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ABSTRACT 

This paper concerns highly-efficient real-time FIR filtering with 

low input-to-output latencies. For this type of application,  

partitioned frequency-domain convolution algorithms are estab-

lished methods, combining efficiency and the necessity of low 

latencies. Frequency-domain convolution realizes linear FIR  

filtering by means of circular convolution. Therefore, the  

frequency transform’s period must be allocated with input  

samples and filter coefficients, affecting the filter partitioning as 

can be found in many publications, is a transform size K=2B of 

two times the audio streaming block length B. 

 

In this publication we review this choice based on a generalized 

FFT-based fast convolution algorithm with uniform filter  

partitioning. The correspondence between FFT sizes, filter parti-

tions and the resulting computational costs is examined. We 

present an optimization technique to determine the best FFT size. 

The resulting costs for stream filtering and filter transformations 

are discussed in detail. It is shown, that for real-time FIR filtering 

it is always beneficial to partition filters. Our results prove  

evidence that K=2B is a good choice, but they also show that an 

optimal FFT size can achieve a significant speedup for long  

filters and low latencies. 

 

Keywords: Real-time filtering, Fast convolution, Partitioned 

convolution, Optimal filter partitioning 

 

1. INTRODUCTION 

The term fast convolution summarizes techniques to efficiently 

compute the discrete convolution of two sequences x(n) and h(n). 

This paper considers real-time linear FIR filtering, where a  

continuous stream of input samples x(n) is convolved with an 

impulse response h(n)=h0,...,hN-1 of finite length N. Thereby a 

continuous stream of output samples y(n) is generated, which is 

defined by the discrete convolution formula 
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Efficient real-time FIR filtering is important for many fields in 

technology and science. Its use for audio applications includes 

real-time digital audio effects, like equalizers and convolution 

reverbs, audio rendering for computer games and auralization in 

virtual reality, comprehensive 3-D sound reproduction tech-

niques, like wave-field synthesis (WFS)—and much more. 

The filtering in eq. 1 can be easily implemented in the time-

domain, using a direct-form FIR filter (transversal filter, tapped 

delay-line). The method has no inherent latency. Since filter  

coefficients can be directly altered, it allows concepts for a large 

variety of filter adaptation. Unfortunately, FIR filtering in the 

time-domain is very inefficient. The runtime-complexity for  

filtering N samples with N filter coefficients is within O(N²) and 

makes real-time filtering with long filter impulse responses  

virtually impossible. 

 

Fast convolution methods 
 

Methods that compute the discrete convolution faster than in 

O(N²) are known as fast convolution algorithms. Many of these 

techniques base on fast frequency-domain transforms and com-

pute the discrete convolution within the transform’s domain, 

where the convolution operation itself is computationally cheap 

to realize. The overall complexity is eventually determined by the 

fast frequency-domain transform algorithms, which have typical 

runtimes in O(N log N). The most famous transform is the  

Discrete Fourier Transform (DFT) implemented using Fast 

Fourier Transform (FFT) algorithms. But other transforms like 

the Discrete Trigonometric Transforms (DTTs) [1] or Number 

Theoretic Transforms (NTTs) [2] can be used to implement fast 

convolution as well, yielding to different formulations of the 

convolution operation in the transform’s domain. A great deal of 

research has been spent on finding the minimum number of 

arithmetic operations to implement discrete convolution. For 

small sizes, number theoretic convolution concepts, like the 

Agarwal-Cooley algorithm [3], require less arithmetic operations. 

But for long filters FFT-based convolution is most efficient [3]. 

The popularity of FFT-based fast convolution algorithms is to a 

high degree reasoned by the availability of highly-optimized FFT 

libraries (e.g. FFTW [4], Intel Performance Primitives) and  

excellent CPU support of floating-point arithmetic, including 

instruction sets that ease the implementation of complex-valued 

operations. 

