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ABSTRACT

Solitons are special solutions of certain nonlinear pediféeren-
tial equations of mathematical physics. They exhibit props
that are partly similar to the solutions of the linear waveagpn
and partly similar to the behaviour of colliding particleSheir
characteristic features are well-known in the mathembliteaa-
ture but few closed-form solutions are available. This dbation
derives algorithmic structures for the computation ofteols in a
dimensionless space-time domain which can be scaled touthe a
dio frequency range. The investigations are confined to dinsit
second order solutions of the Korteweg-de Vries equati@ung
examples show that the effects of wave propagation andosolit
interaction can be represented by audible events.

1. INTRODUCTION

Nonlinear methods for sound synthesis have been investigaice
the days of analog modular synthesizers. It is not easy &sifja
the numerous approaches since nonlinear systems sharemo co
mon property other than that the superposition principlénafar
systems does not hold. Recent reviews of nonlinear sourtiesyn
sis methods can be found in a number of overview arti¢les][1-3
and books[[4,5]. Nonlinear problems arise often from spegia
plications. For example, in physical modelling the tensionlin-
earities of strings and membranes have received consldeagb
tention [6+-8] while in virtual analog modelling, the nordarities
of vacuum tube amplifiers are a topic of continuing intef@sfl].
Other approaches are encountered in formant synthesis/fi]
instruments[[13], and in effects modellirig [14] to name pu§tw.
This contribution discusses a class of nonlinear systenishwh

turn into broader ones with increasing width. On the otherdha
dispersion-free nonlinear propagation media can havephesite
effect of sharpening a waveform. In acoustics, this effeats to
the creation of shock waves, e.g. in the bore of brass ingtntsn
at high pressure [5,13]. In nonlinear and dispersive medth b
effects may balance each other and support stable solitarg w
forms, called solitons.

Solitons are of technical interest in optical fibre commanic
tions [15], but they are not easily observed in acoustice foin-
mation of acoustic solitons has been reported for soundagap
tion in crystals with typical durations in the picosecondga [16],
but there seem to be no physical systems which supportssiito
the audio frequency range. Therefore, solitons are usexldsea
theoretical concept for devising synthesis algorithmieathan a
physical model of a real-world sound source.

The problem of interest is here how to derive algorithmiaetr
tures for the computation of soliton-shaped solutions énatuse-
ful as waveforms for audio signals. The question is whether t
properties of solitons (wave-like propagation and cailigihave
any auditory qualities that can be perceived by humans.

The benefit of such an attempt is an alternative to the usual
graphical representation of solitons (see e.dl [17]). Winlages
and movies show single solitons or isolated collisions oftimu
ple solitons, a sound signal can convey the large scale cieara
of soliton solutions with multiple collisions in a periodic quasi-
periodic fashion. In return, if soliton sounds turn out toappeal-
ing then soliton sonification might be used as a sound syisthes
method in its own right.

As a first step in this direction, this contribution reportsre
experiments with the Korteweg—de Vries equation which b
selected because its properties are well covered in thatlites on

— to the knowledge of the author — has so far not been subject ofapplied mathematics. The results are presented in thenfioidp

investigation for sound processing and synthesis. Neekash, it
might be of interest here since special solutions of thesdimear
systems share properties with the propagation of waves@ati
regimes, i.e. acoustical waves in air or the d’Alembert Sotuof
vibrating strings. In contrast to the familiar oscillat®oof sound
waves and of vibrating bodies, the wave-like behaviour ificed
to solitary pulses. On the other hand, there are furthecesffgith-
out counterpart in linear systems which rather resembledhe
sion of nuclear particles like protons and neutrons. Bothppr
erties, the solitary wave character and the particle ¢ofiss have
contributed to the succint name of these special solutewigons
The existence of solitons is often exaplained as an interact
of dispersion and nonlinearity. In linear systems, the vi@ve
of a propagating pulse is only preserved in the absence pédis
sion. Otherwise, the waveform changes and short peaksatiypic

structure: Sectiofl]2 presents a short overview on solittarirsy
with a few historical remarks. The Korteweg—de Vries ecurati
and its first and second order solutions are discussed o8&kt
The contributions of this paper start in Sec{idn 4 where ey
structures are derived and further issues of soliton satific are
presented. An examples is shown in Sedfibn 5.

