the Yee-FDTD algo-
rithm while they are removed through modifying the forms of the
grid stencils in the OCTA-FDTD algorithm. In the DHM, the
multiplication operations can not be replaced by other simple op-
erations, such as shift operations.

2.2. System architecture

The parallel architecture and time-sharing architecture are ap-
plied in the FPGA based sound field analysis system [13]. In the
parallel architecture, a computing cell is located at each element
to calculate its sound pressure. Thus a sound space is mapped
into a hardware based array. For a two-dimensional sound space,
the system diagram is shown in Fig. 2a [13].

(a) Parallel architecture (b)Time-sharing architecture

Fig. 2 Diagram of system

In Fig. 2a, a computing cell is designed based on the wave
equations and exchanges data with its neighbors. The calculation
results are held by D flip-flops inside a FPGA chip. The number
of computing cells is determined by the dimensions of a sound
space and the grid size ∆l. Hence the structure of the computing
cell has a great impact on the system performance and hardware
resource consumption. Typically, the chosen algorithm and the
design techniques will affect the design of a computing cell. The
chosen algorithm is the principle factor while circuit design tech-
niques are complements.

The system shown in Fig. 2a is suitable to be implemented by
FPGA. A FPGA chip consists of Configurable Logic Blocks
(CLBs), which are arranged like an array. The CLBs are con-
nected to each other through the programmable routing matrix,
and they are the main logic resources for implementing sequen-
tial as well as combinational circuits. Thus a computing cell in
the shown architecture can be implemented by one or more CLBs,
and they are cascaded together easily through the programmable
inter-connectors.

The main problem in the parallel architecture is the data com-
munication. As shown in Fig. 2a, all uniform computing cells are
cascaded together and the computation result of a cell is as the
inputs of its neighbor cells at the next time step. A common tech-
nique is to use handshaking signal between computing cells for
data communication. When a computing cell completes the cal-
culation, its output is updated and the handshaking signal is set,
then the neighbor cells start to read the updated results and carry
out computation. Although the data throughput and timing can be
improved in this solution, the calculation efficiency is low. If the
output of a computing cell can not be updated on time, all calcu-
lations in other computing cells will be suspended, which will
result in the overhead increasing. To solve this problem, when a
computing cell is designed, all operations in it are limited to be
finished in a clock cycle. Hence all computing cells complete

computations and updated their outputs synchronously. At next
clock cycle, they read data from their neighbors, and no hand-
shaking signals are required. Compared with other solutions, this
solution maybe has relatively worse timing performance, the
hardware system is simple, and computing efficiency is enhanced.

Another problem in the parallel architecture is hardware re-
source consumption. Since a computing cell locates at each ele-
ment, when a sound space becomes larger, the hardware re-
sources will increase rapidly. Thus a sound field analysis system
with limit computing cells may be implemented by a FPGA chip.
Therefore, a sound field analysis system based on the parallel
architecture and implemented by a FPGA chip can only analyze
the sound field distribution in a small area.

To extend the simulated area, another architectural solution is
to apply the time-sharing architecture, which is shown in Fig. 2b.
In Fig. 2b, the sound pressures are calculated element by element
through the computing cell module. At a time step, to calculate
the sound pressure of an element, the system controller generates
the related addresses, then the computing cell accesses the
memory to read data according to the addresses, and calculate the
sound pressure, finally, the calculation result is written into the
memory. This procedure is carried out again until the sound pres-
sures of all elements are obtained. Then a new incidence is read
and computations start for the next time step. In Fig. 2b, the
memory can be external DDR RAM or block RAMs inside a
FPGA chip. Typically, DDR RAM has large capacity, but it can
not be accessed in parallel, and only one datum can be read out at
one time. The block RAMs inside a FPGA chip can be config-
ured to work in multi-ports mode to read data out in parallel in
order to reduce the overhead of data accessing.

