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ABSTRACT

Polyphonic music transcription has been an active field of research
for several decades, with significant progress in past few years. In
the specific case of automatic drum music transcription, several
approaches have been proposed, some of which based on feature
analysis, source separation and template matching. In this paper
we propose an approach that incorporates some simple rules of
music theory with the goal of improving the performance of con-
ventional low-level drum transcription methods. In particular, we
use Prior Subspace Analysis for early drum transcription, and we
statistically process its output in order to recognize drum patterns
and perform error correction. Experiments on polyphonic popular
recordings showed that the proposed method improved the tran-
scription accuracy of the original transcription results from 75%
to over 90%.

1. INTRODUCTION

Quite a few automatic drum transcription methods have appeared
in the literature in the past few years. Goto et al.[1], for exam-
ple, used template matching methods for identifying drum events.
Tanghe et al. [2] proposed a transcription system based on fea-
ture analysis and classification using Support Vector Machines.
FitzGerald et al. [3] suggested a different approach based on source
separation. This method, called Prior Subspace Analysis, uses pre-
viously computed drum subspaces to achieve source separation.
All such solutions are referred to as low-level techniques [4], as
they do not rely on data post-processing for error correction. On
the other hand, the work of Yoshii et al. [5]; Paulus et al. [6]; and
Gillet and Richard [7]; adopt a model-based approach for improv-
ing previously obtained transcription results, therefore are classi-
fied as high-level techniques. High-level transcription systems can
therefore be seen as low-level transcription methods enriched with
an error-correction layer. In this paper we propose a novel ap-
proach (Fig. 1) to high-level drum transcription that applies sim-
ple prior musicological knowledge to low-level drum transcription
to reconstruct the rhythmic structure. Drum events, in fact, tend
to occur on beat times according to specific patterns. This can be
exploited to recover the tempo, to derive the measures and, finally,
to reconstruct the patterns.

2. ALGORITHM DESCRIPTION

2.1. Overview

Our drum transcription method is based on a low-level transcrip-
tion algorithm followed by error correction. The low-level tran-
scription algorithm is an extension of the Prior Subspace Analysis
method proposed by Barry at al. [8]. Fig. 1 shows the overall
scheme of the whole processing chain. The first step after the PSA,
consists of the identification of the tatum [9], which is defined as
the smallest possible stepsize between two notes, through a coarse
analysis of the low-level transcription. From this stepsize we then
build the tatum grid, where all possible onset times for drum events
are bound to lie. This guarantees that the transcription results will
always be consistent with the tempo. After aligning the detected
drum onsets with the tatum grid, we proceed with the identification
of the bar measures. This process is based on the analysis of the
drum patterns that are extracted with a given choice of measure.
After identifying the measure that provides the most plausible set
of patterns, we proceed with the actual error correction, which is
based on the identification of a reduced set of plausible patterns
that best describe the musical excerpt. Statistical pattern matching
between actual patterns and those of the reduced set allows us to
perform error correction.

We will see that this approach tends to improve its perfor-
mance over extended excerpts. The more information we provide,
in fact, the better the estimation of tatum and drum patterns that
constitute the excerpt. At the end, the transcribed sequence tends
to be musically self-consistent as it provides a certain degree of
error concealment.

2.2. Low-level drum transcription

The Prior Subspace Analysis (PSA) [10] method is based on a
separation of all drum instruments into individual audio streams,
which can thus be analyzed for determining the likelihood of pres-
ence of an event on that instrument. The idea behind Subspace
Analysis is that each sound source is represented by a low-dimensional
subspace generated by a number of selected basis functions.

Let us consider a signal x(n), whose time-frequency repre-
sentation is obtained through STFT computation. Let |Xn(k)| be
the magnitude spectrum of x(n) computed at the date n, for the
frequency bin k. This spectrum can always be approximated as a
linear combination of an orthogonal set of basis functions Fi(k),
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Figure 1: Overall processing chain of the proposed method.

i = 1, 2, . . ., as

Xn(k) =
∑
i

aiFi(k) (1)

PSA attempts to extract separated subspaces assuming that there
exists known prior frequency basis functions that are good initial
approximations to the actual basis functions of the source of in-
terest. Prior subspaces are built empirically by analyzing a large
number of drum sounds of the actual drum instrument. In order
to perform the algorithm over the whole songs, the input signal is
divided in 2 seconds length blocks with an overlap of 1 window
length. To obtain the time-frequency representation, the Short-
Time Fourier Transform is applied to each block. In our case, we
adopt a Window length of 2048 samples, an FFT size of 4096 sam-
ples and a hopsize between windows of 256 samples.