 

When it comes to real-time filtering, simple frequency-domain 

convolution concepts, like the classical (unpartitioned) block 

convolution [5], lack efficiency. Filters need to be partitioned in 

order to combine computational efficiency and the demand for 

low input-to-output latencies. Splitting filters into several sub-

filters of equal length is referred to as uniformly partitioned con-

volution. Highly-developed algorithms exist. We give an over-
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Figure 1: Effective utilization of a full DFT period  

for fast circular convolution without time-aliasing. 

 

view on the state-of-the-art for these techniques in section 4. An 

advantage of uniformly partitioned convolution is, that it can be 

easily implemented and suits the requirement of most applica-

tions. Another feature is that it allows combining frequency-

domain filters—in serial or parallel [6]. However, when it comes 

to long filters, a non-uniform filter partitioning is more favorable 

[7,8,9,10]. It includes longer parts as well, which eventually low-

er the overall computational complexity. Unfortunately, non-

uniform methods are difficult to implement and also put up  

additional restrictions on the exchange of filters [11]. The  

question for the optimal non-uniform filter partition has been 

raised by several authors [9,10]. 

 

 

2. CONTRIBUTIONS 

When implementing real-time FIR filtering by partitioned convo-

lution in the frequency-domain, one can choose the transform 

sizes—e.g. FFT sizes. Basically, small transform sizes K can be 

efficiently computed using codelets [4], but they have the dis-

advantage of resulting in many filter parts. Large size transforms 

on the other hand reduce the number of filter parts, but might 

compute less efficiently. For real-time filtering the standard 

choice is a transform size of K=2B two times the block length B, 

which can be found in numerous publications—regarding  

uniformly [12] and non-uniformly partitioning [9,10]. This 

choice seems reasonable [12], but it is unclear whether it is the 

optimal solution in terms of the lowest computational effort. 

 

In this paper we therefore research the influence of the transform 

size used for FFT-based partitioned frequency-domain convolu-

tion and optimize it for maximum computational efficiency. The 

following aspects are concerned: 

• The correspondence between transform sizes and the 

filter partitioning is derived. 

• A generalized uniformly-partitioned FFT-based convolution 

algorithm is presented, incorporating state-of-the-art 

techniques. Its runtime is analyzed in detail. 

• Founding on this algorithm, the FFT size is optimized for 

maximum computational efficiency. 

• The resulting computational costs for streaming filtering and 

also the exchange/adaptation of filters are reviewed.  

• General conclusions are drawn and the consequences to other 

real-time filtering techniques are discussed. 

 

 

3. PROBLEM DESCRIPTION 

We regard the problem of real-time FIR filtering from the pers-

pective that filter length N and input-to-output latency, given by 

the audio streaming block length B, are fixed constraints. B is 

chosen to meet the low latency requirements–typical values are 

small powers of two, like 128, 256 or 512 samples. The objective 

is to minimize the computational effort required for the filtering. 

Therefore, this work concerns the FFT size K as an optimization 

parameter. The choice of the transform size K has consequences 

on the filter partitioning and the efficiency. In this section we 

introduce the basic relations between these variables. 

 

In general, the convolution of two sequences with finite lengths 

M, N yields to a sequence with a maximum length of M+N-1. 

The circular convolution property of the DFT [13] states that 
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for a DFT size K. In order to realize the desired linear convolu-

tion in eq. 1 by circular convolution as in eq. 2, the lengths M, N 

of the two sequences must satisfy the critical condition 

 

 1−+≥ NMK  (3) 

 

meaning that the maximum length M+N-1 of the result y(n) fits 

into the DFT period of K points. Otherwise the output is time-

aliased and incorrect. For a maximal computational efficiency it 

is advised to fully exploit a DFT period of K values. Under-

utilization of the DFT period K is unfavorable, because it intro-

duces unnecessary zero-padding and increases the number of  

filter parts. As figure 1 shows, the DFT period K can be fully 

utilized, by allocating B values for the input samples and by  

using all of the remaining K-B+1 values for filter coefficients. 

