
Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

 DAFX-1

 OPTIMAL FILTER PARTITIONS FOR REAL-TIME FIR FILTERING
USING UNIFORMLY-PARTITIONED FFT-BASED CONVOLUTION

IN THE FREQUENCY-DOMAIN

Frank Wefers, Michael Vorländer

Institute of Technical Acoustics,

RWTH Aachen University

Aachen, Germany

ABSTRACT

This paper concerns highly-efficient real-time FIR filtering with

low input-to-output latencies. For this type of application,

partitioned frequency-domain convolution algorithms are estab-

lished methods, combining efficiency and the necessity of low

latencies. Frequency-domain convolution realizes linear FIR

filtering by means of circular convolution. Therefore, the

frequency transform’s period must be allocated with input

samples and filter coefficients, affecting the filter partitioning as

can be found in many publications, is a transform size K=2B of

two times the audio streaming block length B.

In this publication we review this choice based on a generalized

FFT-based fast convolution algorithm with uniform filter

partitioning. The correspondence between FFT sizes, filter parti-

tions and the resulting computational costs is examined. We

present an optimization technique to determine the best FFT size.

The resulting costs for stream filtering and filter transformations

are discussed in detail. It is shown, that for real-time FIR filtering

it is always beneficial to partition filters. Our results prove

evidence that K=2B is a good choice, but they also show that an

optimal FFT size can achieve a significant speedup for long

filters and low latencies.

Keywords: Real-time filtering, Fast convolution, Partitioned

convolution, Optimal filter partitioning

1. INTRODUCTION

The term fast convolution summarizes techniques to efficiently

compute the discrete convolution of two sequences x(n) and h(n).

This paper considers real-time linear FIR filtering, where a

continuous stream of input samples x(n) is convolved with an

impulse response h(n)=h0,...,hN-1 of finite length N. Thereby a

continuous stream of output samples y(n) is generated, which is

defined by the discrete convolution formula

 ∑
∞

−∞=

−⋅=

k

knhkxny)()()((1)

Efficient real-time FIR filtering is important for many fields in

technology and science. Its use for audio applications includes

real-time digital audio effects, like equalizers and convolution

reverbs, audio rendering for computer games and auralization in

virtual reality, comprehensive 3-D sound reproduction tech-

niques, like wave-field synthesis (WFS)—and much more.

The filtering in eq. 1 can be easily implemented in the time-

domain, using a direct-form FIR filter (transversal filter, tapped

delay-line). The method has no inherent latency. Since filter

coefficients can be directly altered, it allows concepts for a large

variety of filter adaptation. Unfortunately, FIR filtering in the

time-domain is very inefficient. The runtime-complexity for

filtering N samples with N filter coefficients is within O(N²) and

makes real-time filtering with long filter impulse responses

virtually impossible.

Fast convolution methods

Methods that compute the discrete convolution faster than in

O(N²) are known as fast convolution algorithms. Many of these

techniques base on fast frequency-domain transforms and com-

pute the discrete convolution within the transform’s domain,

where the convolution operation itself is computationally cheap

to realize. The overall complexity is eventually determined by the

fast frequency-domain transform algorithms, which have typical

runtimes in O(N log N). The most famous transform is the

Discrete Fourier Transform (DFT) implemented using Fast

Fourier Transform (FFT) algorithms. But other transforms like

the Discrete Trigonometric Transforms (DTTs) [1] or Number

Theoretic Transforms (NTTs) [2] can be used to implement fast

convolution as well, yielding to different formulations of the

convolution operation in the transform’s domain. A great deal of

research has been spent on finding the minimum number of

arithmetic operations to implement discrete convolution. For

small sizes, number theoretic convolution concepts, like the

Agarwal-Cooley algorithm [3], require less arithmetic operations.

But for long filters FFT-based convolution is most efficient [3].

The popularity of FFT-based fast convolution algorithms is to a

high degree reasoned by the availability of highly-optimized FFT

libraries (e.g. FFTW [4], Intel Performance Primitives) and

excellent CPU support of floating-point arithmetic, including

instruction sets that ease the implementation of complex-valued

operations.

