
Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

TIMPANI DRUM SYNTHESIS IN 3D ON GPGPUS

Stefan Bilbao,∗

Acoustics Group
University of Edinburgh

sbilbao@staffmail.ed.ac.uk

Craig Webb,

Acoustics Group/Edinburgh Parallel Computing Centre,
University of Edinburgh

C.J.Webb-2@sms.ed.ac.uk>

ABSTRACT

Physical modeling sound synthesis for systems in 3D is a com-
putationally intensive undertaking; the number of degreesof free-
dom is very large, even for systems and spaces of modest phys-
ical dimensions. The recent emergence into the mainstream of
highly parallel multicore hardware, such as general purpose graph-
ical processing units (GPGPUs) has opened an avenue of approach
to synthesis for such systems in a reasonable amount of time,with-
out severe model simplification. In this context, new program-
ming and algorithm design considerations appear, especially the
ease with which a given algorithm may be parallelized. To this
end finite difference time domain methods operating over regular
grids are explored, with regard to an interesting and non-trivial
test problem, that of the timpani drum. The timpani is chosenhere
because its sounding mechanism relies on the coupling between a
2D resonator and a 3D acoustic space (an internal cavity). Itis also
of large physical dimensions, and thus simulation is of highcom-
putational cost. A timpani model is presented, followed by abrief
presentation of finite difference time domain methods, followed by
a discussion of parallelization on GPGPU, and simulation results.

1. INTRODUCTION

A major recent research direction has been the large scale 3Dsim-
ulation of acoustic spaces, for purposes of artificial reverberation
or concert hall prototyping, using grid based methods such as the
digital waveguide mesh [1] or finite difference time domain meth-
ods (FDTD) [2, 3]. The great advantage of such brute force tech-
niques, compared with other room modelling methods, such asim-
age source [4] or ray tracing [5] methods is that the acousticfield
is modelled in its entirety, and without simplifying assumptions.
The disadvantage, of course, is computational cost—for example,
the simulation of a cubic metre volume, at 44.1 kHz, requireson
the order of1011 arithmetic operations per second of output. The
simulation of large acoustic spaces at audio rates in a reasonable
amount of time remains a challenging problem.

Smaller scale problems in 3D, however, are becoming tractable,
especially on new highly parallel computer architectures.One ap-
plication is 3D physical modeling synthesis, where a musical in-
strument is housed, or embedded, within a small 3D enclosure,
intended not to emulate the behaviour of a room, but to allow com-
plete modeling of the interaction between the instrument and the
acoustic field, with as few modeling assumptions as possible. The
timpani drum, or kettledrum is a good match to this problem, as
the timbre of the instrument is critically dependent on an enclosed
volume, as well as the usual acoustic radiation phenomena, both

∗ This work was supported by the European Research Council, under
grant StG-2011-279068-NESS

of which are fully captured in a 3D model. The model used here is
similar to that used by Rhaouti and Chaigne [6] in musical acous-
tics investigations, with some additional features. The computa-
tional algorithm presented here is geared towards a synthesis im-
plementation in a highly parallel architecture, and is intended as a
non-trivial feasibility test for the use of general purposegrapnical
processing units (GPGPUs) in physical modeling sound synthesis.

A model of a single timpani drum is described in Section 2,
including a description of the dynamics of the acoustic field, and
its termination (by the drum cavity and an absorbing layer),and
the membrane, including nonlinear effects, as well as the coupling
between the two. Section 3 continues with a description of an
FDTD algorithm operating over regular grids, as well as interpola-
tion necessary to couple the two key subsystems. Implementation
in CUDA on an Nvidia Tesla general purpose graphical process-
ing unit is described in Section 4, followed by simulation results
in Section 5.

2. MODEL SYSTEM

The system describing the timapani drum used here is similarto
that used previously [6], and also in the case of the snare drum [7].
Using such a full model allows the direct simulation of acoustic
radiation and cavity modes, as well as full spatialization;such fea-
tures are difficult to capture using a 2D model [8], which, however,
is far less computationally demanding in simulation.

The model is defined over a 3D volumeV, here taken to be
a rectangular parallelepiped. It possesses an external boundary,
∂VE , consisting, in this case, of the six faces of the parallelpiped,
and an inner boundary, consisting of the rigid shell boundary of the
timpani drum,∂VS , and the membrane,∂VM . The acoustic field
is defined on both sides of these latter two boundaries (i.e.,inside
and outside the cavity). See Figure 1.