Accordingly, the whole filter of N coefficients is split into parts 

of L filter coefficients determined by 

 

 1+−= BKL  (4) 

 

The number of resulting filter parts P is given by the integer 
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Obviously, the number of filter parts decreases with increasing 

DFT sizes K, because more filter coefficients can be packed into 

a DFT period. Valid ranges for the FFT size K are determined by 

 

 1−+≤< BNKB  (6) 

 

K must in any case exceed the block length K>B, otherwise no 

filter coefficients are processed. For K≥N+B-1 the filter remains 

unpartitioned. Values K>N+B-1 are useless, because they  

increase costs by processing ineffective, padded zeros. 
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The simplest case is not to partition the filter and process it as a 

whole (P=1). Therefore, the DFT size K is chosen so that input 

block and filter fit into the period, meaning Kunpart.=B+N-1. The 

unpartitioned method is efficient for filter length N≈B close to 

the block length B, ideally N=B. For large N>>B far too much 

ineffective zeros are processed, making the method inefficient.  

 

4. CONVOLUTION ALGORITHM  

For our research of optimal FFT sizes we introduce a generalized 

partitioned convolution algorithm that allows FFT sizes to be 

freely adapted. It is illustrated in figure 2. The algorithm uses a 

uniform filter partitioning as discussed before.  Input parameters 

are the block length B, corresponding to the desired input-to-

output latency, and the filter length N. The DFT period of K 

points gets fully utilized with B input samples and L=K-B+1  

filter coefficients. Accordingly, the filter of N coefficients is split 

into P parts of L=K-B+1 coefficients each. The algorithm incor-

porates several improvements, which have been published in re-

cent years. The Overlap-Save scheme [13] is used to filter con-

secutive stream blocks. Overlap-Save computes more efficiently 

than Overlap-Add, because it saves extra additions of the partial 

outputs. Necessary delays for the subfilters, are directly imple-

mented in the frequency-domain, using a frequency-domain  

delay-line (FDL) [14]. This is possible, because all DFT spectra 

share the same size. An FDL is implemented as a shift register of 

DFT spectra.  Moreover, it is beneficial to implement the summa-

tion of the subfilters’ results in the frequency-domain as well. 

Using these two techniques, only one FFT and one IFFT have to 

be computed for each processed stream block. Thereby the major 

computational load goes back to the complex-valued multiplica-

tions. Specialized FFTs/IFFTs for real-valued input data [15] are 

used and all computations are performed on complex-conjugate 

symmetric DFT spectra, speeding up the processing by nearly a 

factor of two.  

 

The algorithm consists of two main parts: filtering the samples of 

the audio streams, referred to as stream processing.  Before they 

can be used with the method, a filter transformation has to be 

performed, which transforms the filter impulse responses into the 

according partitioned frequency-domain representation. There-

fore, it is uniformly partitioned into filter parts of the length L. 

Each filter part is zero-padded to match the FFT size K.  After-

wards, each padded filter part is transformed using a  

K-point real-to-complex FFT.  

 

Each block of the audio stream is processed in the following 

way: A time-domain input buffer acts as a sliding window of K 

samples on the stream of input samples. With each new input 

block, its contents are shifted K-B elements to the left and the 

new input block of B samples is then placed to the right. The 

whole buffer is then transformed using a K-point real-to-complex 

FFT and the resulting DFT spectrum is stored in a frequency-

domain delay-line (FDL).  Before this step, the FDL is shifted by 

one slot. All DFT spectra in the FDL are now point-wise com-

plex-valued multiplied with the corresponding DFT spectra of 

the transformed filter parts. All results are summed up in a  

frequency-domain accumulation buffer. Next the contents of this 

buffer are transformed back into the time-domain using a  

K-point complex-to-real IFFT. The B left values form the output 

block. The other K-B values are time-aliasing and discarded. 