When it comes to real-time filtering, simple frequency-domain

convolution concepts, like the classical (unpartitioned) block

convolution [5], lack efficiency. Filters need to be partitioned in

order to combine computational efficiency and the demand for

low input-to-output latencies. Splitting filters into several sub-

filters of equal length is referred to as uniformly partitioned con-

volution. Highly-developed algorithms exist. We give an over-

{fwe,mvo}@akustik.rwth-aachen.de

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-155

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

 DAFX-2

Figure 1: Effective utilization of a full DFT period

for fast circular convolution without time-aliasing.

view on the state-of-the-art for these techniques in section 4. An

advantage of uniformly partitioned convolution is, that it can be

easily implemented and suits the requirement of most applica-

tions. Another feature is that it allows combining frequency-

domain filters—in serial or parallel [6]. However, when it comes

to long filters, a non-uniform filter partitioning is more favorable

[7,8,9,10]. It includes longer parts as well, which eventually low-

er the overall computational complexity. Unfortunately, non-

uniform methods are difficult to implement and also put up

additional restrictions on the exchange of filters [11]. The

question for the optimal non-uniform filter partition has been

raised by several authors [9,10].

2. CONTRIBUTIONS

When implementing real-time FIR filtering by partitioned convo-

lution in the frequency-domain, one can choose the transform

sizes—e.g. FFT sizes. Basically, small transform sizes K can be

efficiently computed using codelets [4], but they have the dis-

advantage of resulting in many filter parts. Large size transforms

on the other hand reduce the number of filter parts, but might

compute less efficiently. For real-time filtering the standard

choice is a transform size of K=2B two times the block length B,

which can be found in numerous publications—regarding

uniformly [12] and non-uniformly partitioning [9,10]. This

choice seems reasonable [12], but it is unclear whether it is the

optimal solution in terms of the lowest computational effort.

In this paper we therefore research the influence of the transform

size used for FFT-based partitioned frequency-domain convolu-

tion and optimize it for maximum computational efficiency. The

following aspects are concerned:

• The correspondence between transform sizes and the

filter partitioning is derived.

• A generalized uniformly-partitioned FFT-based convolution

algorithm is presented, incorporating state-of-the-art

techniques. Its runtime is analyzed in detail.

• Founding on this algorithm, the FFT size is optimized for

maximum computational efficiency.

• The resulting computational costs for streaming filtering and

also the exchange/adaptation of filters are reviewed.

• General conclusions are drawn and the consequences to other

real-time filtering techniques are discussed.

3. PROBLEM DESCRIPTION

We regard the problem of real-time FIR filtering from the pers-

pective that filter length N and input-to-output latency, given by

the audio streaming block length B, are fixed constraints. B is

chosen to meet the low latency requirements–typical values are

small powers of two, like 128, 256 or 512 samples. The objective

is to minimize the computational effort required for the filtering.

Therefore, this work concerns the FFT size K as an optimization

parameter. The choice of the transform size K has consequences

on the filter partitioning and the efficiency. In this section we

introduce the basic relations between these variables.

In general, the convolution of two sequences with finite lengths

M, N yields to a sequence with a maximum length of M+N-1.

The circular convolution property of the DFT [13] states that

)}}({
)(

)}({
)(

{
)(

)(
1

nh
k

DFTnx
k

DFT
k

DFTny ⋅=
− (2)

for a DFT size K. In order to realize the desired linear convolu-

tion in eq. 1 by circular convolution as in eq. 2, the lengths M, N

of the two sequences must satisfy the critical condition

 1−+≥ NMK (3)

meaning that the maximum length M+N-1 of the result y(n) fits

into the DFT period of K points. Otherwise the output is time-

aliased and incorrect. For a maximal computational efficiency it

is advised to fully exploit a DFT period of K values. Under-

utilization of the DFT period K is unfavorable, because it intro-

duces unnecessary zero-padding and increases the number of

filter parts. As figure 1 shows, the DFT period K can be fully

utilized, by allocating B values for the input samples and by

using all of the remaining K-B+1 values for filter coefficients.

Accordingly, the whole filter of N coefficients is split into parts

of L filter coefficients determined by

 1+−= BKL (4)

The number of resulting filter parts P is given by the integer

 








+−

=

1BK

N
P (5)

Obviously, the number of filter parts decreases with increasing

DFT sizes K, because more filter coefficients can be packed into

a DFT period. Valid ranges for the FFT size K are determined by

 1−+≤< BNKB (6)

K must in any case exceed the block length K>B, otherwise no

filter coefficients are processed. For K≥N+B-1 the filter remains

unpartitioned. Values K>N+B-1 are useless, because they

increase costs by processing ineffective, padded zeros.