2. SOLITONS

2.1. Historical Remarks

The story of the first observation of a soliton is retold in gan
publications on this topic. In short, John Scott Russel,dtist
engineer observed a single non-periodic wave in a canalEear
inburgh in 1834. First he studied this effect in a self-buititer
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tank and ten years later he reported his observations toritistB
Assaociation for the Advance of Science. His experimentalifigs
were not well received until much later, when Boussinesq2)8

thenu = w1 + us is also a solution. This case is important for
solitons.

and Korteweg and de Vries (1895) set up equations for waves in3 2 Scaling Symmetry

shallow water.

Further advances were possible through the advent of Higita The non-applicability of the superposition principle does mean

computers. In the 1950s, Fermi, Past and Ulam performed gomp
tations in solid-state physics and observed also a balasteebn
dispersive and nonlinear effects. In 1965, Kruskal and Zkpun-
dertook similar computations for the Korteweg—de Vriesatimpn
and introduced the terrsoliton Stimulated by these numerical
results, several research teams found mathematicallyotigcso-
lution strategies for the KdV equation, the nonlinear Sdiwger
equation and a set of other nonlinear partial differentiplagions
which exhibit solitons. Moreover the existence of solithas been
linked to other properties of mathematical physics likevhlkdity
of conservation laws and Hamiltonian systems.

A technical application evolved in fibre optics, where light
pulses propagate according to the nonlinear Schrodingetie.
Here, solitons are used to carry bits of information aloregyftbre.

Remark: For details on this historical account see €.g! [18-22]
and the literature cited there. Some of these sources ooatai
excerpt of Scott’s original report. Applications to fibretiap are
presented e.g. in [15].

2.2. Literature on Solitons

The mathematical properties of solitons are covered ngtiarthe
original research papers but also in overview articlespimerous

lack of mathematical structure. Instead certain symmetiast,
e.g. the so-calledcaling symmetryit states that when(x, t) is a
solution to [1) then alse®u(ax, o*t) is a solution, as can easily
shown by performing the space and time derivativeElin (1).

The scaling symmetry allows to write the KdV equation for
all kinds of physical problems in the normalized form lof (3) b
proper time, space, and amplitude scaling. Therefore tial-
ized form is used now for simplicity; the de-normalizatianthe
audio rate is introduced when required.

3.3. First-Order Solitons

The KdV equation permits a multitude of different solutio@nly
those are considered here which have approximately finijest,
i.e. which vanish forr — +oco. For the most simple of these
solutions an elementary derivation is given here which detad
solitons of the first order. Various explicit and tacit asptions
are made on the way without further justification. For exampl
any integration constants are set to zero.

3.3.1. Derivation

The search for a solution tBl(1) is restricted to travellirayes so-
lutions, i.e. to solutions of the form(z,t) = a(£(x,t)) with
&(x,t) = x — vt andu(x,t) > 0. The constant represents the

books, and a growing number of web resources. The experément speed of a wave travelling in the direction of positive spand

with the KdV equation reported here are based on[[18—-26]mFro
these sourceg, [22,26] contain nicely structured referdéints for
further reading. Since Sectigh 3 largely relies on thesecesy
no more detailed references will be given. Where approgriat
marks with pointers to specific references are appended.

3. THE KORTEWEG-DE VRIES EQUATION

This section introduces one of the important nonlinearigleaif-
ferential equations which exhibit soliton solutions, Kerteweg—
de Vries equatioror short theKdV equation The presentation
is confined to a few properties which are required for sonifica
tion. For a more complete treatment see the literature git&ec-
tion[2.2.