Runtime analysis 

We account the computational complexities by numbers of re-

quired arithmetic operations. These measures found on theoreti-

cal considerations. Under knowledge of the properties of the 

given hardware, they can be approximately translated into CPU 

cycles or runtimes. An exact mapping however is nearly impossi-

ble to achieve, because the runtime behaviour is hard to  

predict—due to cache utilization and efficiency under load of 

multiple threads. We assume that a K-point Fast Fourier Trans-

form (forward and backward) can be computed with KKk log⋅  

arithmetic operations (with log the natural logarithm). k is a  

scaling factor that depends on the actual FFT algorithm used. We 

benchmarked the single-threaded execution of real-valued FFTs 

using the FFTW3 library on an Intel Core2 system. For input  

sizes that are powers of two, we obtained a value of k ≈1.7—

assuming one arithmetic operation per CPU cycle. This scaling 

factor is also a good approximation for the number of arithmetic  

operations of the real-valued split-radix FFT in [15]. Allowing 

for an effective analysis, we consider idealized costs of the FFT 

with a constant k=1.7 for arbitrary input sizes K in the following. 

 

 

 
 

Figure 2: Uniformly partitioned FFT-based fast convolution algorithm 
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A complex-valued multiplication of the form =++ ))(( dicbia  

ibcadbdac )()( ++−  requires six arithmetic operations (four 

multiplications and three additions). DFT spectra )(kX of purely 

real-valued input sequences )(nx  fulfil the Hermitian symmetry 

)()( kKXkX −=  [13], for a transform size of N. This symmetry 

can be exploited for improved performance, because only the 

number of 
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symmetric DFT coefficients out of the total N DFT coefficients 

need to be stored and processed. The complex-valued multiplica-

tion of two symmetric DFT spectra therefore takes 

 2/)1(6 +K operations. The accumulation of DFT spectra is re-

alized by point-wise additions of the elements, which accounts to 

 2/)1(2 +K  operations. Note that for the accumulation of P 

spectra only (P-1) spectrum additions need to be carried out.  

Measures shall be independent of the block length and are there-

fore divided by B. 

 

The computational cost for filtering one output sample is  

hence given by 
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The overall number of arithmetic operations for transforming a 

filter into the frequency-domain representation, demanding to 

compute P K-point FFT transforms, is expressed by 
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5. OPTIMIZATION PROBLEM 

 
For input parameters (N, B) the optimization problem is the  

minimization of the cost ),,( KBNTstream
(eq. 8) for feasible 

transform sizes in the range 1−+≤< BNKB  (eq. 6). Before 

discussing optimal solutions in general, we like to illustrate the 

characteristic properties of the cost function ),,( KBNTstream
 by 

the help of an example: The black curve in figure 3a shows the 

computational costs of the algorithm depending on the FFT size 

K for the example of N=4096 and B=128. For a better under-

standing, we also added the corresponding number of filter parts 

in the diagram (gray curve). For all problem instances (N, B) we 

found this common type of cost progression. Very small FFT 

sizes K just above the lower bound K>B+1 result in large num-

bers of filter parts, which are computationally inefficient. With 

increasing FFT sizes the cost decreases until the optimum Kopt is 

reached—in the example Kopt=443. From here on the costs in-

crease again. Generally, the number of filter parts given by eq. 5 

decreases with increasing FFT sizes K until it reaches the mini-

mum of 1 for K≥N+B-1 (indicated by the vertical line). From this 

point on the filter is unpartitioned. Larger values of K are mean-

ingless, because unnecessary zeros are processed and the number 

of DFT coefficients increases. The result is a strictly linear cost 

progression for K≥N+B-1. From the graph we can already see, 

that a partitioned convolution outperforms an unpartitioned fil-

tering clearly. 

 

Figure 3b shows the region around the optimum Kopt. In between 

the points of discontinuity, the progression is monotonously in-

creasing and it shows ripples. These originate from ceiling in the 

definition of the number of symmetric DFT coefficients in eq. 7. 

