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ABSTRACT

In this paper we examine how graphic hardware can be used
for real-time FIR filtering. We implement uniformly-partitioned
fast convolution in the frequency-domain and evaluate its perfor-
mance on a NVIDIA GTX 285 graphics card. Motivated by au-
dio rendering for virtual reality, our focus lies on large-scale real-
time filtering with a multitude of channels, long impulse responses
and low latencies. Graphics hardware has already been used for
audio signal processing — including FIR and IIR filtering with
respect to offline and real-time processing. However, the com-
bination of GPU computing and real-time conditions leads to a
number of challenges that have not been reviewed in detail. The
new contribution of this paper is an implementation and detailled
analysis of a frequency-domain fast convolution method on GPUs.
We discuss specific problems that emerge under real-time condi-
tions. Our method allows to achieve an outstanding real-time fil-
tering performance. In this work, we do not only regard a time-
invariant filtering, but also time-varying filtering, where filters are
exchanged during runtime. Furthermore, we examine the opportu-
nities of distributed computation — using CPU and GPU — in or-
der to maximize the performance. Finally, we identify bottlenecks
and explain their impact on filter exchange latencies and update
rates.

1. INTRODUCTION

Real-time filtering is a fundamental component in many audio ap-
plications. It is a part of audio effects software plugins (VST, Di-
rectX) used for professional audio production, like EQs or convo-
lution reverbs. It can be found in hardware controllers for speaker
equalization. Room acoustics of auditoriums can be improved us-
ing real-time digital room correction, which adds an artificial re-
verb. But an application that really pushes real-time filtering to its
limits is interactive audio rendering for virtual acoustic reality [1].
Here, virtual scenes which consist of a multitude of sound sources
are auralized in real-time. This is done by filtering the audio sig-
nals of the sound sources with individual impulse responses (fil-
ters) that model the sound propagation through the scene. The ob-
jective is a high-quality acoustic image of the scene. Room acous-
tic effects — like reverberation — need to be simulated precisely.
Users (listeners) shall be able to interact with the presented scene.
Consequently, the sound propagation changes over time and filters
need to be exchanged. Furthermore, reactions on user input (e.g.
movement, rotation) must be reproduced instantaneously. Only
very short processing delays are acceptable.
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Signal processing in this domain is a massive task: A large
number of channels (typically 10-100) has to be filtered with in-
dividual filters which are long (typically room impulse responses
of 30.000 - 300.000 filter coefficients). Input-to-output latencies
as well as latencies for the exchange of filters need to be very low
(<20 ms). Despite the fact that recursive filters (IIR filters) re-
quire significantly less computational effort, they are not favored
for interactive audio rendering including room acoustics. Today
efficient fast convolution algorithms exist and very powerful hard-
ware is available, which allows to perform FIR filtering for the au-
ralization. While in former times such an extensive filtering could
only be realized using specialized DSP boards, nowadays com-
puter hardware is often used. Boosted by parallel hardware, like
multi-CPU/multi-core machines, current computer systems are able
to deliver the computation power for scenarios like introduced above.
However, there is always the desire to create more realistic scenes,
with more sound sources and more complex scene topologies, de-
manding more computational power for the real-time filtering. And
of course the filtering might not be the only task running on the
system. This is where graphic cards become interesting.

Modern graphic processing units (GPUs) easily outperform
current multi-core CPUs by means of sheer floating-point perfor-
mance. This is achieved by a massive level of inherent paral-
lelism (several hundred individual stream processors (SPs) on a
single graphic chip) and a more focussed and thereby simpler hard-
ware architecture compared to generalpurpose CPUs. Using the
GPU for general purpose calculations (popular by the synonym
GPGPU) became possible with the arrival of programmable shaders
[2]. Back then software development for graphic hardware was a
tedious process. Today high-level programming interfaces (APIs),
like NVIDIA’s Compute Unified Device Architecture (CUDA) [3]]
and ATT’s Stream technology [4] (formerly Close-To-Metal), make
the development much easier. However, GPUs do not make CPU
computing dispensable. The enormous computation power can
only be unleashed, if algorithms meet the specific characteristics
of the graphic hardware. Most suited for GPGPU computing are
so-called stream algorithms, which perform the same set of opera-
tions on large data sets. Real-time FIR filtering falls into this class
of algrithms. It has a high potential for parallelization and a low
level of data interdependency. This makes it an ideal candidate for
GPGPU computation.