3.1. Definition

The KdV equation describes a quantiti, t) which depends on a
one-dimensional space variahieand on time.. From the various
forms available in the literature, the following represgiun is
adopted here

Ut + 6uly + Ugzr =0, —c0 <z <00, 0<t<oo. (1)
The subscripts: andt¢ denote partial differentiation with respect
to these variables and= u(x, t) is used as a short notation.

It is the productuu, which makes this equation nonlinear.
Thus whenu; andu. are two different solutions t¢{1), then in
generalu = ajui + asus IS not a solution. However, whem
andus tend to zero forr — oo such that cross terms vanish,

time. Performing the partial derivations g (1) leadsito= —v1e,
Ue = Ug, ANAUgee = Ueee SUCh that

)

Ut + 6UUy + Uzge = —VUg + 6UTe + TUgee = 0.
For the solution of[(2) the following relations are used

1d._ .. 1d.3 .2 li(A)Q_A i (3)
ngu = Uug, 3d§u =Uu ug, 2d§ Ug = UgUge -

Integration of[2) leads te-vi+ 34> 4de: = 0 and multiplication

by @ and a further integration results in2a” + @* + 47 = 0.

Since the functionu(z, t) = @(&(x,t)) > 0is assumed to be
positive, it can be replaced by the squared functidn= % such
that

o 2 4
U U ——u

4 v
2 v

6

— it @’ 4 200 = — f%ag =0. (4)

N

Using the standard relations for hyperbolic functions

sech®z + tanh?z =1 and disech:c = —sechx tanh x
i
it can be shown that the expression in bracketElin (4) vasifdre

\/gsech(gg).

Thus the following hyperbolic function is solution to the ¥Xd
equation

u(§) ()

u(z,t) = u(z —vt) = 2 sech? (1\/5 (x— vt))

3 5 (6)
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Figure 1: Solitons of first and second order. Solid lines:lyita

solution, circles: values from the generating structuremfSec-

tion[4.2.
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(b) Solid line: first order soliton,
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Figure 2: Nonlinear functiorfxi, and resulting first order soliton
in logarithmic scale.

or equivalently withy = 42
u(z,t) = 2k°sech’ (kx — 4K°t). @)

By derivation with respect t@ andt it can be verified that(z, t)
actually solves[{{1) but the calculations are somewhat lgngt

The general shape of z, t) for a fixed value of as a function
of time is shown in FigJ1a). Obviously this solution is notipdic
and goes to zero exponentially fast for— +oco. It is called
a soliton of first order and constitutes not only the most &mp
solution to the KdV equation but also a component of highdeor
solitons.

3.3.2. Effective Duration

The pulse-like shape of the first oder soliton suggests tigm@ass
an effective duration in a similar fashion as a reverberatime

For larget, uo(t) can be simplified ta (t) ~ 8x? exp(—8k>t)
such that the effective duratigm (n) can be determined from

uo(iﬁ)igg))m = 4exp(—4K°tp(n)) = 107" (10)
as In4+nlnl0
tp(n) = P (11)

Fig.[2b) shows the soliton from Figl 1a) in logarithmic scaiéh
the effective durationp (n) forn = 1,2, 3.

3.4. Second Order Solitons

The discussion of second-order solitons starts with the cds
higher order solitons and verifies the general case for fadgro
solitons using the results from Section 313.1. Then therstoo-
der case is presented in some detail.

3.4.1. General Higher Order Solitons

The solution of the KdV equation which comprises higher orde
solitons is given by[18,19]

2

w(a,t) = 2%ln|M(x,t)|7

3 (12)

where|M]| is the determinant of a square matrix. Its size deter-
mines the order of the solitons. A closed form formulationXd
can be found in[25%, 26] as

M(z,t) =1+ /exp(—Aac/)bcT exp(—Az’) da’ exp(8A°t),
’ (13)
whereA andc are given in terms of the parametersandc; as

A = diag{k1,k2,...}, b'=[1,1,.. ], "= [c1,ca,.. ].
(14)
This concise formulation is attractive as a general salutm a
complex problem, but the occurence of a matrix determinadt a
a double differentiation i .{12) do not lead to an obviouste-
time solution.