Local minima of the cost function are located at values of K, 

where in eq. 7 K+B-1 is a factor of N—or in other words, the 

filter size N is a multiple of the filter part length L. At these 

points denoted by Kmin
(i) the number of filter parts is reduced by 

one, compared to the preceding transform size Kmin
(i)-1. This  

abruptly reduces the number of necessary complex-valued  

 

Figure 3a: Computational costs for a fixed filter length 

N=4096 and block length B=128 as a function of the 

 FFT size K (black curve) The gray curve is the cor- 

responding number of filter parts. For K≥4332 the filter 

consists of a single part only and remains unpartitioned. 

 

 

 
 

Figure 3b: Detailed view of the cost function shown in (3a) 

around the optimum (cost minimum), here Kopt=443. 
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Filter Block Optimal DFT size Standard DFT size Unpartitioned filter 

length length Kopt parts cost K=2B parts cost ratio Kunpart. cost ratio 

1024 128 298 6 99,0 256 8 100,2 1,01 1151 242,5 2,45 

1024 256 460 5 71,7 512 4 72,5 1,01 1279 136,5 1,90 

1024 512 767 4 56,3 1024 2 61,2 1,09 1535 83,8 1,49 

1024 1024 1365 3 47,4 2048 1 57,9 1,22 2047 57,8 1,22 

4096 128 443 13 248,6 256 32 293,7 1,18 4223 1035,5 4,16 

4096 256 665 10 158,9 512 16 168,9 1,06 4351 535,1 3,37 

4096 512 1097 7 108,9 1024 8 109,3 1,00 4607 285,1 2,62 

4096 1024 1843 5 80,2 2048 4 81,9 1,02 5119 160,2 2,00 

4096 2048 3071 4 63,4 4096 2 70,6 1,11 6143 98,0 1,54 

4096 4096 5461 3 53,7 8192 1 67,3 1,25 8191 67,3 1,25 

16384 128 713 28 743,6 256 128 1067,7 1,44 16511 4646,3 6,25 

16384 256 1075 20 431,7 512 64 554,4 1,28 16639 2342,9 5,43 

16384 512 1604 15 263,7 1024 32 301,6 1,14 16895 1191,2 4,52 

16384 1024 2513 11 170,9 2048 16 178,0 1,04 17407 615,4 3,60 

16384 2048 4095 8 118,5 4096 8 118,6 1,00 18431 327,5 2,76 

16384 4096 6826 6 88,4 8192 4 91,3 1,03 20479 183,8 2,08 

16384 8192 12287 4 70,5 16384 2 80,0 1,13 24575 112,1 1,59 

16384 16384 21845 3 60,0 32768 1 76,7 1,28 32767 76,7 1,28 

65536 128 1257 58 2508,6 256 509 4139,5 1,65 65663 20885,9 8,33 

65536 256 1745 44 1366,6 512 256 2096,4 1,53 65791 10465,0 7,66 

65536 512 2559 32 768,4 1024 128 1071,1 1,39 66047 5254,6 6,84 

65536 1024 4002 22 450,4 2048 64 562,3 1,25 66559 2649,4 5,88 

65536 2048 6143 16 278,0 4096 32 310,7 1,12 67583 1346,8 4,85 

65536 4096 9557 12 182,4 8192 16 187,3 1,03 69631 695,5 3,81 

65536 8192 16383 8 128,0 16384 8 128,0 1,00 73727 370,0 2,89 

65536 16384 27306 6 96,2 32768 4 100,7 1,05 81919 207,3 2,15 

65536 32768 49151 4 77,6 65536 2 89,4 1,15 98303 126,3 1,63 

65536 65536 87381 3 66,2 131072 1 86,1 1,30 131071 86,1 1,30 

Table 1: Resulting stream filtering costs of optimal FFT sizes in comparison the other methods. 

multiplications. Optimal FFT sizes Kopt can hence easily be 

found by just inspecting the absolute minimum at all points 

Kmin
(i)  in the interval [B+1, N+B-1]. 