In order to improve PSA-based drum transcription, we use
a spectral modulation technique [8]. Drum instruments, such as
Bass drum and Snare, used in pop and rock music, are charac-
terized by rapid broadband energy transitions followed by a fast
decay. This is quite different from tonal instruments, which gener-
ally exhibit a concentration of the energy on the fundamentals fre-
quency and on its harmonics. The spectral modulation technique
that we use estimates the percussivity (the tendency to exhibit a
broadband spectrum) of each already detected onset. Given the
STFT Xm(k) of the signal, we compute the log difference of the
spectrogram as

X ′m(k) = 20 log10
Xm−1(k)

Xm(k)
= [Xm−1(k)]dB − [Xm(k)]dB

(2)
for all the values of m and k in the spectrogram. The measure of
percussivity of the signal is defined as:

Pe(m) =
∑
k

Pm(k) (3)

where

Pm(k) =

{
1 ifX ′m(k) > T

0 otherwise

T being a properly chosen threshold. Pe therefore counts how
many frequency bins exceed that threshold. Applying the process
to all frames we obtain a temporal profile that describes the percus-
sion characteristics of the signal, used to improve PSA transcrip-
tion.

2.3. Musicological Aspects

In order to be able to take advantage of prior musicological infor-
mation for error correcting, it is important to define a minimal set
of concepts that allow us to define a reference rhythmic structure.

The work that we propose is based on the analysis of drum
patterns, which define the location of bass and snare drum onsets
on the tatum grid.

Strictly connected to the concept of pattern is the bar (or mea-
sure) which is time interval defined as the given number of beats
of a given duration. A musical excerpt is usually made of nu-
merous bars of the same length. This inherent regularity is typi-
cal of modern music notation and is reflected in the fact that the
number of beats that each bar is made of is specified at the be-
ginning of the score by a fraction called time signature. The nu-
merator of this fraction tells us how many beats each measure has,
while the denominator expresses the duration of each beat. All
such definitions are relative to the tempo, which defines the pace
of the musical piece in beats-per-minute (BPM). The tempo tends
to gradually change over the duration of the musical piece [11],
therefore following the tempo means contracting or expanding the
drum events according to such tempo changes. Drum event is de-
fined as a single stroke of any drum instrument. Another important

Figure 2: Tatum grid vs. beat times in a music piece. The tatum
grid represents the set of all possible note onsets.

musicological concept useful for beats detection is the inter-onset
interval (IOI), which is defined as the time that elapses between
consecutive onsets. This quantity does not account for the inher-
ent duration of the events.

2.4. Tatum grid estimation

The first operation to do is to identify the beats and their pace
(tempo). This is done by first determining the tatum, which is the
smallest temporal quantum in the musical piece. With very few
exceptions, all drum events occur at integer multiples of the tatum,
therefore we can safely assume that they must lie on the tatum
grid. The construction of the tatum grid is based on the extracted
onsets of each drum instrument. In order to remove event outliers
some preprocessing is needed. First we identify multiple events,
which are defined as being less then 30ms apart from each other.
Such multiple events are then reduced to single events through
the removal of the weaker ones. We also assume that there is no
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tempo change for the whole duration of the excerpt. The tatum is
then computed from Inter-Onset Interval (IOI) of drum events that
more likely to occur. In order to better define stronger onset events
a noise reduction step is performed considering, for our process,
only those with the amplitude higher than the average amplitude
of the excerpt.

The tatum is estimated in an iterative fashion. We first select
the tatum candidates by constructing a histogram of IOIs, as de-
scribed in [12], from the whole set of drum onsets (all instruments
together). Peaks are detected and only those whose amplitude is
lower than 10% of the highest one are retrieved. For each tatum
candidate, a candidate tatum grid is estimated. Inter-onset events
that falls out of the candidate tatum time, considering the detected
actual onset times, are removed. Gaps are then filled according the
actual tatum grid. Once all the gaps are filled, the candidate tatum
grid is aligned and evaluated comparing with Low-level drum on-
sets. The candidate with highest matching rate is selected as the
final tatum grid.

2.5. Signature selection based on pattern analysis

We need constraints on the patterns to consider. Knowing the sig-
nature sets, such constraints are determined in a natural fashion
and this reduces the numerosity of the sample space of all possible
patterns. We determine the signature in a simplified fashion, not as
an estimation process, but as a selection among possible plausible
signatures. Restricting our focus to western popular music, allows
us to do so.

The first step is to align the detected onsets with the tatum grid.
From here, we can proceed with the signature selection based on
an analysis of the patterns that are generated by different choices
of the measure length.

As the measure depends on the music meter and the time-
signature, we will assume that the all signatures of interest are
either 2/4 or 3/4 or multiples thereof. In addition to this, we will
assume that patterns tend to repeat over and over (up to small dif-
ferences) and we will exploit that in our analysis. These are strong
assumption but they covers a wide range of situations that tend to
occur in occidental pop music. Generalizations to more complex
rhythmic patterns can be achieved through modest complications
of the system here described.