Remark: The parameters; andc; are the so-called scattering
data for the reflectionless case, which generates solitossla-
tions. The KdV equation has also other solutions which ate no
considered here. The term reflectionless has to be unddrstoo
the abstract sense of the inverse scattering theory, sed&[&9].

3.4.2. Verification of the First-Order Case

is assigned to a room impulse response. Since the shape of theo gain some confidence in the general solution (12 - 14) ibvs n

soliton does not change upon translation, the effectivatéhm can
be derived for

uo(t) = u(0,t) = 2k°sech® (4k°t), (8)

where the even symmetry of the sech-function has been used.
Now the effective duratiorip(n) is defined by normalizing
uo(t) to its maximum value

> %tD(n). )

uo(t) ’ <10™"™  for

verified that it actually leads to the solution found in Sewf8.3.1
when the matriXM is of the sizel x 1. In this case

M=|M|=1+c /e‘“l“' do' et =1 4 qi(z,t) (15)

T

whereq; (z, t) results from the integration in(1L5) as

€1, -2m z+8r3t
2l€1

q(z,t) = (16)
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The spatial derivatives of the determinant can be written as
d=M|=14q, do=2rkq, dw=4k1iq (17)

for the evaluation of (112)

d (dz) _ pddag —dZ _ 8k3

u(x7t):2_ d2 - ( 1 _1
 +q 2)

ozx
Now the solution[{I7) follows by inserting, from (I8) and choos-
ing c1 = 2K1.

d

~. (18)

3.4.3. Second Order Case

The second order case follows fram]12) with a matrix of gize2
with the elements

q . . r 3
M;j = éi; + G g (Ritrj)atsayt i,j=1,2. (19)
Ki + Kj

The calculation of the determinant leads to

K1 — K2
K1+ K2

2
d=1+q +¢@+Kqg  with K:( ) (20)

wheregq: (z, t) andgz(z, t) are defined as il (16). The derivatives
are

de = —2(k1q1 + K2q2) + (k1 + K2)Kq1q2), (21)
dew = 4(K1q1 + K3q2) + (k1 + k2)°Kqige).  (22)

After a lengthy evaluation similar tg (1.8) the result can béten
as

a10qz2 + ao1q1 + a1 + (121(11_1 + a12QQ_1

1 T _1 _1 1 1N 2
(K(Q1Q2)2 +47 % * +q "qs + (fhfIz)_Z)
(23)

u(z,t) =8

with the coefficients

aio IK%K, ao1 IlﬁgK, a11=2(k1 + KQ)QK, a21 =K§7 a2 IK%.
(24)
As an example consider the valugs = 1, k2 = 2 and
c1 = 6, c2 = 12. Inserting intog; (z, t) andgz (z, t) and grouping
the exponential terms to hyperbolic functions as suggestd@3)
leads to

cosh(4x — 64t) 4+ 4 cosh(2x — 8t) + 3
(cosh(3z — 36t) + 3 cosh(z — 28t))2

u(z,t) =12 (25)

An example for this second order solution is shown in Eig. 2b)

Remark: The result[(ZB) fok; = 2x; has been derived i [19,
chapter 8.1] by Hirota’s method; the special césé (25) isfaisnd
in [19, chapter 4.5]. Note the sign change foin [19] due to a
different definition of the KdV equation.

3.4.4. Interaction of Second Order Solitons

The graphical representation €f {25) in Hig. 1b) suggesisttie
second order solution is composed of two first order solitams
shown in Fig[la). A careful analysis shows that this is indee
the case, however the second order solution is not a sim@arli
superposition of two first order solutions.