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-156

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

 DAFX-3

The simplest case is not to partition the filter and process it as a

whole (P=1). Therefore, the DFT size K is chosen so that input

block and filter fit into the period, meaning Kunpart.=B+N-1. The

unpartitioned method is efficient for filter length N≈B close to

the block length B, ideally N=B. For large N>>B far too much

ineffective zeros are processed, making the method inefficient.

4. CONVOLUTION ALGORITHM

For our research of optimal FFT sizes we introduce a generalized

partitioned convolution algorithm that allows FFT sizes to be

freely adapted. It is illustrated in figure 2. The algorithm uses a

uniform filter partitioning as discussed before. Input parameters

are the block length B, corresponding to the desired input-to-

output latency, and the filter length N. The DFT period of K

points gets fully utilized with B input samples and L=K-B+1

filter coefficients. Accordingly, the filter of N coefficients is split

into P parts of L=K-B+1 coefficients each. The algorithm incor-

porates several improvements, which have been published in re-

cent years. The Overlap-Save scheme [13] is used to filter con-

secutive stream blocks. Overlap-Save computes more efficiently

than Overlap-Add, because it saves extra additions of the partial

outputs. Necessary delays for the subfilters, are directly imple-

mented in the frequency-domain, using a frequency-domain

delay-line (FDL) [14]. This is possible, because all DFT spectra

share the same size. An FDL is implemented as a shift register of

DFT spectra. Moreover, it is beneficial to implement the summa-

tion of the subfilters’ results in the frequency-domain as well.

Using these two techniques, only one FFT and one IFFT have to

be computed for each processed stream block. Thereby the major

computational load goes back to the complex-valued multiplica-

tions. Specialized FFTs/IFFTs for real-valued input data [15] are

used and all computations are performed on complex-conjugate

symmetric DFT spectra, speeding up the processing by nearly a

factor of two.

The algorithm consists of two main parts: filtering the samples of

the audio streams, referred to as stream processing. Before they

can be used with the method, a filter transformation has to be

performed, which transforms the filter impulse responses into the

according partitioned frequency-domain representation. There-

fore, it is uniformly partitioned into filter parts of the length L.

Each filter part is zero-padded to match the FFT size K. After-

wards, each padded filter part is transformed using a

K-point real-to-complex FFT.

Each block of the audio stream is processed in the following

way: A time-domain input buffer acts as a sliding window of K

samples on the stream of input samples. With each new input

block, its contents are shifted K-B elements to the left and the

new input block of B samples is then placed to the right. The

whole buffer is then transformed using a K-point real-to-complex

FFT and the resulting DFT spectrum is stored in a frequency-

domain delay-line (FDL). Before this step, the FDL is shifted by

one slot. All DFT spectra in the FDL are now point-wise com-

plex-valued multiplied with the corresponding DFT spectra of

the transformed filter parts. All results are summed up in a

frequency-domain accumulation buffer. Next the contents of this

buffer are transformed back into the time-domain using a

K-point complex-to-real IFFT. The B left values form the output

block. The other K-B values are time-aliasing and discarded.

Runtime analysis

We account the computational complexities by numbers of re-

quired arithmetic operations. These measures found on theoreti-

cal considerations. Under knowledge of the properties of the

given hardware, they can be approximately translated into CPU

cycles or runtimes. An exact mapping however is nearly impossi-

ble to achieve, because the runtime behaviour is hard to

predict—due to cache utilization and efficiency under load of

multiple threads. We assume that a K-point Fast Fourier Trans-

form (forward and backward) can be computed with KKk log⋅

arithmetic operations (with log the natural logarithm). k is a

scaling factor that depends on the actual FFT algorithm used. We

benchmarked the single-threaded execution of real-valued FFTs

using the FFTW3 library on an Intel Core2 system. For input

sizes that are powers of two, we obtained a value of k ≈1.7—

assuming one arithmetic operation per CPU cycle. This scaling

factor is also a good approximation for the number of arithmetic

operations of the real-valued split-radix FFT in [15]. Allowing

for an effective analysis, we consider idealized costs of the FFT

with a constant k=1.7 for arbitrary input sizes K in the following.