2. RELATED WORK

GPGPU computing has been successfully applied to computational
intensive problems in acoustics and audio processing: This ranges
from acoustic simulation methods, like wave-based finite-difference
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methods (FDMs) [5]] as well as geometric acoustics modelling like
ray-tracing [6] [7]. It has been applied to sound synthesis [8]], spa-
tial sound reproduction systems like wave-field synthesis (WFS)
[9] and also music processing [10]. Tsingos [11]] provides a good
overview on applications. Not too many publications on audio sig-
nal processing using GPU can be found in literature. Only a few
authors address audio filtering on graphic hardware: Most publi-
cations deal with straight-forward time-domain implementations
of FIR filtering on GPUs. In 2005, Smirnov and Chiueh [12] im-
plemented a tapped delay-line (TDL) using fragment shaders on a
NVIDIA GeForce 6600 card and compare the performance to an
SSE-optimized CPU variant. They conclude that GPU-processing
is more efficient for long filters only (>60000 taps). In 2004, Gallo
and Tsingos [13] introduce techniques for 3D rendering of vir-
tual scenes using graphic hardware. They use head-related trans-
fer functions (HRTFs) for spatial audio rendering and realize the
filtering using simple 4-band equalizers. Their method also allows
to realize doppler effects by texture scaling. A more recent time-
domain implementation by Kowan and Krapalos [14] in 2008, also
deals with HRTF-based audio rendering of virtual scenes. They
convolve audio signals with short HRTFs filters (200 taps) us-
ing integer-based OpenGL shaders. On a NVIDIA GeForce 8800
GTX card their GPU solution outperforms a CPU convolution sig-
nificantly and indicates enough performance to meet real-time con-
ditions. However, they report subtile problems that come along
with integer-processing. In a follow-up paper [15] they remea-
sured on a more current NVIDIA GTX 280 card. A recent publi-
cation by Trebien and Oliviera [16] deals with the implementation
of 1D recursive filters on GPUs. The only paper we could find
on GPU-based fast convolution in the frequency-domain, is an un-
published course work by Rush [17]. He implements a uniform
partitioning on a NVIDIA G80 CPU and considers offline filter-
ing. Unfortunately, no performance values are presented and the
results are not compared to CPU-implementations.

Combining GPGPU computing with real-time conditions is an
interesting problem in computer science. Especially real-time FIR
filtering pairs intesive computation with tight timing dependencies
in the range of milliseconds. After a careful literature review, we
come the conclusion that GPU implementations of fast convolution
in the frequency-domain have not been studied so far—with the
exception of [17]]. The special issues of real-time processing have
not been reviewed in detail. None of the contributions deals with
time-varying filtering.

3. FAST CONVOLUTION ALGORITHM

Fast convolution as a method for efficient FIR filtering has been
researched for more than four decades. Several fast convolution
algorithms are known today. We found that the choice of algo-
rithm is even more important when considering GPGPU computa-
tion. Therefore we first give a brief overview on the methods and
discuss their pros and cons. Afterwards we introduce our chosen
algorithm.

3.1. Brief overview of fast convolution techniques

All fast convolution algorithms have in common, that they cal-
culate linear convolution efficiently in the frequency-domain, by
simple multiplication of discrete Fourier spectra, known as cir-
cular convolution. The term fast is reasoned by the Fast Fourier
Transform (FFT) used to convert between the time- and frequency-

domain. The original idea was proposed by Stockham [18§] in
1966. His algorithm uses one FFT to convolve two signals (M ,N
samples). The length of the FFT is choosen so that the con-
volution result (M + N — 1 samples) does not exceed it and
time-aliasing is avoided. This algorithm outperforms time-domain
filtering (direct-form FIR filters, TDLs) by several magnitudes.
However it has the disadvantage of an input-to-output latency that
equals the FFT-length. Moreover its efficiency drops when long
signals are convolved with short ones (many ineffective zeros are
processed). These problems can be tackled by choosing a shorter
FFT-length and by processing the input data in several steps —
either in overlap-add or overlap-save fashion [19]. Still, the FFT-
length is at least as long as the filter impulse response and so is
the latency. For real-time filtering with long filters, the filter also
needs to be partitioned. This allows to freely choose FFT-lengths
and thereby to adjust the latency. Two variants are known: In uni-
formly partitioned fast convolution, filters are subdivided into sev-
eral subfilters of equal lengths. The overall output is assembled
from all subfilter outputs, which need to be delayed accordingly.
Kulp [20] demonstrates, how the number of required FFTs/IFFTs
can be reduced to one, when delays and sums are implemented
directly in the frequency-domain. An DSP-implementation of the
algorithm can be found in [21], [22]. The uniformly partitioned
fast convolution is also most efficient for offline processing. Here,
the FFT-lengths can be optimized in order to minimize the com-
putational effort. The concept of non-uniformly partitioned fast
convolution is relative new [23]. This algorithm is designed for
efficient convolution of long filters (> 1000 filter coefficients) with
a short input-to-output delay. Short subfilters are used to minimize
the latency, whereas longer subfilters reduce the overall computa-
tional effort. It can be shown that this algorithm is even signif-
icantly more efficient than the uniformly partitioned variant [24].
Details on the implementation can be found in the famous paper by
Gardner [25]]. But a non-uniform partitioning has also drawbacks:
As opposed to a uniform partitioning, the complete filter cannot be
exchanged with every processed block. This introduces additional
filter exchange latencies. Strategies exist to reduce this problem
[26]. The filter partitioning itself can be optimized for maximum
efficiency [24].