2.1. Membrane

The primary vibrating component in the timpani, and all drums,
is the drumhead itself. It is assumed to be a flexible membrane,
defined over a two dimensional region∂VM (here a circle of radius
R, defined, for simplicity at coordinatez = zM relative to the
three dimensional acoustic space), with displacement constrained
to be perpendicular to the plane in which it lies. The dynamics of
such a membrane are described by the following equation:

∂2w

∂t2
= c2

M (1 + g)∇2
2Dw − κ2∇2

2D∇2
2Dw + c2

Mα∇2
2D

∂w

∂t

+
1

ρM

(f+ + f−) +
1

ρM

δ(x − x0, y − y0)fexc (1)

DAFX-1

mailto:papers@dafx12.york.ac.uk
mailto:dafx11@ircam.fr

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Figure 1:Timpani drum geometry.

wherew(x, y, t) is transverse displacement as a function of timet
and coordinatesx andy, and the 2D Laplacian operator is defined
as

∇2
2D =

∂2

∂x2
+

∂2

∂y2
(2)

Here,ρM is the surface density of the membrane, in kg/m2, and
the wave speedcM and stiffness parameter for the membrane are
defined as

cM =
√

T0/ρM κ =
√

EH3/12ρM (1 − ν2) (3)

whereT0 is membrane tension/unit length, in kg/s2, H is mem-
brane tickness, in m,E is Young’s modulus, in kg /s2m, andν,
dimensionless, is Poisson’s ratio.α is a parameter determining
viscothermal damping effects in the membrane.

The factorg represents an averaged nonlinearity in the mem-
brane, and is defined as

g =
EH

2T0(1 − ν2)

∫∫

D

|∇2Dw|2dσ (4)

and results from a simplification (due to Berger [9]) of the von Kar-
man system [10]. It may be viewed in the same light as the similar
term appearing in the Kirchhoff Carrier equation [11] describing
nonlinear vibration of a string, and gives rise, again, to pitch glide
phenomena under high striking amplitudes, and which may domi-
nate, as in the case of the string, at very low tension [12]. Such a
model has been used previously in studies of the snare drum [8].

The terms inf+ andf− represent forcing due to coupling with
the acoustic space, above and below the membrane, respectively.
These will be related explcitly to the acoustic field in Section 2.5.
The term infexc represents a pointwise excitation acting at loca-
tion (x0, y0) on the membrane. See Section 2.6.

The membrane is assumed rigidly terminated, i.e.,

w = nM,ext · ∇2Dw = 0 (5)

wherenM,ext represents the 2D normal vector to the outer bound-
ary of the membrane, and∇2D is the 2D gradient operation.

2.2. Acoustic Field

Variation in the acoustic field is assumed here to satisfy the3D
wave equation:

∂2Ψ

∂t2
= c2∇2

3DΨ (6)

where here,Ψ(x, y, z, t) is a velocity potential [13] depending on
time t and spatial coordinatesx, y and z, and defined over the
regionV. c is the wave speed in air, set here to 340 m/s, and∇2

3D

is the 3D Laplacian operator, defined as

∇2
3D =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(7)

Ψ may be related to the more familiar quantities pressurep
and particle velocityv by

p = ρ
∂Ψ

∂t
v = −∇3DΨ (8)

whereρ is the density of air (taken here to be 1.2 kg/m3), and∇3D

is the 3D gradient operation.
For problems defined over small regions, as is the case here,

the 3D wave equation is a good approximation to wave propaga-
tion in air. In larger regions, however, where sound propagates
over a reasonable distance, it is important to include the effects
of viscosity, which may be modelled using an extra term in (6)
[13, 14].

Boundary conditions, for the external, shell and membrane
boundaries will be given in the next sections.

2.3. Drum Cavity

The timpani drum shell is assumed rigid. The exact geometry is
immaterial from a computational point of view, but it is assumed
here to be paraboloidal, defined by the surface

z = zM−H0+H0

(

x2 + y2) /R2 zM−H0 ≤ z ≤ zM (9)

In other words, it is a section of a paraboloid, of heightH0 m, and
operning up to a maximum radius ofR m at vertical locationz =
zM . The paraboloidal shape here is chosen out of convenience—
for more discussion of real timpani drum shell profiles, see [6].

As the cavity is assumed to be rigid, a Neumann (zero normal
velocity) condition is used, i.e.,

nS · ∇3DΨ = 0 over ∂VS (10)

wherenS is the normal to the shell surface; the condition above
holds on both faces of the shell (i.e., both inside and outside the
cavity).

2.4. Absorbing Boundary Conditions

As the enclosureV is intended to be transparent to outward propa-
gating waves, an absorbing boundary condition is necessaryon the
boundaryVE . The usual choice is the well-researched perfectly
matched layer [15], translated from the electromagnetic context to
acoustics. In the interest of keeping programming complexity as
simple as possible—a key concern in the development of methods
on specialized hardware—a simpler choice of a boundary condi-
tion of Engquist Majda type [16] has been employed here. IfnE

signifies an outward normal to a planar boundary, then the condi-
tions may be written elegantly as

(

∂

∂t
+ cnE · ∇3D

)q

Ψ = 0 (11)

in terms of the orderq. Such conditions may always be rewritten,
through substitution of (6), in terms of spatial derivatives tangen-
tial to the boundary, and a normal derivative of maximal order 1.