Figure 2: Uniformly partitioned FFT-based fast convolution algorithm

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-157

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

 DAFX-4

A complex-valued multiplication of the form =++))((dicbia

ibcadbdac)()(++− requires six arithmetic operations (four

multiplications and three additions). DFT spectra)(kX of purely

real-valued input sequences)(nx fulfil the Hermitian symmetry

)()(kKXkX −= [13], for a transform size of N. This symmetry

can be exploited for improved performance, because only the

number of

 






 +

2

1K
 (7)

symmetric DFT coefficients out of the total N DFT coefficients

need to be stored and processed. The complex-valued multiplica-

tion of two symmetric DFT spectra therefore takes

 2/)1(6 +K operations. The accumulation of DFT spectra is re-

alized by point-wise additions of the elements, which accounts to

 2/)1(2 +K operations. Note that for the accumulation of P

spectra only (P-1) spectrum additions need to be carried out.

Measures shall be independent of the block length and are there-

fore divided by B.

The computational cost for filtering one output sample is

hence given by












 +









−








+−

+






 +










+−





+=

2

1
 1

1
2

2

1

1
6

)log(2
1

:),,(

K

BK

N

K

BK

N

KkK
B

KBNTstream

 (8)

The overall number of arithmetic operations for transforming a

filter into the frequency-domain representation, demanding to

compute P K-point FFT transforms, is expressed by










+−

=

1
)log(:),,(

BK

N
KkKKBNT

ftrans
 (9)

5. OPTIMIZATION PROBLEM

For input parameters (N, B) the optimization problem is the

minimization of the cost),,(KBNTstream
(eq. 8) for feasible

transform sizes in the range 1−+≤< BNKB (eq. 6). Before

discussing optimal solutions in general, we like to illustrate the

characteristic properties of the cost function),,(KBNTstream
 by

the help of an example: The black curve in figure 3a shows the

computational costs of the algorithm depending on the FFT size

K for the example of N=4096 and B=128. For a better under-

standing, we also added the corresponding number of filter parts

in the diagram (gray curve). For all problem instances (N, B) we

found this common type of cost progression. Very small FFT

sizes K just above the lower bound K>B+1 result in large num-

bers of filter parts, which are computationally inefficient. With

increasing FFT sizes the cost decreases until the optimum Kopt is

reached—in the example Kopt=443. From here on the costs in-

crease again. Generally, the number of filter parts given by eq. 5

decreases with increasing FFT sizes K until it reaches the mini-

mum of 1 for K≥N+B-1 (indicated by the vertical line). From this

point on the filter is unpartitioned. Larger values of K are mean-

ingless, because unnecessary zeros are processed and the number

of DFT coefficients increases. The result is a strictly linear cost

progression for K≥N+B-1. From the graph we can already see,

that a partitioned convolution outperforms an unpartitioned fil-

tering clearly.

Figure 3b shows the region around the optimum Kopt. In between

the points of discontinuity, the progression is monotonously in-

creasing and it shows ripples. These originate from ceiling in the

definition of the number of symmetric DFT coefficients in eq. 7.

Local minima of the cost function are located at values of K,

where in eq. 7 K+B-1 is a factor of N—or in other words, the

filter size N is a multiple of the filter part length L. At these

points denoted by Kmin
(i) the number of filter parts is reduced by

one, compared to the preceding transform size Kmin
(i)-1. This

abruptly reduces the number of necessary complex-valued

Figure 3a: Computational costs for a fixed filter length

N=4096 and block length B=128 as a function of the

 FFT size K (black curve) The gray curve is the cor-

responding number of filter parts. For K≥4332 the filter

consists of a single part only and remains unpartitioned.

Figure 3b: Detailed view of the cost function shown in (3a)

around the optimum (cost minimum), here Kopt=443.