An inspection of the componengs, ¢ = 1, 2 shows that their
space time dependence has the fama: — 8x3t = 2k, (x — vst),
i.e. they travel with the speed; = 4xZ, wherevs > vy for
k2 > k1. Therefore three different cases can be distinguished,
where the terms slow and fast soliton refer to the speed

e The fast soliton lags behind the slow one, but approaches
the slow one due its higher speed.

e The fast soliton has caught up with the slow one. Their
interaction is also called a collision.

e The fast soliton has emerged from the collision and travels
in front of the slow one.

The time regimes for these three cases can be identified by the
effective duration from Sectidn_3.3.2. Collision occursentthe
difference between the positions of the maxima0éndg: is less
then the mean of their effective durations.

The effect that two components of a solution interact witthea
other and emerge from this interaction in their originalghis not
at all common for nonlinear differential equations. It ispesial
feature for some of the nonlinear equations which suppditbss.
This feature can be shown for the second order solution dfthé
equation by a limit process, which is only roughly sketchedeh

To this end the solution(z, t) is represented in a spatial co-
ordinate system which moves with either the speedr v>. Con-
sidering first onlyv; thenu(z, ¢t) can be written as

u(x,t) = u1(&1,t) with &1 (x,t) = x — vit. (26)
This change of variables is implemented[inl(23) by rewri{{fg)
i (z,t) = ie—in(w—vﬂ) _ ie_%l&l: gn(&)  @7)

2K1 2k1
C —zZK K v —v ~
e,t) = e IHSITI — g (61) (28)

with 521(51775) —0 for t— —oo,
Gor' (€1,8) = 0 for ¢t — oo since vy —v1 > 0.

Then the limit processs (¢1) = limy— 100 (€1, ) is carried out
such thatr varies witht such that; (z,t) = const. After some
calculations follows the result

ui (z,t) = 45 (&1) = 263 sech? (k1 (@ — v1(t + t5))).  (29)

Obviously, the solution:; (z, t) after the collision has the same
shape as:; (z,t) before the collosion, namely the shape of the
first order soliton. The only remaining effect of the coliisiis a
difference in time shift as indicated ky. This property is the
typical property of a soliton solution.

The values fontli are obtained by carrying out the limit pro-
cess and are not reported here. Only their difference istefest,
since [29) allows to express' (z, t) in terms ofu (x,t) as

_ . _ 1 1
ufl (z,t) = uy (z,t— At1)  with Aty = t] —tf:g—’ﬁ,ln?.
(30)

The same procedure is carried out fofz,t) = u2(&2,t) with
&2 = x—wqt and yields a similar result with a sign change fot

wf (@,0) = uy (¢ + Ata)  with Aty — é In % (31)
Forks > k1 > 0, bothAt; and Ats are positive. Therefore the
slow soliton with speed; emerges with a delay ak¢; from the
collision, while the fast soliton with speat emerges advanced
in time by At,. During the collision, the solutiom cannot be
described by anduZ, instead[(ZB) has to be evaluated.
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Remark: Fork; = 1, ko = 2andc; = 6, co = 12 follows
Aty = +In3 andAt; = 35 In3. This case is presented in 19,

chapter 4.5].

4. SONIFICATION

The section above has reviewed some elements from soligan th
ory and has shown how to obtain functions which satisfy th¥ Kd
equation. Now the emphasis shifts from functions to sigritigs
section considers sonification and derives some genersting-
tures which produces samples of solitons.

4.1. General Approach

The waveforms shown in Fif] 1 are pulse-like and as such not im
mediately suitable for listening. Also the two-solitondraction
described in Section_3.4.4 is a non-repetitive effect anebdmt
lend itself to the generation of audio signals. Thereforaes&ind
of periodic or quasi-periodic recurrence has to be intreduin
order to link the effects described above to audible events.