DAFX-2

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Such conditions inhibit reflection over an increasingly large
range of frequencies and angles relative to the normal asq in-
creases, but are not perfectly matched, for any finite orderq (though
in pratice, under discretization, neither are perfectly matched lay-
ers). As a result, spurious reflection by this boundary condition
back into the problem domain is confined to high frequency waves
which are tangential to, and thus remain trapped near the bound-
ary itself. Though no perceptual testing has been done, it isclear
that provided output is not drawn directly adjacent to the boundary
itself, the conditions are perceptually transparent, at audio sample
rates, even with an order as low asq = 2.

2.5. Coupling Conditions

At the interface∂VM between the membrane and the acoustic
space, coupling conditions are necessary, and determine both the
boundary condition for the acoustic field, as well as the excitation
terms in (1).

If the velocity potentials on the upper and lower faces of the
membrane are referred to asΨ+ andΨ− respectively, the condi-
tions may be written as

f− = ρ
∂Ψ−

∂t
f+ = −ρ

∂Ψ+

∂t
(12)

and
∂w

∂t
= −nM,+ · ∇Ψ+ = nM,− · ∇Ψ− (13)

wherenM,+ = −nM,− are the 3D outward unit normals to the
membrane in the positive and negative directions. These pairs
of conditions indicate continuity of pressure and velocity, respec-
tively across the membrane interface.

2.6. Excitation and Output

Ideally, excitation should be modelled using a model of the mal-
let itself, subject to forcing by the player. Most models in the
literature treat the mallet interaction in terms of an initial mallet
velocity, and a nonlinear interaction between the mallet and the
membrane. This approach well models a single strike—however,
modeling of a full gesture (such as a drum roll, where there is
a constant excitation force from the player) is far more complex.
For this reason, and from the observation that (a) the interaction
time between mallet and membrane is typically very short, itis
sufficient to employ an external (non-interactive) forcingfunction
fexc = fexc(t) of a specified form. See [17] for more on this hy-
pothesis. A good choice is of a raised cosine, for which amplitude
and duration may be adjusted to striking strength. The spatial re-
gion of interaction is small, relative to audible wavenumbers in the
membrane, and has been modelled here as a simple spatial Dirac
delta function at the striking location.

3. FDTD ALGORITHM

In this section, finite difference time domain methods on regular
grids are developed for the timpani model, as described in the pre-
vious section. FDTD methods are, of course, not the only approach
to simulation—see, e.g., [6] for methods on irregular grids, and
[8], where a similar system (the snare drum) is approached using
modal techniques.

Schemes on regular grids, despite some awkwardness (namely
in treating curved boundaries, and in interfacing between grids of

different densities, for the membrane and acoustic space) are an
excellent match to parallel architectures, as the use of an identical
update at a large number of locations leads to the association with
simple computational kernels (threads). Such is the case for spa-
tially invariant systems such as a uniform membrane and acoustic
field in Cartesian coordinates.

3.1. Membrane Scheme

The grid functionwn
l,m is intended as an approximation to the

membrane displacementw(x, y, t), at coordinatesx = lhM , y =
mhM , and at timet = nk, for integerl, m and n, and where
hM is the grid spacing, andk is the time step (generally defined a
priori, ask = 1/Fs, whereFs is the sample rate).

A finite difference scheme for the membrane, as defined in (1)
may be written as

δttw = c2
M (1 + g) δ2

2Dw − κ2δ2
2Dδ2

2Dw + c2
mαδ2

2Dδt−w

+
1

ρM

(f+ + f−) +
1

ρM

δ(x − x0, y − y0)fexc(14)

wherew now stands for the grid functionwn
l,m, and where the

various difference operators are defined as

δttw
n
l,m =

1

k2

(

wn+1
l,m − 2wn

l,m + wn−1
l,m

)

(15a)

δt−wn
l,m =

1

k

(

wn
l,m − wn−1

l,m

)

(15b)

δ2
2Dwn

l,m =
1

h2
M

(

wn
l+1,m + wn

l−1,m + wn
l,m+1 (15c)

+wn
l,m−1 − 4wn

l,m

)

µt·w
n
l,m =

1

2

(

wn+1
l,m + wn−1

l,m

)

(15d)

δt·w
n
l,m =

1

2k

(

wn+1
l,m − wn−1

l,m

)

(15e)

and the other operators in (14), namelyδ2
2Dδ2

2D andδ2
2Dδt− may

be formed through composition of the operators defined above.
The fixed boundary conditions (5) may be simply approximatedby
a staircase approximation, assuming that values of the gridfunc-
tion which lie outside the membrane boundary are permanently
set to zero. See Section 5.1 for the consequences of this (crude!)
numerical boundary condition. Also, note that a backward differ-
ence operator is applied to the frequency-dependent loss term in
(14), simplifying implementation in comparison with the case of a
centred difference approximation.