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-158

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

 DAFX-5

Filter Block Optimal DFT size Standard DFT size Unpartitioned filter

length length Kopt parts cost K=2B parts cost ratio Kunpart. cost ratio

1024 128 298 6 99,0 256 8 100,2 1,01 1151 242,5 2,45

1024 256 460 5 71,7 512 4 72,5 1,01 1279 136,5 1,90

1024 512 767 4 56,3 1024 2 61,2 1,09 1535 83,8 1,49

1024 1024 1365 3 47,4 2048 1 57,9 1,22 2047 57,8 1,22

4096 128 443 13 248,6 256 32 293,7 1,18 4223 1035,5 4,16

4096 256 665 10 158,9 512 16 168,9 1,06 4351 535,1 3,37

4096 512 1097 7 108,9 1024 8 109,3 1,00 4607 285,1 2,62

4096 1024 1843 5 80,2 2048 4 81,9 1,02 5119 160,2 2,00

4096 2048 3071 4 63,4 4096 2 70,6 1,11 6143 98,0 1,54

4096 4096 5461 3 53,7 8192 1 67,3 1,25 8191 67,3 1,25

16384 128 713 28 743,6 256 128 1067,7 1,44 16511 4646,3 6,25

16384 256 1075 20 431,7 512 64 554,4 1,28 16639 2342,9 5,43

16384 512 1604 15 263,7 1024 32 301,6 1,14 16895 1191,2 4,52

16384 1024 2513 11 170,9 2048 16 178,0 1,04 17407 615,4 3,60

16384 2048 4095 8 118,5 4096 8 118,6 1,00 18431 327,5 2,76

16384 4096 6826 6 88,4 8192 4 91,3 1,03 20479 183,8 2,08

16384 8192 12287 4 70,5 16384 2 80,0 1,13 24575 112,1 1,59

16384 16384 21845 3 60,0 32768 1 76,7 1,28 32767 76,7 1,28

65536 128 1257 58 2508,6 256 509 4139,5 1,65 65663 20885,9 8,33

65536 256 1745 44 1366,6 512 256 2096,4 1,53 65791 10465,0 7,66

65536 512 2559 32 768,4 1024 128 1071,1 1,39 66047 5254,6 6,84

65536 1024 4002 22 450,4 2048 64 562,3 1,25 66559 2649,4 5,88

65536 2048 6143 16 278,0 4096 32 310,7 1,12 67583 1346,8 4,85

65536 4096 9557 12 182,4 8192 16 187,3 1,03 69631 695,5 3,81

65536 8192 16383 8 128,0 16384 8 128,0 1,00 73727 370,0 2,89

65536 16384 27306 6 96,2 32768 4 100,7 1,05 81919 207,3 2,15

65536 32768 49151 4 77,6 65536 2 89,4 1,15 98303 126,3 1,63

65536 65536 87381 3 66,2 131072 1 86,1 1,30 131071 86,1 1,30

Table 1: Resulting stream filtering costs of optimal FFT sizes in comparison the other methods.

multiplications. Optimal FFT sizes Kopt can hence easily be

found by just inspecting the absolute minimum at all points

Kmin
(i) in the interval [B+1, N+B-1].

However, it is desirable to obtain a closed formula for Kopt(N, B)

as a function of the problem instance (N, B). This is much hin-

dered by the discontinuous ceil functions in the cost formulation

(eq. 8), which demand a piecewise analysis. The problem can be

relaxed by replacing ceil(x) in eq. 8 with its lower and upper

bounds   1+≤≤ xxx (see figure 3b). This yields to a

continuous cost formulation of the functional form

cx

b
xaxxf

−

+= log)(

The absolute minimum of this continuous function is located at

the zero of its derivative

2)(
log

d

)(d

cx

b
axa

x

xf

−

−+=

Finding the root of this type of function turned out to be difficult

as well and there does not seem to be an analytic expression for x

solving 0d/)(d =xxf (within intervals of interest), which even-

tually define the optimal FFT size Kopt.

6. RESULTS

We reviewed a multitude of problem instances (N, B) and in-

spected the resulting optimal transform sizes Kopt. In the follow-

ing the results are discussed with respect to several aspects

including the sheer computational cost for filtering the audio

stream but also the complexity for transforming filters into the

frequency-domain representation in order to use them.

Costs of stream filtering

Table 1 gives a detailed insight into the results. The two leftmost

columns define the problem instance (N, B). Followed by the

data of the optimal uniformly partitioned convolution using the

presented algorithm, starting with the optimal FFT size Kopt, the

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-159

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

 DAFX-6

Figure 4: Relative computational costs of the filter transfor-

mation. The graph shows factors in relation to an unparti-

tioned fast convolution. The block length here is B=128.

number of resulting filter parts P and the computational costs. All

cost measures in the table refer to the definition in the previous

section. The next block of columns lists data for uniformly parti-

tioned convolution with the standard FFT size K=2B, two times

the block length B. The fourth column in this block is the cost

ratio of this method in relation to the optimal approach, given by

Tstream(N,B,2B)/Tstream(N,B,Kopt). The right block lists data for the

unpartitioned convolution of the instance (N, B). Here the FFT

size is chosen Kunpart.=N+B-1 and the filter consists of a single

part only. The rightmost column is the cost ratio of an unparti-

tioned filtering in comparison to the optimal solution.