The key point of our analysis is that our best guess of the mea-
sure will correspond to the one that generate patterns with maxi-
mum number of repetitions and correlation score (self-similarity).

As all drum events that make a pattern are forced to be aligned
with the tatum grid, we can encode the onsets as in Table 1. The
timing of the events on the grid is also described in Table 2, which
shows the pattern on the tatum grid.

Code Meaning
0 No drum present
1 Bass Drum
2 Snare Drum
3 Bass + Snare Drum

Table 1: Alphabet created for Drum grid representation.

At this point, we can construct the Drum Grid Matrix, which
describes the sequence of events (encoded as in Table 1) on the

Bass Drum 0.31 1.55 1.86
Snare Drum 0.93 1.55 2.17 2.48
Tatum Grid 0.31 0.62 0.93 1.24 1.55 1.85 2.17 2.48

Resulting pattern 1 0 2 0 1 1 2 2

Table 2: Pattern Representation.

drum grid, organized in rows, whose length is decided depending
on the measure.

Given a choice of key signature, we will obtain a matrix struc-
ture, each row of which tell us which event is possibly present at
each tatum grid point. For example, if the tatum is 1/64 and we
are trying a key signature of 3/4, each row of the drum grid matrix
will contain 48 numbers that tell us what is going on in each tatum
grid point of that measure.

Once we have this matrix, we can analyze all patterns (rows)
and count repetitions of each one of them. We will end up with the
new description

{P1, r1;P2, r2; . . .}
where Pi form the minimal set of different patterns, and ri counts
how many times the pattern Pi repeats in the excerpt.

Given G the set of patterns and Gu the set of unique patterns
(not considering their repetition) in the excerpt and #G and #Gu

their cardinality (number of rows), for each Pattern Pi in Gu the
number of repetition ri is calculated. The correlation score be-
tween patterns Pi and Pj is defined as follow:

c(Pi, Pj) =
1

d(Pi, Pj)
(4)

where d(Pi, Pj) is the distance function defined as follow:

d(Pi, Pj) =
∑N

h=1 |Pi(h)− Pj(h)|�
{
Pi(h) > 0 and Pj(h) = 0

Pi(h) = 0 and Pj(h) > 0

d(Pi, Pj) = 1 � Pi(h) > 0 and Pj(h) > 0
(5)

Pi(h) and Pj(h) are respectively drum events in column h of
the matrix. If Pi(h) and Pj(h) are both greater than zero means
that the drum event is present in both pattern and the correlation is
1. The Key Signature Score K is defined as:

K =
#(G)

#(Gu)
·max (ri · c(Pi, Pj)) (6)

for each Pi, Pj in Gu.
After all key signature candidates are process the chosen meter

is the one with highest Key Signature Score K.

2.6. Error Correction through Statistical Pattern Matching

The error correction technique that we propose is also based on
the idea that a limited number of patterns are repeated within an
excerpt. Therefore, it is possible to identify a unique set of valid
patterns, which is the set of unique ones played in the song. The
correction is performed through a distance score evaluation, re-
placing patterns of the low-level drum transcription output with
the most similar pattern in the valid set. Drum fill-ins are treated
separately.

The Gu, set of unique patterns, found in previous step, could
represents the set of valid patterns in the excerpt. However, the
low-level process could introduce negative or positive false and it
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would induce the existence of patterns not present in the excerpt.
Therefore, a subset V , which satisfy the relation eq. (7) is ex-
tracted from Gu.

ri · c(Pi, Pj) > max (ri · c(Pi, Pj)) · T
ri > 1

T > 0 and T <= 1

(7)

for each Pi and Pj in Gu and T being a properly chosen threshold.
Once the valid patterns set is obtained, all patterns output from

low-level process are replaced with one in V . This is done by esti-
mating a similarity function s between a give pattern Pi in G and
each pattern Pj in V . In this step the similarity has to consider
not only as the difference between amplitudes, but also consider-
ing the nature of the event; which instrument is playing. For that
reason, s is defined based on the distance function d(Pi, Pj), such
as defined in eq. (5), and on a our extension of Hamming distance,
such as defined in eq. (8). A specific case of drum pattern is drum
silent measure which is often present in classic popular/rock music
and characterized by the assence of percussive sound. In order to
better estimate s, an empty pattern (all 0) is inserted in V .