The scalar nonlinear termg = gn requires a special treatment,
in line with that of averaged nonlinearities which appear inthe
case of the string [18]. An approximation consistent with (4) is the
following:

g =
EH

2T0(1 − ν2)

∑

∂V
(d)
M

h2
M∇(d)

2Dw · ∇(d)
2Dµt·w (16)

whereµt· is the averaging operator given in (15d), and the differ-
ence approximation∇(d)

2D to the 2D gradient is defined as

∇(d)
2Dfi,j =

1

hM

[fi,j − fi−1,j , fi,j − fi,j−1] (17)

and summed over the region∂V(d)
M , consisting of all grid locations

l, m such thathM l, hMm, hM (l − 1) andhM (m − 1) lie within
a circle of radiusR.

DAFX-3

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Though apparently implicit (i.e., when applied at time step
n, the averaging operationµt· introduces values of the as yet un-
known values of the grid function at time stepn + 1), due to the
scalar nature of the nonlinearity, this expression may be written
explicitly in terms of known values ofw at time stepn. See [17]
for more details.

The coupling termsf+ andf− are now 2D grid functions, i.e.,
f+ = fn

+,l,m f− = fn
−,l,m and and the external excitationfexc is

a specified time seriesfexc = fn
exc. The grid functionφ = φl,m is

an approximation to a 2D Dirac delta function—if coincidentwith
a grid locationl = l0, m = m0, it takes on the value1/h2

M at this
location, and is zero otherwise. If not, a bilinear, or higher order
interpolant may be used.

3.2. Scheme over Acoustic Field

Over the acoustic field, a simple seven point scheme is used:

δttΨ = c2δ2
3DΨ (18)

for a grid functionΨn
l,m,p approximating the acoustic fieldΨ(x, y, z, t)

at coordinatesx = lh, y = mh, z = ph and at timet = nk,
whereh is the grid spacing. Here the operatorδtt is as defined in
the 2D case in (15), and the 3D Laplacian difference operatoras

δ2
3DΨn

l,m,p =
∑

α,β,γ

|α|+|β|+|γ|=1

Ψn
l+α,m+β,p+γ − 6Ψn

l,m,p(19)

At the interface with the drum cavity, a staircase approxima-
tion is again is used. At a grid locationlb, mb, pb, for example
(either inside or outside the cavity), for which one or more adja-
cent grid locations lie on the other side of the cavity boundary, the
Laplacian is specialized to

δ2
3DΨn

lb,mb,pb
=

∑

α,β,γ

|α|+|β|+|γ|=1

(

Ψn
lb+α,mb+β,pb+γ

)(int)

−Klb,mb,pb
Ψn

lb,mb,pb
(20)

where the superscript(int) restricts the sum to values which lie
on the same side of the boundary as the grid pointlb, mb, pb, and
where the integerKlb,mb,pb

is the number of nearest neighbours
lying on the same side of the boundary.

For the membrane coupling conditions, it is easiest (thoughby
no means necessary) to place the membrane heightzM at a loca-
tion directly between two vertical sets of grid points, withindex
p+ andp−, and thus at spatial locationszM +h/2 andzM −h/2,
respectively. The coupling conditions (12) become:

f− = ρδt·I3D→2DΨ−,p
−

f+ = −ρδt·I3D→2DΨ+,p+

(21)
whereΨ−,p

−

= Ψn
l,m,p

−

and Ψ+,p+ = Ψn
l,m,p+

, and where
δt· is a centered time difference operator, as given in (15e). The
operationI3D→2D interpolates grid values for the acoustic field to
locations on the grid for the membrane.

Coupling conditions (13) become, under simple difference op-
erations,

I2D→3Dδt·w
n = − 1

h

(

Ψ∗
−,p

−
+1 − Ψ−,p

−

)

= − 1

h

(

Ψ+,p+ − Ψ∗
+,p+−1

)

(22)

whereΨ∗
−,p

−
+1 andΨ∗

+,p+−1 indicate virtual values of the acous-
tic field, and whereI2D→3D is an interpolant from membrane dis-
placement values on the 2D grid to grid locations in 3D.

The conditions (21) and (22), when coupled with the mem-
brane update (14) and (18), lead to a full update of both fields;
furthermore, through inbuilt numerical energy conservation (see
Section 3.3), numerical stability conditions follow.

Numerical equivalents of the absorbing boundary conditions
have been presented by one of the authors recently, in the case of
the snare drum [7].

3.3. Energy Conservation and Stability Conditions

In the case of a nonlinear coupled system such as this, numerical
stability is best approached using energy techniques [19].As this
topic has been covered at length by one of the authors (particularly
in [17]), a lengthy review is unnecessary here.

The idea is that under lossless conditions (here, whenα = 0,
and when absorbing boundary conditions are disabled), the total
energy of the system must remain constant under transient condi-
tions. If such a property of an invariant energy can be built into
the numerical simulation method, and, furthermore, the numerical
energy is positive, then the algorithm is numerically stable; this in-
cludes the effect of the nonlinearity in the membrane. See Section
5.3 for an illistration of numerical energy conservation tomachine
accuracy.