The system based on the time-sharing architecture extends the
simulated area deeply. For example, when the analysis algorithm
is two-dimensional DHM, the system capacity based on the time-
sharing architecture is improved about 20 times in a FPGA chip,
namely, the simulated area is increased 20 times [13]. However,
its computation performance will be decreased 20 times. In the
parallel architecture, the sound pressures of all elements are ob-
tained at one clock cycle, while they are retrieved element by
element in the time-sharing architecture. Thus the computation
time spent in the time-sharing architecture is 20 times as that tak-
en in the parallel architecture. This problem can be sovled by
system partition methods, where a system is divided into several
small systems, and they work in parallel.

3. PERFROMANCE COMPARISON

3.1. Performance estimation

Table 1 shows the performance estimation of different algorithms.
In Table 1, the number of slices denotes the hardare resource
consumption in the Xilinx FPGA XC5VLX330T, and the block
RAMs RAMB18X2s and RAMB36_EXPs are used to implement
the multiplication operations. The maximum frequency is the
maximum clock frequency system works after synthesis. Alt-
hough the Yee-FDTD algorithm does not require multiplication
operation, it consumes more hardware resources due to more
arithmetic operations, and the data dependency results in the de-
crease of the maximum clock frequency. Since the DHM algo-
rithms and SLF-FDTD needs multiplication operations, some
extra block RAMs are needed. The elements updated per second
presents the system execution performance based on the assump-
tion all operatoins are finished in a clock cycle in a computing
cell. From the Table, the OCTA-FDTD algorithm consumes least

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK, September 17-21, 2012

 DAFX-4

hardware resources, and has best execution performance due to
its simplicity and no multiplication involved.

Table 1 Performance estimation of different algorithms

3.2. Memory requirement

Sound field analysis is a memory-intensive application. Inside a
FPGA chip, data are stored by D flip-flops or block memory.
Compared with the solution to storing data in the external
memory, the overhead to read data from D Flip-flops or block
memory is much shorter. Moreover, the bottleneck of perfor-
mance improvement due to the bandwidth limitation of external
memory can be eliminated. If a sound space is divided into N×
M×K elements and data are 32-bit, from equations (2) and (3),
in the Yee-FDTD algorithm, at each element, except the sound
pressure at previous time step is stored, the virtual particle ve-
locity at x, y, z directions is also needed to be kept for further
calculation. Hence at each element, four data are stored, and the
system needs 16NMK byte memory.

From equation (4), the sound pressures of an element at previ-
ous one and two time steps are kept in the OCTA-FDTD algo-
rithm. Thus the system needs 8NMK byte memory. In the DHM
original algorithm, at each element, scatterings and incidences at
six directions are stored, thus the system requires 48NMK byte
memory. In contrast, the sound pressures of an elelment at previ-
ous one and two time steps are kept in the DHM updated algo-
rithm or the SLF-FDTD, and the system needs 8NMK byte
memory. Among all these algorithms, the OCTA-FDTD and
DHM updated algorithms require smallest size memory.

3.3. Calculation error

In FPGA implementation, calculation error mainly results from
data truncation error and arithmetic overflow. Since data are in-
teger in hardware system in order to simplify system design,
truncation error will appear. It can be reduced by increasing data
width or changing data representation format. But the system
complexity and hardware resources consumption will increase
with data width increasing. On the other hand, arithmetic over-
flow introduces errors, such as addition overflow. Sometimes this
type of error is accumulated. Thus the more arithmetic operations
are carried out, the larger errors will be introduced. Typically,
they are avoided by data width extension. More arithmetic opera-
tions require more data bits extension, which will results in more
hardware resource consumption. In addition, dispersion errors
exist in the FDTD scheme. Compared with the SLF-FDTD, the
OCTA-FDTD algorithm has smaller dispersion error.