The sonification is achieved by letting the solitons tralehg
a circle with a large circumference such that the round inie tof
the different components is large compared to the effectiva-
tion of the single solitons. The realization of this conceggjuires
a detailed trigger mechanism to preserve the time shiftsdotced
by the soliton collisions.

4.1.1. Introduction of Recurrent Behaviour

The general approach taken here is explained in[Fig. 3. Wwsho
the concept of a circular arrangement which resembles &lgart
collider. Solitons are injected at = 0 and travel along the-
axis according to their individual speed. Collisions mayguwcas
the faster soliton catches up with the slower one. Depending
the circumference of the circle and the time delay resp. racb/a
of the slower and faster soliton, collisions will occur rafely
at different points of the circle. These collisions can bedated
from the delay and advance times calculated in SeEfionl3Thé
signal picked up at = x;, is then suitable for sonification.

Remark: The collider like structure in Fidl]3 has been inspired
by the approach to spectral analysislin/[20, Section IV].

fast soliton
= "L'p

slow soliton

r=0

Figure 3: Concept of a circular arrangement for repeateitbgol
collisions.

4.1.2. Computability

There are many good visualizations of solitons of low ordeiila
able, e.g[[1[7]. Usually they show the interaction of solidor the

duration of the collision which is roughly given by the suntioé
duration of the single solitons. The requirements for soaifon
are quite different because soliton-shaped signals hale gen-
erated for seconds or possibly hours without a natural liffifte
closed form equationEl(7) dr(P5) are of little use since thelived
hyperbolic functions grow beyond all limits as time incregsThis
fact constitutes a potential source of trouble in numercahpu-
tations.
A first measure towards computability is to replace the expo-
nential functionsy; (x, t) with their inverses
pila, 1) = g (o, ) = 2 s

Cq

i=12 (32

that tend to zero with time. Samplesyaf(x, t) can be easily gen-
erated by stable digital filters of first order as is shown norfifst
order solitons.

4.2. Generating Structures

4.2.1. First Order Solitons

To derive a generating structure for the first order solitewyite [18)
as

u(x,t) = 8k7 far(p1(x,t)) (33)
with the memoryless nonlinear mapping
1 1\ —2
InL(p) = <p5+p 2) =ﬁ~ (34)

The shape offxw.(p) is shown in Fig[Ra). Since the argument
is exponentially decreasing, a logarithmic represematias been
chosen.

To obtain a discrete-time sequence with samplels f (18) dix th
space at some positian= z, and sample the time axisat kT
with a suitable sampling instafft = f;*

ulk] = u(zp, kT) = 8k3 far(p1[k])

Since the nonlinear functiofivr.(p) is memoryless, the sampling
process has to be applied only to the exponential ferte,, t) as

(35)

Pk = g KT) = S e <ol @)
2 _ -
pil0] =pio = TETT, =T (37)
1

The resulting algorithmic structure is shown in Hiy. 4. Tleaer-
ation is triggered by a delta impulse, a most simple first osge-
tem generates sampesmfwhich drive the nonlinear mapping. A
multiplication with a constant gives the soliton-shapeghali.

The only approximation involved is that the generation does
not start at minus infinity but at some time zero. If the time be
tween the trigger and the maximum of the soliton is choos#iestly
large, i.e. larger than the duration of the soliton, thes #rror can
be made arbitrarily small. Fifl 1a) shows the analytic fooroad-
ing to (@) and samples produced by the structure from[Fig. 4.

For first order solitons of the forfi.(B3) there are no collisio
and their round trip time around the circle can be calculated
rectly from the circumference of the circlé astx = X/v. The
signala picked up atc = x, is then

U(zp,t) = Z u(xp, t—ptx) = 2v i SNL(p(@p, t—ptx)) -
S (38)

p=—00
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p1 K]

S[k] +@ faL + ulk]
L@

Figure 4: Generating structure for a soliton of first order.