Positivity of numerical energy is ensured [17] under the sta-
bility conditions

h2
M ≥ c2

Mk2 +2c2
Mαk+

√

(c2
Mk2 + 2c2

Mαk)2 + 16κ2k2 (23)

and
h ≥

√
3ck (24)

if the two interpolantsI2D→3D , andI3D→2D are chosen such
that when written in matrix form, they are transposes of one an-
other, scaled byhM/h. These stability conditions are identical to
those which would be obtained, under von Neumann analysis, for
the linear membrane system and acoustic space in isolation—now,
however, they hold in the case of a coupled nonlinear system.

4. PARALLEL IMPLEMENTATION USING CUDA

Implementation of the timpani model described above inevitably
relies on linear algebra constructs using both dense and sparse
matrix operations. Initial prototyping was performed using MAT-
LAB, resulting in some five hundred lines of matrix based code,
the majority of which is pre-runtime loop setup (primarily in gen-
erating matrix equivalents of the various difference operators). Bench-
marking on an Intel Core i7 "Sandy Bridge" processor gave a com-
putation time of 28.0 minutes for one second of simulation at44.1kHz,
for a typical drum enclosed within a cubic metre volume. Thisis
clearly not ideal for the user in learning how to explore the possi-
bilities of such an instrument.

One of the benefits of using FDTD schemes is their high level
of data independence at each time step. Such schemes are well
suited to parallel processing using GPUs, which can dramatically
reduce computation times even when using double precision cal-
culation [20]. This section details the transition from MATLAB to
the use of Nvidia’s CUDA architecture.

DAFX-4

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

4.1. Algorithm Structure

A brief overview of the algorithm is useful in understandingthe
computational requirements.

Preprocessing consists of matrix and grid space setup, and cre-
ating a list of grid points adjacent to the cavity boundaries. This
takes a matter of seconds and is therefore minimal compared to
computation time in the main kernel. The run-time loop performs
the following operations at each time step:

1. Calculate the 3D Laplacian taking into account cavity andab-
sorbing boundaries.
2. Compute the membrane displacement, with iterative linear sys-
tem solutions and interpolation.
3. Adjust acoustic field for interpolated effect of membraneinter-
action.
4. Read output from selected locations in the 3D grid.

Due to the implicit character of the coupling conditions (21)
and (22), a linear system solution is required to update the mem-
brane displacement, and an iterative method (provably convergent)
using five to ten iterations gives acceptable accuracy for correct-
ness testing. Table 1 shows the sizes of the grids used by the two
components of the system.

System Dimensions Total grid points
2D membrane 127 x 127 16,129
3D volume 75 x 75 x 75 421,875

Table 1: System grid sizes at 44.1kHz

The MATLAB implementation consists almost entirely of large
sparse matrix operations and other grid updates performed in a
vectorized manner. This is optimal in terms of runtime, and also
efficient in terms of code complexity. However, this does present
some challenges when porting to C and CUDA.

4.2. Translation to CUDA Code

For FDTD schemes, the key to maximising performance on a GPU
is reducingandcoalescingaccess to global memory (coalescing is
achieved when consecutive threads in a group access contiguous
elements of global memory). GPUs are very good at perform-
ing floating point operations, which can lead to a bottleneckwhen
transferring the data on and off the registers. This is a limiting fac-
tor for FDTD, where the compute/memory access ratios are very
low. Given this limitation, the structure of the MATLAB code,
with its reliance on large but highly sparse matrices of repeated
coefficients, is certainly not optimal for CUDA.

Refactoring of the code to "unroll" very large sparse matrixop-
erations into explicit loop-based updates using scalar coefficients
constituted the first stage of the port to CUDA. This was performed
for the 3D volume calculations. The 2D membrane calculations
due to interpolation, are much harder to rewrite in a loop-based
form, and were thus left in sparse matrix form. The result is ahy-
brid system of explicitly threaded and matrix form computations,
the latter requiring the use of objects handling sparse matrices in
both C and CUDA.

For the initial setup of sparse matrices in C code, elements
of the CSparse library were used [21]. This is a CSC (Com-

pressed Sparse Column) format library that uses efficient, but sin-
gle threaded functions that replicate those used in MATLAB.For
the membrane update calculations in the kernel, Nvidia’s CUS-
PARSE v2 library provides the necessary sparse matrix by dense
vector multiplication [22]. This requires the CSR (Compressed
Sparse Row) format, so the matrices created in CSparse were trans-
posed and the row and column arrays reversed.

Whilst the libraries provide the necessary tools for porting
from MATLAB, there are still issues that need to be addressed
to obtain optimal GPU performance.

4.3. GPU efficiency

Operations that are computationally expensive in serial C code can
be straightforward to run in CUDA. For instance, calculating the
3D Laplacian (Step 1.) in C code requires looping over the large
volume size, and computing an update for each point based on its
six nearest neighbours. This is naturally an expensive operation.
However, on the GPU it is very simple to code and runs extremely
fast. Using the latest FERMI architecture cards, there is noneed to
use shared memory for small scale stencils as the caching system
performs the same function [23]. CUDA v4 allows thread grids
which are three dimensional, and so there are no issues in mapping
the data to the grid.

