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ABSTRACT 

Analysis of sound field distribution is a data-intense and 
memory-intense application. To speed up calculation, an alterna-
tive solution is to implement the analysis algorithms by FPGA. 
This paper presents the related issues for FPGA based sound 
field analysis system from the point of view of hardware imple-
mentation. Compared with other algorithms, the OCTA-FDTD 
algorithm consumes 49 slices in FPGA, and the system updates 
536.2 million elements per second. In system architecture, the 
system based on the parallel architecture benefits from fast com-
putation since the sound pressures of all elements are obtained 
and updated at a clock cycle. But it consumes more hardware 
resources, and a small sound space is simulated by a FPGA chip. 
In contrast, the system based on the time-sharing architecture 
extends the simulated sound area by expense of computation 
speed since the sound pressures are calculated element by ele-
ment. 

1. INTRODUCTION 

Modeling the acoustical behavior accurately in a room is compli-
cated because it is affected by the dimensions of a room and the 
boundary properties. To address it, many methods have been 
proposed and developed for computer simulation, such as geo-
metrical analysis based acoustical ray tracing [1], and beam trac-
ing method [2], and wave equation based Finite Element Method 
(FEM) [3], Boundary Element Method (BEM) [4], and Finite 
Difference Time-Domain (FDTD) method [5]. Moreover, some 
physical equivalent methods were derived, such as transmission 
line matrix [6], and digital waveguide mesh (DWM) [7]. Alt-
hough these methods have advantages in some applications, their 
common disadvantages are intense computation and high 
memory requirement as a sound space increases so that the simu-
lations will take a long time by using current computer systems, 
even if they are much faster.   

Analysis of sound field distribution is data-oriented. To calcu-
late the sound pressure of an element, the sound pressures of its 
neighbors and its own at previous time steps are needed. During 
calculation, amounts of data are read and written into the 
memory system, thus in general-purpose computers, memory 
systems do not work effectively due to the intensive data re-

quirements, lots of data misses in cache, and limited memory 
bandwidth. To solve this problem, graphics processor units 
(GPUs) [8] or FPGAs are applied to speed up such type of data-
oriented applications [9][12]. In GPU, streaming multiprocessors 
work in parallel to speed up computation, and data are exchanged 
by the on-chip shared memory in each streaming multiprocessor 
rather than the traditional cache or external memory.  

FPGA provides another way to analyze the sound field distri-
bution. In FPGA based solution, the wave equations are imple-
mented by programmable logic cells directly, and the temporary 
data are stored by D flip-flops or block memories. In our previ-
ous work, a sound field analysis system based on the two-
dimensinal Digital Huygens’s Model (DHM), and theoretical 
analysis for three-dimensional applications were investigated 
[9][11-13]. In this paper, from the point of view of hardware im-
plementation, design issues about the FPGA based sound field 
analysis system are discussed. The rest of this paper is organized 
as follows. Section 2 will discuss the design issues in the FPGA 
based sound field analysis system. Section 3 will introduce some 
algorithms for three-dimensional sound field analysis briefly. 
Section 4 will presents the performance comparison. Finally, 
conclusions are drawn in Section 5.  

2. DESIGN ISSUES IN THE FPGA BASED SOUND 
FIELD ANALYSIS SYSTEM 

In order to achieve high system performance in the FPGA based 
sound field analysis system, some design issues are considered, 
such as the algorithm, data dependency and system architecture. 
(1) Algorithm. The algorithm determines the architecture of a 

computing cell. In hardware implementation, complex arith-
metic operations consume more hardware resources, and de-
crease the system clock frequency due to long route delay. 
Generally, additions, subtractions, and shift operations are 
implemented by hardware easily and require small hardware 
resources, while multiplication and division operations are 
complicate and consume more hardware resources. Thus an 
algorithm with no or few multiplication and division opera-
tions involved is suitable for hardware implemention. 

(2) Data dependency. One of the advantages of hardware im-
plementation is to realize the analysis system in parallel to 
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speed up calculation. However, if data dependency exists, 
calculations can not be carried out in parallel, instead it oc-
curs in series. So during implementation, data flow in the 
system needs to be analyzed carefully. 

(3) System architecture. System complexity and memory re-
quirement depend on the system architecture, which is an-
other key factor to affect system performance.  