Straightaway we see that for all problem instances the two cost

ratios are above one. A closer comparison on the computational

costs reveal, that the optimized method is faster in any case—

sometimes just by a tiny margin. The data in table 1 underlines,

that an unpartitioned convolution is only efficient when N≈B.

Here the choice of K=2B converges against the FFT size Kun-

part.=N+B-1≈2B-1, resulting in almost identical computational

costs. We see that optimal FFT sizes Kopt can be smaller or larger

than the FFT sizes for the two other methods. Interestingly, even

for large N≈B the computational costs for an optimal FFT size

Kopt are significantly less than for an unpartitioned filtering. Op-

timal filter partitions consist here of three parts and we can iden-

tify a speedup of ≈1.3 for the optimized method over the other

methods. This is a very important discovery, stating that it is al-

ways beneficial to partition filters for real-time filtering in the

frequency-domain.

Another observation is that for a filter length N, we can always

find a block length B, where an FFT size of K=2B results in al-

most optimal (minimal) costs, even if K=2B differs from Kopt.

These cases (N, B) seem to approximately fulfil N≈16B. For

problem instances around this point, the standard solution K=2B

drops in efficiency. But we like to point out, that the penalty in

costs is rather low, proving evidence that K=2B is a very good

choice in general. Nevertheless, when filtering very long filters

with low latencies, an optimized FFT size Kopt leads to a signifi-

cant reduction of costs. An example is the case of N=65536,

B=128 where the speedup against the standard solution reaches

65%.

Costs of filter transformation

In case that filters are adapted or exchanged over time, they have

first to be transformed into the corresponding frequency-domain

representation. This computation introduces a separate latency,

we refer to as filter exchange latency. It as well depends on the

partitioning, as eq. 9 shows.

In figure 4 we compare filter transformation costs for an unparti-

tioned filter with the standard choice of K=2B and the optimal

transform size Kopt. In this example a block length of B=128 was

chosen. The filter transformation for a transform size Kopt is sig-

nificantly cheaper than for K=2B. For N=4096 we find a de-

crease in costs ≈22% and for N=65536 ≈28%. For long filters the

transformation is even cheaper than for the unpartitioned case.

However, there is a lower limit in filter length where the unparti-

tioned filter are cheaper to realize. In the example this limit is

N≈4096 taps, where N≈32B.

We conclude that an optimal transform size Kopt lowers the com-

putational effort for transforming filters significantly over all

other methods. This is a huge advantage of our method. Not only

is the stream filtering more efficient, but also the filter transfor-

mation for the majority of cases. Exceptions are found for small

filter lengths. In the example we identified a maximum increase

in costs of 52% for N<4096. Concerning that the transformation

of small filters can be computed very fast anyway, this is no real

disadvantage.

7. CONCLUSIONS

In this work we discussed the choice of transform sizes for effi-

cient real-time linear filtering realized by fast uniformly parti-

tioned convolution in the frequency-domain. Small transform

sizes result in a large number of filter parts and vice versa. For

detailed research of the optimal transform size, we presented a

generalized convolution algorithm with a uniform filter partition-

ing and analyzed its properties. Even if they found on FFT-based

implementations, our results can be applied for other transform-

based convolution techniques like (e.g. Discrete Trigonometric

Transforms and Number Theoretic Transforms).

The presented results give a detailed insight into the properties of

optimal filter partitions for uniformly partitioned frequency-

domain convolution algorithms. We can confirm that the stan-

dard transform size K=2B of twice the block length B—

commonly found in literature—is generally a good choice, deliv-

ering a high computational efficiency. However, it turns out that

specific optimization of the FFT size can significantly lower the

costs for the case of long filters and low latencies. A very inter-

esting observation is that the partitioning of filters is always

beneficial and outperforms unpartitioned convolution in

any case. We find for an optimal uniform partitioning, the

computational costs do not have a linear dependency on the

filter length—as it is known for non-uniformly partitioned

convolution [9].

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-160

Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

 DAFX-7

Consequences for other methods

The standard method for real-time filtering with long filters of

>10.000 coefficients is non-uniformly partitioned convolution.

Increasing subfilter sizes can significantly lower the computa-

tional effort compared to a uniform-partitioning. But any non-

uniform filter partitioning is assembled from segments, which are

basically uniformly partitioned sections with equal subfilter

sizes. Consequently, our results can be applied to further

optimize this class of algorithms as well and leads to an im-

proved performance.