1 ifPi(k) 6= Pj(k) and Pi(k) 6= 3 and Pj(k) 6= 3

0.5 if [Pi(k) = 3 and Pj(k) > 0] or [Pj(k) = 3 and Pi(k) > 0]

0 ifPi(k) = Pj(k)

(8)
where Pi(k) Pj(k) are respectively drum events in column k of
the matrix. Given a pattern Pi in G, the similarity s, defined in eq.
(10), is estimated.

s(Pi, Pj) = d(Pi, Pj) · h(Pi, Pj) (9)

for each Pj in V . Pi will be replaced with the pattern Pj which
minimize the similarity function s. Once the correct drum event
matrix is obtained, we can use it to build a pentagram score nota-
tion or to generate MIDI events in order to re-play the drum track,
or even for a de-mixing process in order to extract the drum track
from the polyphonic mix.

2.6.1. Drum Fill-ins

In western music, fill-ins are little variations of a basic pattern,
which are generally used to emphasize transitions. The drum pat-
tern matching algorithm here described, processes drum onsets
that are aligned on the tatum grid in order to apply the most fre-
quent drum patterns for error-correction purposes. However, some
particular drum events may occur out of tatum grid resolution.
This is the case for drum fill-ins that are generally characterized by
the presence of rapid drum sequences, usually before the measure
lines. In order to deal with drum fill-in sections, a simple solution
is proposed. For each measure, the last beats are checked in order
to look for out-of-tatum drum events, which, after an amplitude
threshold check, are added to the drum event time line. Our so-
lution does not solve the problem of looking for drum fill-ins that
involve a whole measure.

3. PERFORMANCE ANALYSIS

3.1. Test Data

The proposed work was implemented and tested in MATLAB en-
vironment. The system was tested over our database consisting of

20 whole pop/rock songs. Songs presents different levels of re-
peating patterns, silence measures, fill-ins and different recording
techniques for the drum set and they have been chosen to cover
as wide a range of styles from the sixties till up to date excerpts,
from pop to folk and rock sub-genres, with 4/4 or 6/8 as time sig-
nature. For comparison purposes to original PSA algorithm, the
PSA results, using parameters used in [10], were also collected.

3.2. Evaluation and Results

The system performance is evaluated considering true positive a
drum event which is correctly detected and correctly transcribed:
the system correctly detects an onset and the drum instrument is
playing. We considered as errors both false negative and false pos-
itive. Among many evaluation measurements used in the informa-
tion retrieval field, the F-measure was chosen in order to provide
evaluation results. The measures used are defined in eq. (10) (as
in [5]). 

rp =
Nco

Nao

rr =
Nco

Ndo

dFM = rp·rr
rp+rr

(10)

where rp is the precision rate, rr is the recall rate, Nco is the
number of correctly detected onsets, Nao is the number of actual
onsets, Ndo is the number of detected onsets dFM if the F-measure
value.

The evaluation results are collected in Table 3, which shows
the F-Measure results for bass and snare drums, and the overall re-
sult. For comparison purpose in Table 3 is also shown PSA overall
evaluation results. From the 20 excerpts evaluated, only in three
cases did the PSA algorithm performs better than the proposed ap-
proach. In these three cases, the main reason for poor performance
was the lack of presence of drum patterns found in the PSA tran-
scription step, inducing the proposed method to recognize wrong
drum patterns. Also from the results in the Table 3 we can de-
duce the advances in using an high-level error-correction over an
only low-level system based. We achieved good performance for
both bass drum and snare drum, and the overall performance of the
system improved from 75% to 92,2%.

Proposed Approach Original PSA
Bass Snare Bass Snare

Precision 93.8% 92.9% 93.7% 91.6%
Recall 88.6% 85.3% 60.7% 66%

F-Measure 91.1% 89% 73.7% 76.7%
Overall 92.2% 75%

Table 3: The proposed High-level approach results and the origi-
nal Low-level PSA results.

One important aspect of the proposed approach is that, being
a high-level technique, does not depend on the choice of PSA and
can be applied over any other low-level transcription technique.
This makes the approach more flexible and allows extension on
further works.
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Figure 3: The Drum Instrument Grid and the Pattern Matching Algorithm. The final transcription is composed only by the set of detected
drum patterns.

4. CONCLUSIONS

The proposed work represents an advance in addressing the prob-
lem of polyphonic percussion transcription. Based on musicolog-
ical concepts, such as tatum grid, measure estimation and pattern
approach, extracted analyzing the whole excerpt, the novel ap-
proach offers an alternative paradigm in the high-level method-
ologies scenario. The approach turned out to be very effective
and the test, performed over drum events of 20 popular record-
ings, showed that the proposed method improved the transcription
results up to 20% over the low-level approach that was chosen for
comparison. The system was designed to work on a limited subset
of percussion instruments and key signatures. An obvious direc-
tion for future works is the extension of the methods proposed to
deal with increased numbers of different types of percussion in-
struments, such as Hi Hat and Tom Tom, and with a wide set of
key signatures. It could also be interesting to consider a different
technique for retrieving the drum patterns or consider the use of a
database of pre-defined patterns for this purpose.
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