2.1. Algorithms for three-dimensional sound field analysis 

Many algorithms have been proposed to analyze the sound field 
distribution. Among them, the FDTD method and its extensions 
are applied widely, where the wave equations are discretized by 
the central differential method on staggered grids. Recently, 
some algorithms were proposed for hardware implementation, 
such as Yee-FDTD, DHM, and compact explicit FDTD. 

2.1.1 Yee-FDTD algorithm 

In the Yee-FDTD algorithm [9], the propagation of a sound wave 
is governed by equation (1).  
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Where P is the sound pressure, t is time, ߩ is medium density, u 
is particle velocity, and c is sound wave velocity. When equation 
(1) is discretized by the central differentiate method, and the as-
sumption x y z l       is applied, equations (2) and (3) 

are derived to calculate the sound pressure of an element.
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Where l is the grid size, xu , yu , zu are the virtual particle ve-

locity at the center point between two neighbor elements, and 
c t

l  
 is the courant number. If   is 1

2
, the multiplication 

operation in equation (2) is replaced by a right shift operation. 
From equations (2) and (3), 13 operations, including five addi-
tions, seven subtractions, and one right-shift operation, are re-
quired to calculate the sound pressure of an element. The ad-
vantage of the Yee-FDTD algorithm is without multiplication 
operations invovled. However, data dependency exists. For ex-
ample, the sound pressure ܲ௡ሺ݅, ݆, ݇ሻ must be calculated before 

the calculation for 
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2.1.2 Compact Explicit FDTD 

A general formulation of the compact explicit FDTD scheme was 
presented by K. Kowalczyk [10], and the related parameters were 
given for different stencil grids. Among them, the algorithm for 
the octahedral grid, namely OCTA-FDTD, is easily implemented 
by hardware because it is simple and without multiplication op-
eration. Although the algorithms for other stencils can be also 

implemented by hardware, they are more complex than the 
OCTA-FDTD algorithm shown in equation (4). 
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In equation (4), nine operations, including seven additions, one 
subtraction, and one right shift operation, are required to calcu-
late the sound pressure of an element. Especially, no data de-
pendency problem exists during computation. 

 2.1.3 DHM 

In the DHM [11][12], a sound space was divided into small 
acoustic tubes. When a sound pulse is incident into the crossed 
junctions of acoustic tubes, scatterings occurred because of the 
impedance discontinuity. Some parts of the incidence are trans-
mitted to the neighbor tubes in six directions, and the rest is re-
flected back along the incident direction. The relations between 
the scatterings and incidences are shown in equation (5). 


































































































n

n

n

n

n

n

n

n

n

n

n

n

P

P

P

P

P

P

S

S

S

S

S

S

6

5

4

3

2

1

6

5

4

3

2

1

211111

121111

112111

111211

111121

111112

3

1

(5)             

 
Fig. 1 An three-dimensional DHM element 
For an element at the position (i, j, k), the relations between n

mS  

and 1n

mP  (m =1, 2, … 6) are shown as follows: 
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According to equations (5) and (6), the sound pressure of an ele-
ment is calculated through the incidences and scatterings. The 
calculation requires twelve operations, including five additions, 
six subtractions, and one multiplication. This is the original 
DHM algorithm. To speed up calculation, the updated DHM al-
gorithm shown in equation (7) is derived by inserting equations 
(5) and (6) into the sound pressure formula and eliminating the 
pulses 1( , , )n

mP i j k . Equation (7) is same as the FDTD expres-

sion in the case of SLF stencil scheme (SLF-FDTD)[10].  
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(7)  

In our previous work [11][12], a two-dimensional DHM algo-
rithm was proposed and implemented by FPGA, where the divi-
sion by two is replaced by one-bit right shift operation. But in 
equation (7), the division by three can not be eliminated, thus 
seven operations are required to calculate the sound pressure of 
an element, including five additions, one subtraction, and one 
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multiplication. The advantage of the updated DHM algorithm or 
SLF-FDTD is only seven operations are required, but the multi-
plication operation can not be removed. 

In principle, the multiplication operations are eliminated by 
choosing the suitable courant number in the Yee-FDTD algo-
rithm while they are removed through modifying the forms of the 
grid stencils in the OCTA-FDTD algorithm. In the DHM, the 
multiplication operations can not be replaced by other simple op-
erations, such as shift operations. 