In contrast, operations that are trivial in serial C can become
slightly tricky to perform in CUDA. Considery = a’*a, for a
dense column vector multiplied by its transpose to give a scalar
value result. This is used several times in the membrane calcula-
tion, including in the linear system solve. In C code, this issimply
a case of looping over the vector, multiplying each value by itself
and summing it into a variable holding the cumulative total.As
the 2D size is only 16 thousand points, this is an extremely fast
calculation.

Moving to CUDA, parallelizing this operation is not readily
apparent due to the cumulative sum. This first thing to note is
that this needs to be preformed on the GPU, as transferring data
between host CPU and the device has the slowest transfer rates.
So, an initial "naive" approach would be to get a single thread to
perform the computation as per the serial C code.

Figure 2:Vector multiplied by its transpose using shared memory.

This turns out to be extremely slow, even though the thread
only loops over a relatively small number of values, as no memory
coalescing occurs. To improve on this, one can use a reduction
algorithm technique that utilises shared memory (fig.2). This is a
two stage approach. Firstly, issueN = 1, 024 threads in a single
thread block. Each thread then "strides" over the vector elements
in a loop, shifting byN elements at each pass, multiplying the
element by itself and adding the result to the cumulative sumin
register. Each thread then stores its partial sum into a shared mem-
ory array of sizeN . The second stage is to get a single thread to
then loop over this shared memory array and sum the final result.

DAFX-5

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

This approach achieves memory coalescing for the data read from
global memory, and leaves a single thread looping over a small
amount of shared memory which is fast.

There are other stages in the kernel where memory coalescing
issues occur, and for instance in adjusting the Laplacian for the
cavity boundaries. These boundary points are stored in a list of, in
the case of a typical drum modelled at 44.1 kHz, around 10 thou-
sand rows and ten columns. This list is iterated through at stage 1.
of the kernel, picking-up values in the 3D volume. Achievingcoa-
lescing on the memory reads from the volume is hard, as they refer
to a 3D parabolic shape. However, coalescing the iteration through
the list is straightforward, again using a "strided" accessapproach
and ensuring that the list is linearly decomposed to enable this.

5. SIMULATION RESULTS

5.1. Accuracy of Staircase Approximation

As a preliminary check, it is useful to examine the use of the stair-
case approximation in the case of the membrane. A plot of modal
frequencies, for an ideal membrane (i.e., without losses, stiffness
or nonlinearity) appears in Figure 3, accompanied by an output
spectrum for a membrane simulation with a staircase approxima-
tion to the boundary. As expected, low frequency modes are ap-
proximated nearly exactly, with increasing error, due to numerical
dispersion, for increasing frequency.

0 100 200 300 400 500 600
−30

−20

−10

0

frequency (Hz)

ou
tp

ut
 s

pe
ct

ru
m

 (
dB

)

Figure 3:In red: Exact modal frequencies for an isolated circular
membrane, with wave speedcM = 112.65 m/s, under linear, loss-
less and non-stiff conditions, and fixed boundary conditions. In
blue: Output spectrum calculated through FDTD on a Cartesian
grid, using a staircase approximation at the boundary.

5.2. Pitch Glides

Pitch glides, though a minor effect in timpani, can be reproduced
using this model—an exaggerated pitch glide is illustated in Figure
4.

Figure 4: Spectrogram for sound output from the timapni model,
under low, medium, and high striking amplitudes; a pitch glide
phenomenon at high striking amplitude is apparent.

5.3. Numerical Energy Conservation

As an illustration, variation in numerical energy for this system,
subjected to an impulsive excitation, is shown in Figure 5; en-
ergy is constant to machine accuracy, as is clearly visible as bit
quantization in the energy. Under the stability conditions(23) and
(24), its constancy serves as a stability condition for the scheme
as a whole. The energy measure here is a positive definite (but
not quadratic) function of all the values stored in computermem-
ory at any given time step—for more on energy-based algorithm
construction, see, e.g., [17].

Though there is no need to calculate energy explicitly in a pol-
ished simulation, such an energy measure is a useful featurein
debugging, and serves as a form of checksum—virtually any error
in the implementation will be reflected by energy variation.

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

x 10
−5

time (s)

en
er

gy
 (

J)

0 50 100 150 200
−15

−10

−5

0

5

x 10
−16

time step

en
er

gy
 v

ar
ia

tio
n

Figure 5:Left, numerical energy of membrane (red), acoustic field
(blue) and total (green) as a function of time. Right, variation in
total numerical energy, normalized by total energy.

5.4. Performance analysis

The CUDA code is some three times longer than in MATLAB, at
1,500 lines (excluding the libraries). The Nvidia Tesla C2050 card
was used for performance testing, using double precision floating
point calculations. Running at 44.1kHz, this gave a computation
time of 82 seconds for a typical timpani drum set within a cubic
metre volume, a× 20.5 speedup over the original MATLAB code.
Computation time for a three second simulation is reduced to4
minutes, compared to nearly an hour and a half in MATLAB. Tim-
ings for the individual parts of the computation are given inTable
2.