Applicability in practice

Optimal solutions in theory do often not translate into the desired

optimal behaviour of practical implementations. A doubtful issue

concerning this work might be to concern FFT sizes as an opti-

mization parameter, without applying restrictions—for instance

powers of two. A large number of FFT algorithms are known

today. Efficient O(N log N) algorithms exist for arbitrary sizes

(prime-factor algorithm (PFA), see [16,17]). However, FFT

algorithms are most efficient if the transform size N is a highly

composite number. And yet still transform sizes that are powers

of two are among the most efficient. But there is no rule stating

that an FFT of next greater power of two does compute faster.

Therefore, it is reasonable to also account non-powers of two for

implementations. Hence, our results have great importance also

for practical implementations. We like to point out that the num-

ber of arithmetic operations of an FFT cannot be precisely

described with a fixed scaling factor k for arbitrary input sizes.

Optimal results in practice can only be achieved by bench-

marking the actual runtimes on the target hardware and using

these measures for the optimization.

8. REFERENCES

[1] S. A. Martucci, “Symmetric Convolution and the Discrete

Sine and Cosine Transforms, “ IEEE Transactions on Signal

Processing, Vol. 42, No. 5, May 1994

[2] J. Pollard, “The Fast Fourier Transform in a Finite Field,“

Mathematics of Computation, Vol. 25, No. 114, 1971, pp.

365-374

[3] R.C. Agarwal, J. W. Cooley, “New Algorithms for Digital

Convolution,“ IEEE Transactions on Acoustics, Speech, and

Signal Processing, Vol. 25, No. 5, May 1977

[4] Frigo, M. and S. G. Johnson, "The Design and Implementa-

tion of FFTW3," Proceedings of the IEEE 93 (2), 216–231

(2005).

[5] T.G. Stockham Jr, “High-speed convolution and correla-

tion,” in Proceedings of the April 26-28, 1966, Spring joint

computer conference. ACM, 1966.

[6] M. Joho, G.S. Moschytz, Connecting Partitioned

Frequency-Domain Filters in Parallel or in Cascade, IEEE

Transactions on Circuits and Systems, Vol. 47, No. 8, 2000

[7] Gerald P. M. Egelmeers and Piet C. W. Sommen, “A new

method for efficient convolution in frequency domain by

nonuniform partitioning for adaptive filtering,” IEEE Trans-

actions on Signal Processing, vol. vol 44, 1996.

[8] J. S. Soo, K. K. Pang, “Multidelay Block Frequency Do-

main Adaptive Filter, “, IEEE Transactions on Acoustics,

Speech, and Signal Processing, Vol. 38, No. 2, February

1990

[9] William G. Gardner, “Efficient convolution without inpu-

toutput delay,” Journal of the Audio Engineering Society,

vol. vol 43, pp. 127–136, 1995.

[10] Guillermo García, “Optimal filter partition for efficient con-

volution with short input/output delay,” in Audio Engineer-

ing Society, Convention Paper 5660, 2002.

[11] Christian Müller-Tomfelde, “Time-varying filter in nonuni-

form block convolution,” in Conference on Digital Audio

Effects (DAFX-01) proceedings, 2001.

[12] E. Armelloni, C. Giottoli, and A. Farina, “Implementation

of real-time partitioned convolution on a DSP board,” 2003

IEEE Workshop on Applications of Signal Processing to

Audio and Acoustics, pp. 71–74, 2003.

[13] Alan V. Oppenheim and Ronald W. Schafer, "Discrete-

Time Signal Processing," Prentice Hall Signal Processing

Series. Prentice Hall, 1989.

[14] Barry D. Kulp, “Digital equalization using fourier transform

techniques,” Journal of the Audio Engineering Society,

1988.

[15] H. V. Sorensen, D. L. Jones, M. T. Heidman, and C. S. Bur-

rus, “Real-valued fast fourier transform algorithms,“ IEEE

Transactions on Acoustics, Speech, and Signal Processing,

1987, pp. 35:849–863,

[16] I. J. Good, "The interaction algorithm and practical Fourier

analysis," J. R. Statist. Soc. B 20 (2), 361-372 (1958). Ad-

dendum, ibid. 22 (2), 373-375 (1960).

[17] P. Duhamel and M. Vetterli, "Fast Fourier transforms: A

tutorial review and a state of the art," Signal Processing 19,

259-299 (1990).

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-161