 

 

However, it is desirable to obtain a closed formula for Kopt(N, B) 

as a function of the problem instance (N, B). This is much hin-

dered by the discontinuous ceil functions in the cost formulation 

(eq. 8), which demand a piecewise analysis. The problem can be 

relaxed by replacing ceil(x) in eq. 8 with its lower and upper 

bounds   1+≤≤ xxx  (see figure 3b). This yields to a  

continuous cost formulation of the functional form 
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The absolute minimum of this continuous function is located at 

the zero of its derivative 
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Finding the root of this type of function turned out to be difficult 

as well and there does not seem to be an analytic expression for x 

solving 0d/)(d =xxf  (within intervals of interest), which even-

tually define the optimal FFT size Kopt. 

 

6. RESULTS 

 

We reviewed a multitude of problem instances (N, B) and in-

spected the resulting optimal transform sizes Kopt. In the follow-

ing the results are discussed with respect to several aspects  

including the sheer computational cost for filtering the audio 

stream but also the complexity for transforming filters into the 

frequency-domain representation in order to use them. 

 

Costs of stream filtering 

 

Table 1 gives a detailed insight into the results. The two leftmost 

columns define the problem instance (N, B). Followed by the 

data of the optimal uniformly partitioned convolution using the 

presented algorithm, starting with the optimal FFT size Kopt, the 
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Figure 4: Relative computational costs of the filter transfor-

mation. The graph shows factors in relation to an unparti-

tioned fast convolution. The block length here is B=128. 

 

number of resulting filter parts P and the computational costs. All 

cost measures in the table refer to the definition in the previous 

section. The next block of columns lists data for uniformly parti-

tioned convolution with the standard FFT size K=2B, two times 

the block length B. The fourth column in this block is the cost 

ratio of this method in relation to the optimal approach, given by 

Tstream(N,B,2B)/Tstream(N,B,Kopt). The right block lists data for the 

unpartitioned convolution of the instance (N, B). Here the FFT 

size is chosen Kunpart.=N+B-1 and the filter consists of a single 

part only. The rightmost column is the cost ratio of an unparti-

tioned filtering in comparison to the optimal solution. 

 

Straightaway we see that for all problem instances the two cost 

ratios are above one. A closer comparison on the computational 

costs reveal, that the optimized method is faster in any case—

sometimes just by a tiny margin. The data in table 1 underlines, 

that an unpartitioned convolution is only efficient when N≈B. 

Here the choice of K=2B converges against the FFT size Kun-

part.=N+B-1≈2B-1, resulting in almost identical computational 

costs. We see that optimal FFT sizes Kopt can be smaller or larger 

than the FFT sizes for the two other methods. Interestingly, even 

for large N≈B the computational costs for an optimal FFT size 

Kopt are significantly less than for an unpartitioned filtering. Op-

timal filter partitions consist here of three parts and we can iden-

tify a speedup of ≈1.3 for the optimized method over the other 

methods. This is a very important discovery, stating that it is al-

ways beneficial to partition filters for real-time filtering in the 

frequency-domain. 

 

Another observation is that for a filter length N, we can always 

find a block length B, where an FFT size of K=2B results in al-

most optimal (minimal) costs, even if K=2B differs from Kopt. 

These cases (N, B) seem to approximately fulfil N≈16B. For 

problem instances around this point, the standard solution K=2B 

drops in efficiency. But we like to point out, that the penalty in 

costs is rather low, proving evidence that K=2B is a very good 

choice in general. Nevertheless, when filtering very long filters 

with low latencies, an optimized FFT size Kopt leads to a signifi-

cant reduction of costs. An example is the case of N=65536, 

B=128 where the speedup against the standard solution reaches 

65%. 

 

 

Costs of filter transformation 
 

In case that filters are adapted or exchanged over time, they have 

first to be transformed into the corresponding frequency-domain 

representation. This computation introduces a separate latency, 

we refer to as filter exchange latency. It as well depends on the 

partitioning, as eq. 9 shows. 