Kernel Time (% of total)
Calculate Laplacian over 3D volume 8.50 %
Membrane : update 17.74 %
Membrane : interpolation 5.91 %
Membrane : linear system solution 48.76 %
Update volume interior 9.58 %
Update volume boundaries 7.31 %
Membrane coupling 1.95 %
Read output 0.25 %

Table 2: Relative kernel times for one time step at 44.1kHz

Despite the relatively small size of the 2D membrane grids,
their update takes 70% of the total kernel time. The iterative lin-
ear system solution is clearly the stalling point, taking nearly half
of the entire time. Each iteration requires two large scale CUS-
PARSE kernel calls, two simple kernel updates, and a reduction

DAFX-6

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

algorithm kernel as detailed above. This leaves little roomfor op-
timization in its current form. However, with further refactoring
of the code to a loop-based implementation, the membrane sparse
matrix multiplications would most likely lead to further reductions
in the computation time.

5.5. Full 3D Simulation Results and Sound Examples

For the sake of illustration, snapshots of a cross section ofthe
acoustic field are shown in Figure 6. Sound examples produced
using this model are available at

http://www2.ph.ed.ac.uk/~s0956654/Site/Instruments.html

6. CONCLUDING REMARKS

The timpani drum model described here is mainly linear, and gives
good quality results under low striking amplitudes. It is clear, how-
ever, from audio output, that the model does not adequately cap-
ture the salient perceptual qualities of the timpani at highstriking
amplitudes. This suggests a further, as yet unmodelled nonlinear-
ity, and a good candidate for further investigation is the membrane
itself—an averaged tension modulation term is an approximation
to a fuller nonlinear model, which, in addition to producingpitch
glides, will also serve to generate a cascade of energy towards the
high frequency range. Under extreme striking amplitudes, the pos-
sibility that nonlinear effects in the air itself (i.e. shocks) are gener-
ated within the cavity should be carefully considered. Other more
minor features which could be added are variable tension, both
spatially and temporally, in the membrane itself, and the ability of
the shell to vibrate. From a numerical design point of view, the
approximations to curved boundaries (i.e. staircase) usedhere are
rather crude, but will only lead to artifacts at wavenumberson the
order of the grid resolution—in particular, the lower modalfre-
quencies (especially important in the case of the membrane,and
the cavity) are very well simulated.

The development of a fully 3D physical modeling synthesis
environment requires two further steps: one is to extend the3D
computation region to that of an entire acoustic space, which would
require a more detailed treatment of the boundary∂VE , along the
lines of room acoustics simulation [1], and the embedding ofmul-
tiple such 3D instruments in the same space (allowing more subtle
effects such as sympathetic vibration). Both topics are thesubject
of ongoing research at the University of Edinburgh.

From a computational point of view, the main point that is
made in this article is that it is becoming possible to simulate rela-
tive complex systems, with a minimum of corner-cutting hypothe-
ses in a reasonable amount of time. Algorithm design for suchsys-
tems is a delicate undertaking—in an audio setting, the maincon-
cerns are the usual ones: (a) maintaining numerical stability un-
der the wide vartiety of instrument design and playing conditions
specified by a user, and (b) maintaining fidelity, at the perceptual
level, to the underlying physical model, in the face of effects such
as numerical dispersion. In parallel hardware, however, these is-
sues are complemented by (c) new parallelization issues andtheir
influence on computation time, which interacts with and informs
the basic design issues (a) and (b). An interesting example of this
is afforded by the case of coupled disparate grids, requiring inter-
polation. For problems defined over relatively small geometries, in
the case of the present algorithm, this interpolation turnsout to be
a bottleneck, and can in fact be slower than the computation of the

entire 3D acoustic field—which is opposite to the case of the algo-
rithm running on conventional hardware. Two ways to counteract
this might be to relax the energy-based requirement on stability,
from (a) leading to a fully explicit update, or to choose coincident
grids in the two spaces, leading to severe numerical dispersion,
from (b). Neither seems acceptable, for an algorithm running at an
audio rate.

As mentioned earlier, the timpani drum here has been taken
to be a test case for the implementation of a non-trivial physical
modeling synthesis algorithm in parallel hardware. The port from
Matlab to CUDA was carried out, here, in a relatively direct fash-
ion, without a serious attempt at optimization, and has resulted in a
large speed-up—with further optimization, one could well expect
a much greater acceleration. Yet, case-by-case optimization is a
tedious undertaking, and efforts are being made at Edinburgh to
develop parallel optimization tools which can be used for configu-
rations of increasing generality beyond that of a single drum.

7. REFERENCES

[1] D. Murphy, A. Kelloniemi, J. Mullen, and S. Shelley,
“Acoustic modelling using the digital waveguide mesh,”
IEEE Sig. Proc. Mag., vol. 24, no. 2, pp. 55–66, 2007.