2.2. System architecture 

The parallel architecture and time-sharing architecture are ap-
plied in the FPGA based sound field analysis system [13]. In the 
parallel architecture, a computing cell is located at each element 
to calculate its sound pressure. Thus a sound space is mapped 
into a hardware based array. For a two-dimensional sound space, 
the system diagram is shown in Fig. 2a [13].  

    
(a) Parallel architecture           (b)Time-sharing architecture 

Fig. 2 Diagram of system  

In Fig. 2a, a computing cell is designed based on the wave 
equations and exchanges data with its neighbors. The calculation 
results are held by D flip-flops inside a FPGA chip. The number 
of computing cells is determined by the dimensions of a sound 
space and the grid size ∆l. Hence the structure of the computing 
cell has a great impact on the system performance and hardware 
resource consumption. Typically, the chosen algorithm and the 
design techniques will affect the design of a computing cell. The 
chosen algorithm is the principle factor while circuit design tech-
niques are complements. 

The system shown in Fig. 2a is suitable to be implemented by 
FPGA. A FPGA chip consists of Configurable Logic Blocks 
(CLBs), which are arranged like an array. The CLBs are con-
nected to each other through the programmable routing matrix, 
and they are the main logic resources for implementing sequen-
tial as well as combinational circuits. Thus a computing cell in 
the shown architecture can be implemented by one or more CLBs, 
and they are cascaded together easily through the programmable 
inter-connectors.  

The main problem in the parallel architecture is the data com-
munication. As shown in Fig. 2a, all uniform computing cells are 
cascaded together and the computation result of a cell is as the 
inputs of its neighbor cells at the next time step. A common tech-
nique is to use handshaking signal between computing cells for 
data communication. When a computing cell completes the cal-
culation, its output is updated and the handshaking signal is set, 
then the neighbor cells start to read the updated results and carry 
out computation. Although the data throughput and timing can be 
improved in this solution, the calculation efficiency is low. If the 
output of a computing cell can not be updated on time, all calcu-
lations in other computing cells will be suspended, which will 
result in the overhead increasing. To solve this problem, when a 
computing cell is designed, all operations in it are limited to be 
finished in a clock cycle. Hence all computing cells complete 

computations and updated their outputs synchronously. At next 
clock cycle, they read data from their neighbors, and no hand-
shaking signals are required. Compared with other solutions, this 
solution maybe has relatively worse timing performance, the 
hardware system is simple, and computing efficiency is enhanced.  

Another problem in the parallel architecture is hardware re-
source consumption. Since a computing cell locates at each ele-
ment, when a sound space becomes larger, the hardware re-
sources will increase rapidly. Thus a sound field analysis system 
with limit computing cells may be implemented by a FPGA chip. 
Therefore, a sound field analysis system based on the parallel 
architecture and implemented by a FPGA chip can only analyze 
the sound field distribution in a small area.  

To extend the simulated area, another architectural solution is 
to apply the time-sharing architecture, which is shown in Fig. 2b. 
In Fig. 2b, the sound pressures are calculated element by element 
through the computing cell module. At a time step, to calculate 
the sound pressure of an element, the system controller generates 
the related addresses, then the computing cell accesses the 
memory to read data according to the addresses, and calculate the 
sound pressure, finally, the calculation result is written into the 
memory. This procedure is carried out again until the sound pres-
sures of all elements are obtained. Then a new incidence is read 
and computations start for the next time step. In Fig. 2b, the 
memory can be external DDR RAM or block RAMs inside a 
FPGA chip. Typically, DDR RAM has large capacity, but it can 
not be accessed in parallel, and only one datum can be read out at 
one time. The block RAMs inside a FPGA chip can be config-
ured to work in multi-ports mode to read data out in parallel in 
order to reduce the overhead of data accessing.   

The system based on the time-sharing architecture extends the 
simulated area deeply. For example, when the analysis algorithm 
is two-dimensional DHM, the system capacity based on the time- 
sharing architecture is improved about 20 times in a FPGA chip, 
namely, the simulated area is increased 20 times [13]. However, 
its computation performance will be decreased 20 times. In the 
parallel architecture, the sound pressures of all elements are ob-
tained at one clock cycle, while they are retrieved element by 
element in the time-sharing architecture. Thus the computation 
time spent in the time-sharing architecture is 20 times as that tak-
en in the parallel architecture. This problem can be sovled by 
system partition methods, where a system is divided into several 
small systems, and they work in parallel.   