T

Choosing the circle large enough such that the effectivatour
of the soliton is less than the round trip timg < tx ensures
that there is no overlap between both ends of the solitorepits
there are no cross terms jfxr,. In this case superposition may
be applied in good approximation and the observed signabean
written as

oo

Z p(xpv t— :utX)> .

p=—00

w(xp,t) = 20N, < (39)

The discrete-time version can be easily generated withttie-s
ture from Fig[# when the impulse at the input is replaced by a
periodic impulse train with spacingx = tx /7.

Note that only the signals at one point= x,, are generated.
The circular movement is imitated by injecting new pulseseat-
odic time instances.

4.2.2. Second Order Solitons

The generating structure for second order solitons can tieede

directly from [23) by replacing;; ' by p;. Different forms are

possible by multiplying denominator and numerator by theea
factor. On possibilty is[{40) which corresponds to the gtrie

shown in Fig[h

aiop1 + ao1p2 + aiipipz + a21p%p2 + a12p1p§

u(z,t) =8 5
(K + p1+ p2 + p1p2)
(40)
p1lk] n aio
pip2
CX }——»
G() P1p2 @—’G-:
@ P1p2 o @_ %u[k]
p2[k] T pf ao1 T
v oL

0?

Figure 5: Generating structure for second order solitons.

The sequenceg, [k] andp2[k] are generated from first order
recursive digital filters as shown in F[g. 4. Then only thredtin
plications between these sequences are required for aksary
combinations op, andp>. The remaining operations are multipli-
cations with the constants in the numerator, computingdhared
numerator and the final divison. In comparison with Elg. 4,dfa-
gram in Fig[® represents the two-input counterpart to tmdimear
function fxw.(p).

Similar to Fig[4, also the structure from Hig. 5 computescexa
samples of the analytic waveform. Fig. 1b) shows an examiple o
the collision period as obtained from the closed form equiefQ)
and the sequenagk] computed according to Figl 5.

But also first order solitons are generated correctly whey on
one input of Figlh is nonzero. As an exampleget= 0, z, = 0
and generatg; from the left part of Figl¥ withp;0 = Ksz" as
p1[k] = KzF"*0_ From Fig[5 follows then

271-2 _k—ko
ulk] = 8 KKz, - = 2k3sech® (4} (k — ko)T) . (41)

(K + K zFFo)

as in [T) (and similar fop2 with p; = 0). The delay byko is con-
trolled via the multipliep,o. This way, the soliton can be triggered
well before it reaches its maximum at= ky. The generating
structure from Fig b can therefore be used for the nonsiotii
and the collision case alike. It generates the correct firdtsec-
ond order solitons depending on the presence of the inpoalksig
p1 andps. Their correct trigger points are now discussed.

4.3. Trigger Timing

Assume for a moment that there are two waves without intieract
that can be treated according to linear superposition. Wiogim
start att = 0 with the respective speeds > v; > 0 then they
will meet again when the faster one is one full circle aheathef
slower one. This happens at timg, whenvatiin = vitiin + X
holds. The round trip time for the linear case is then

X

U2—’U1.

tin = (42)
Now return to the nonlinear case where two solitons collide a
t = 0 andz = 0. Then they emerge from the collisions with the
time shiftsu, (z, t — At1) andus (z, t + At2) (see Section 3.4.4).
The timet to and the locatiorry of the next collision are then
determined fromuz (to + At2) = v1(to — At1) + X as

v1 Aty + v2 Ats
to = tiin — —,
V2 — U1

2o = v1(to — At1) = va2(to + At2) modulo X.

(43)
(44)

In a similar way follows that further collisions occur at rtiples
of zo andto.

With the time between collisions known, a strategy for the se
ond order case can be established. It uses the generatictustr
for second order solitons from Fig. 5 and a trigger mecharfiam
generating new solitons at the appropriate times. Thisegfyecan
be described as follows:

¢ In between two collisions, the slow soliton and the fast-soli
ton are treated as separate pulses. They are generated by
triggering only one input of Fid.]5 according fo{41).