[2] D. Botteldooren, “Finite-difference time-domain simulation
of low-frequency room acoustic problems,”J. Acoust. Soc.
Am., vol. 98, no. 6, pp. 3302–3308, 1995.

[3] L. Savioja, D. Manocha, and M. Lin, “Use of GPUs in room
acoustic modeling and auralization,” inProc. Int. Symposium
on Room Acoustics, Melbourne, Australia, Aug. 2010.

[4] J. Allen and D. Berkley, “Image method for efficiently sim-
ulating small-room acoustics,”J. Acoust. Soc. Am., vol. 65,
no. 4, pp. 943–950, 1979.

[5] T. Funkhouser et al., “A beam tracing method for interactive
architectural acoustics,”J. Acoust. Soc. Am., vol. 115, no. 2,
pp. 739–756, 2004.

[6] L. Rhaouti, A. Chaigne, and P. Joly, “Time-domain modeling
and numerical simulation of a kettledrum,”J. Acoust. Soc.
Am., vol. 105, no. 6, pp. 3545–3562, 1999.

[7] S. Bilbao, “Time domain simulation of the snare drum,”J.
Acoust. Soc. Am., vol. 131, no. 1, pp. 914–925, 2012.

[8] R. Marogna and F. Avanzini, “A block-based physical model-
ing approach to the soundsynthesis of drums,” Under review,
IEEE Transactions on Audio Speech and Language Process-
ing, 2010.

[9] H. Berger, “A new approach to the analysis of large deflec-
tions of plates,”Journal of Applied Mathematics, vol. 22, pp.
465–472, 1955.

[10] A. Nayfeh and D. Mook,Nonlinear Oscillations, John Wiley
and Sons, New York, New York, 1979.

[11] G. Carrier, “On the nonlinear vibration problem of the elastic
string,” Quarterly of Applied Mathematics, vol. 3, pp. 157–
165, 1945.

[12] B. Bank, Physics-based Sound Synthesis of String Instru-
ments Including Geometric Nonlinearities, Ph.D. thesis, Bu-
dapest Univeristy of Technology and Economics, 2006.

[13] P. Morse and U. Ingard,Theoretical Acoustics, Princeton
University Press, Princeton, New Jersey, 1968.

DAFX-7

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Figure 6:Snapshots of the cross section of the pressure field for a timpani simulation, at times as indicated.

[14] C. Webb and S. Bilbao, “Computing room acoustics with
cuda - 3d fdtd schemes with boundary losses and viscos-
ity,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, Prague, Czech
Republic, 2011.

[15] J.-P. Berenger, “Three-dimensional perfectly matched layer
for the absorption of electromagnetic waves,”J. Comp.
Phys., vol. 127, no. 2, pp. 363–379, September 1996.

[16] B. Engquist and A. Majda, “Absorbing boundary conditions
for the numerical evaluationof waves,”Mathematics of Com-
putation, vol. 31, no. 139, pp. 629–651, 1997.

[17] S. Bilbao, Numerical Sound Synthesis: Finite Difference
Schemes and Simulation in Musical Acoustics, Wiley, Chich-
ester, UK, 2009.

[18] S. Bilbao and J. O. Smith III, “Energy-conserving finitedif-
ference schemes for nonlinear strings,”Acta Acustica united
with Acustica, vol. 91, no. 2, pp. 299–311, 2005.

[19] B. Gustaffson, H.-O. Kreiss, and J. Oliger,Time Dependent
Problems and Difference Methods, John Wiley and Sons,
New York, 1995.

[20] L. Savioja, V. Valimaki, and J.O. Smith, “Audio signal pro-
cessing using graphics processing units,”J. Audio Eng. Soc.,
vol. 59, no. 1/2, Feb 2011.

[21] T. Davis,Direct Methods for Sparse Linear Systems, SIAM,
2006.

[22] Nvidia Corp, “CUDA Toolkit 4.1 CUSPARSE library user
guide,” Available : http://developer.nvidia.com/nvidia-gpu-
computing-documentationcusparse, Jan 2012.

[23] Nvidia Corp, “Fermi compute ar-
chitecture whitepaper,” Available :
http://www.nvidia.com/object/fermiarchitecture.html,
Oct, 2010.

DAFX-8

	1 Introduction
	2 Model System
	2.1 Membrane
	2.2 Acoustic Field
	2.3 Drum Cavity
	2.4 Absorbing Boundary Conditions
	2.5 Coupling Conditions
	2.6 Excitation and Output

	3 FDTD Algorithm
	3.1 Membrane Scheme
	3.2 Scheme over Acoustic Field
	3.3 Energy Conservation and Stability Conditions

	4 Parallel Implementation using CUDA
	4.1 Algorithm Structure
	4.2 Translation to CUDA Code
	4.3 GPU efficiency

	5 Simulation Results
	5.1 Accuracy of Staircase Approximation
	5.2 Pitch Glides
	5.3 Numerical Energy Conservation
	5.4 Performance analysis
	5.5 Full 3D Simulation Results and Sound Examples

	6 Concluding Remarks
	7 References