 

In figure 4 we compare filter transformation costs for an unparti-

tioned filter with the standard choice of K=2B and the optimal 

transform size Kopt. In this example a block length of B=128 was 

chosen. The filter transformation for a transform size Kopt is sig-

nificantly cheaper than for K=2B. For N=4096 we find a de-

crease in costs ≈22% and for N=65536 ≈28%. For long filters the 

transformation is even cheaper than for the unpartitioned case. 

However, there is a lower limit in filter length where the unparti-

tioned filter are cheaper to realize. In the example this limit is 

N≈4096 taps, where N≈32B. 

 

We conclude that an optimal transform size Kopt lowers the com-

putational effort for transforming filters significantly over all 

other methods. This is a huge advantage of our method. Not only 

is the stream filtering more efficient, but also the filter transfor-

mation for the majority of cases. Exceptions are found for small 

filter lengths. In the example we identified a maximum increase 

in costs of 52% for N<4096. Concerning that the transformation 

of small filters can be computed very fast anyway, this is no real 

disadvantage. 

 

 

 

7. CONCLUSIONS 

In this work we discussed the choice of transform sizes for effi-

cient real-time linear filtering realized by fast uniformly parti-

tioned convolution in the frequency-domain. Small transform 

sizes result in a large number of filter parts and vice versa. For 

detailed research of the optimal transform size, we presented a 

generalized convolution algorithm with a uniform filter partition-

ing and analyzed its properties. Even if they found on FFT-based 

implementations, our results can be applied for other transform-

based convolution techniques like (e.g. Discrete Trigonometric 

Transforms and Number Theoretic Transforms).  

 

The presented results give a detailed insight into the properties of 

optimal filter partitions for uniformly partitioned frequency-

domain convolution algorithms. We can confirm that the stan-

dard transform size K=2B of twice the block length B—

commonly found in literature—is generally a good choice, deliv-

ering a high computational efficiency. However, it turns out that 

specific optimization of the FFT size can significantly lower the 

costs for the case of long filters and low latencies. A very inter-

esting observation is that the partitioning of filters is always 

beneficial and outperforms unpartitioned convolution in  

any case. We find for an optimal uniform partitioning, the  

computational costs do not have a linear dependency on the  

filter length—as it is known for non-uniformly partitioned  

convolution [9].  
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Consequences for other methods 
  

The standard method for real-time filtering with long filters of 

>10.000 coefficients is non-uniformly partitioned convolution. 

Increasing subfilter sizes can significantly lower the computa-

tional effort compared to a uniform-partitioning. But any non-

uniform filter partitioning is assembled from segments, which are 

basically uniformly partitioned sections with equal subfilter 

sizes. Consequently, our results can be applied to further  

optimize this class of algorithms as well and leads to an im-

proved performance. 

 

 

Applicability in practice 
 

Optimal solutions in theory do often not translate into the desired 

optimal behaviour of practical implementations. A doubtful issue 

concerning this work might be to concern FFT sizes as an opti-

mization parameter, without applying restrictions—for instance 

powers of two. A large number of FFT algorithms are known  

today. Efficient O(N log N) algorithms exist for arbitrary sizes  

(prime-factor algorithm (PFA), see [16,17]). However, FFT  

algorithms are most efficient if the transform size N is a highly 

composite number. And yet still transform sizes that are powers 

of two are among the most efficient. But there is no rule stating 

that an FFT of next greater power of two does compute faster. 

Therefore, it is reasonable to also account non-powers of two for 

implementations. Hence, our results have great importance also 

for practical implementations. We like to point out that the num-

ber of arithmetic operations of an FFT cannot be precisely  

described with a fixed scaling factor k  for arbitrary input sizes. 

Optimal results in practice can only be achieved by bench-

marking the actual runtimes on the target hardware and using 

these measures for the optimization. 
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