4. CONLCUSION

Sound field analysis is a data-oriented and intense memory re-
quirement application. FPGA devices provide another solution to
it through direct hardware implementation of propagation equa-
tions of sound wave. In hardware implementation, in order to
reduce hardware resource consumption and improve system per-

formance, multiplication operations are required to be reduced or
eliminated. Based on this, the OCTA-FDTD algorithm is more
suitable for hardware implementation, which consumes small
hardware resources, and has no multiplicaton operations involved.
From the point of view of architecture, the parallel architecture
provides faster computation, but consumes more hardware re-
sources. In contrast, the time-sharing architecture extends simu-
lated area by degrading low computation speed.

5. ACKNOWLEDGMENTS

This project is supported by the National Institute of Information
and Communication Technology.

6. REFERENCES

[1] A. Krokstad, S. Strom, and S. Sorsdal, “Calculating the
acoustical room response by the use of a ray tracing tech-
nique,” Journal of Sound Vibration, vol. 8, no. 1 pp. 118–
125, 1968.

[2] T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, et al, “A
beam tracing method for interactive architectural acoustics,”
Journal of the Acoustical Society of America, vol. 115,
pp.739–756, 2004.

[3] J. N. Reddy, An Introduction to the Finite Element Method,
3rd ed., McGraw-Hill, USA, 2006.

[4] P. K. Banerjee, and R. Butterfield, The Boundary Element
Methods in Engineering Science, McGraw-Hill, USA, 1994.

[5] D. Botteldooren, “Finite-difference time-domain simulation
of low-frequency room acoustic problems,” Journal of the
Acoustical Society of America, vol. 98, no. 6, pp. 3302–3308.
1995.

[6] P. B. Johns, R. L. Beurle, “Numerical solution of 2 dimen-
sional scattering problems using a transmission-line matrix,”
Proceedings of IEE 118 (9) (1971) 1203-1208.

[7] G. R. Campos and D. M. Howard, “On the computational
efficiency of different waveguide mesh topologies for room
acoustic simulation,” IEEE Transactions on Speech and Au-
dio Processing, vol. 13, no. 5, pp.1063-1072, 2005.

[8] L. Savioja, Real-time 3D finite-difference time-domain
simulation of low- and mid-frequency room acoustics, 13th
International Conference on Digital Audio Effects, DAFx-10,
September 2010.

[9] Yasushi Inoguchi, Tan Yiyu, Yukinori Sato, et al, “DHM
and FDTD based hardware sound field simulation accelera-
tion,” 14th International Conference on Digital Audio Ef-
fects, DAFx-11, pp. 69-72, 2011.

[10] Konrad Kowalczyk, and maarten van Walstijn, “Room
Acoustics Simulation Using 3-D Compact Explicit FDTD
Schemes,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, Vol. 19, No. 1, pp.34-46, 2011.

[11] Tan Yiyu, Yasushi Inoguchi, Eiko Sugawara, Yukinori Sato,
et al, “A FPGA Implementation of the Two-Dimensional
Digital Huygens' Model,” 2010 International Conference on
Field Programmable Technology (FPT), pp. 304 – 307.

[12] Tan Yiyu, Yukinori Sato, Eiko Sugawara, Yasushi Inoguchi,
et al, “A real-time sound field renderer based on digital
Huygens' model,” Journal of Sound and Vibration, vol. 330,
pp. 4302-4312, 2011.

[13] Tan Yiyu, Yasushi Inoguchi, Yukinori Sato, et al, “Design
of a FPGA-based Timing Sharing Architecture for Sound
Rendering Applications,” International Conference on In-
formation Technology: Next Generations, USA, April, 2012.

Algorithm
No. of
Slices

RAMB
18X2s

RAMB
36_EXPs

Cells updated per
second (millions)

Yee-FDTD 142 0 0 73.9

DHM(original) 118 2 3 140.7
DHM(updated)
or SLF-FDTD 81 1 3 153.7

OCTA-FDTD 49 0 0 536.2