When a collision occurs, but suffiently far away frorg
then still the first order case can be applied as above. How-
ever when the next repetitions of the slow or the fast soliton
are triggered then the time shiftst; and At, have to be
considered.

When a collision occurs in the vicinity af;, then both in-
puts of Fig[ have to be triggered for the proper generation
of the interaction during collision.
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The procedure is shown in the top plot of Higj. 6. This plot eepr
sents a graphical timetable for motion of the solitons. The-h
zontal axis denotes time and the vertical axis denotes thitiqno
around the circle for a circumferencé = 8m and with a pick
up position atc, = 0. Two collisions can be predicted frofn {43)
and [44) starting with the first one at= 0 and¢ = 0 (denoted
by ). Between the collisions, the solitons move like waves ac-
cording to [6) (thin black lines). The approximate start zmdl
as determined by the effective duratiénl(11) is indicatedHigk
grey lines. The respective trigger pointsagt = 0 can be read
from the left grey line (denoted Hyl). Note that the trigger points
can be predicted from EgnEI(GITT[43,44) without solvirggkdV
equation.

A single soliton event occurs when the next trigger time is
outside of the duration of the current soliton. In this casslow
or fast exponential is triggered for which the generatimgctire
produces a single slow or fast soliton (see center and botfom
Fig.[d). The rising slope of the slow soliton is generatedrfro
values ofp; [k] > K, the maximum is reached fori [k] = K and
for p1[k] < K the slope falls again (similar for the fast soliton).
The threshold ofK is indicated by a horizontal line in the center
plot of Fig.[8.

In the case of a collision near,, the two trigger points are
so close that the second one falls into the duration of thedirs
(see Fig[h fort ~ 0.11s). In this case also the second soliton is
triggered together with the first one, i.e. earlier than i $ingle
soliton case. The shift of the trigger point to an earlietans is
considered in a larger value of the multiplier, i.e. an addal
delay. When both exponentials are active at the same timee, th
structure from Fig.lb generates a second order soliton.

5. EXAMPLES

Two examples of soliton signals for the second order case gen
erated according to the above strategy are shown in(Fig. & Th
sample ratefs has been chosen as 44.1 kHz and the duration of
the resulting time signal is 1s. In both cases the slow compibn

is the same with a value af, = 6. The signal on the top shows

a fast component witlo = 7.2 while k2 = 14.4 for the signal

on the bottom. Both travel around the circle with regularty o
curing collisions. Choosing different relations betwelea speeds

v1 = 4k? andvy, = 4«2 allows to change the characteristic of
the sound. If both speeds are close together< 1.1v;) then the
sound is quasi-periodic with occasional beating like effel?vhen

ve & 2v1, then the sound resembles the hum of a large engine,
with lots of small fluctations. Sound samples are availabkhe
website of the authof [27].

6. CONCLUSIONS

This contribution has shown that first and second ordersswiof
the KdV equation can be synthesized by simple algorithnigst
tures. They consist mainly of first order digital filters tangeate
decaying exponentials and of a nonlinear function whiclidpoes
the output signal. These experiments have to be regardectas p
liminary and are more a proof of concept which leaves room for
improvements and poses new questions. For example thertrigg
mechanism for the second order solitons could be solved glore
egantly. Another challenge is the extension to solitonshofit
and higher order. The solution process presented here irsargu
fashion becomes rather tedious with higher orders. Firitiyof

prediction of soliton movement and collisions
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Figure 6: Workflow of soliton generation. Top: predictionsfi-
ton movement and collisions frofn (43) afidl(44) with triggeinps
(3) and collisions O); center: exponential inpuis (¢) andpz (t);
bottom: solitons generated according to Eig. 5.

interest to investigate also other nonlinear partial diffeial equa-
tions which support solitons. A promising candidate cowddlie
nonlinear Schrédinger equation since it possesses sehttich
travel in both directions.
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