3. PERFROMANCE COMPARISON 

3.1. Performance estimation 

Table 1 shows the performance estimation of different algorithms. 
In Table 1, the number of slices denotes the hardare resource 
consumption in the Xilinx FPGA XC5VLX330T, and the block 
RAMs RAMB18X2s and RAMB36_EXPs are used to implement 
the multiplication operations. The maximum frequency is the 
maximum clock frequency system works after synthesis. Alt-
hough the Yee-FDTD algorithm does not require multiplication 
operation, it consumes more hardware resources due to more 
arithmetic operations, and the data dependency results in the de-
crease of the maximum clock frequency. Since the DHM algo-
rithms and SLF-FDTD needs multiplication operations, some 
extra block RAMs are needed. The elements updated per second 
presents the system execution performance based on the assump-
tion all operatoins are finished in a clock cycle in a computing 
cell. From the Table, the OCTA-FDTD algorithm consumes least 
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hardware resources, and has best execution performance due to 
its simplicity and no multiplication involved.  

Table 1 Performance estimation of different algorithms 

3.2.  Memory requirement 

Sound field analysis is a memory-intensive application. Inside a 
FPGA chip, data are stored by D flip-flops or block memory. 
Compared with the solution to storing data in the external 
memory, the overhead to read data from D Flip-flops or block 
memory is much shorter. Moreover, the bottleneck of perfor-
mance improvement due to the bandwidth limitation of external 
memory can be eliminated. If a sound space is divided into N×
M×K elements and data are 32-bit, from equations (2) and (3), 
in the Yee-FDTD algorithm, at each element, except the sound 
pressure at previous time step is stored, the virtual particle ve-
locity at x, y, z directions  is also needed to be kept for further 
calculation. Hence at each element, four data are stored, and the 
system needs 16NMK byte memory. 

From equation (4), the sound pressures of an element at previ-
ous one and two time steps are kept in the OCTA-FDTD algo-
rithm. Thus the system needs 8NMK byte memory. In the DHM 
original algorithm, at each element, scatterings and incidences at 
six directions are stored, thus the system requires 48NMK byte 
memory. In contrast, the sound pressures of an elelment at previ-
ous one and two time steps are kept in the DHM updated algo-
rithm or the SLF-FDTD, and the system needs 8NMK byte 
memory. Among all these algorithms, the OCTA-FDTD and 
DHM updated algorithms require smallest size memory. 

3.3. Calculation error 

In FPGA implementation, calculation error mainly results from 
data truncation error and arithmetic overflow. Since data are in-
teger in hardware system in order to simplify system design, 
truncation error will appear. It can be reduced by increasing data 
width or changing data representation format. But the system 
complexity and hardware resources consumption will increase 
with data width increasing. On the other hand, arithmetic over-
flow introduces errors, such as addition overflow. Sometimes this 
type of error is accumulated. Thus the more arithmetic operations 
are carried out, the larger errors will be introduced. Typically, 
they are avoided by data width extension. More arithmetic opera-
tions require more data bits extension, which will results in more 
hardware resource consumption. In addition, dispersion errors 
exist in the FDTD scheme. Compared with the SLF-FDTD, the 
OCTA-FDTD algorithm has smaller dispersion error.   

4. CONLCUSION 

Sound field analysis is a data-oriented and intense memory re-
quirement application. FPGA devices provide another solution to 
it through direct hardware implementation of propagation equa-
tions of sound wave. In hardware implementation, in order to 
reduce hardware resource consumption and improve system per-

formance, multiplication operations are required to be reduced or 
eliminated. Based on this, the OCTA-FDTD algorithm is more 
suitable for hardware implementation, which consumes small 
hardware resources, and has no multiplicaton operations involved. 
From the point of view of architecture, the parallel architecture 
provides faster computation, but consumes more hardware re-
sources. In contrast, the time-sharing architecture extends simu-
lated area by degrading low computation speed. 
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Algorithm 
No. of 
Slices 

RAMB
18X2s 

RAMB 
36_EXPs 

Cells updated per 
second (millions)

Yee-FDTD 142 0 0 73.9 

DHM(original) 118 2 3 140.7  
DHM(updated) 
or SLF-FDTD 81 1 3 153.7 

OCTA-FDTD 49 0 0 536.2 