3.2. Basics of audio streaming

In this paper we concern real-time FIR filtering of continuous au-
dio signals. Continuous recording, processing and playback of au-
dio data using computer hardware is performed by audio stream-
ing. Here, samples are processed and exchanged in units of blocks.
All blocks consists of a fixed number of samples, referred to as the
streaming block length—or just block length. In this work it is de-
noted by B. Furthermore we consider multiple channels. C is the

Length Duration | Data size
[samples] [ms] [bytes]
128 29 512
256 5.8 1024
512 11.6 2048

Table 1: Typical properties of sample blocks in real-time audio
streaming. Here, a sampling rate of 44.1 kHz and 32-bit floating
point samples (4 bytes/sample) are considered.
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number of channels. The recurrent elementary step of processing
the blocks—including multiple channels—is referred to as stream
processing step — or short stream processing. Block-based pro-
cessing introduces latency, which is determined by the duration of
the streaming blocks. Additional latencies are contributed by elec-
tronics and intermediate buffering. In order to reduce the latency,
very short block lengths are chosen for real-time applications—
typically in the range of 128-512 samples. Furthermore, the block
length determines the amount of time that can be spent on pro-
cessing the samples — only a few milliseconds in practice. Table
[[] gives an overview on typical values. Less latency implies less
time for computations. If the processing exceeds the block dura-
tion, the audio stream is interrupted and dropouts occur. This must
be prevented under any circumstances.

3.3. Convolution algorithm

For audio rendering of complex scenes, non-uniformly partitioned
fast convolution is the algorithm of choice. But implementing it on
graphic cards can be difficult: The algorithm heavily relies on the
ability to process subfilters concurrently. Computation tasks must
be priorized in order to ensure flawless operation. We circumvent
these issues by choosing uniformly partitioned fast convolution for
our examinations. It has a constant load balance and does not re-
quire asynchronous computations, but is less efficient.

The general principle of the algorithm for one channel is illus-
trated in figure[I] It consists of two main parts: stream process-
ing and filter processing. Before a filter impulse response can be
used for convolution, it has to be transformed into a frequency-
domain representation. Therefore, it is uniformly partitioned into
filter parts of the block length B. Each filter part is then padded
with additional B zeros. We refer to this process as filter pack-
ing. Afterwards, each padded part is FFT-transformed into a dis-
crete Fourier spectrum. All together, these are then used for the
convolution. The stream processing computes the convolution. A
time-domain input buffer acts as a sliding window of 2B samples
over the input stream. With each new input block, the right half
is copied to the left and the new block is then stored in the right
half (called input packing). The buffer is then FFT-transformed
and the result is stored in a frequency-domain delay-line (FDL).
Before, the FDL is shifted by one slot. Now the DFT spectra in
the FDL are point-wise complex-valued multiplied with the DFT
spectra of the prepared filter parts. All results are summed up in
a frequency-domain accumulation buffer. The next its contents
are IFFT-transformed back into the time-domain. From the result,
only the right half of samples is selected (named output packing).
The left is discarded (overlap-save).

The algorithm can be split into four major parts:

1. Packing and FFT transformation of the input data
2. Packing and FFT transformation of the filter data

3. Spectral convolution
(complex-valued multiplication and accumulation)

4. TFFT transformation and unpacking of the output data

4. GPU IMPLEMENTATION

For each of the algorithm’s parts can be parallelized and is thereby
a candidate for GPU computation. But we also consider the CPU
for computations and will only employ the GPU if it benefits the
performance. The question is, where to perform the computations

— on the host (CPU) or on the grapics card (GPU). One decision is
fixed: The multiplication and addition of DFT spectra the demands
the major share of computation and will therefore be computed on
the graphics hardware. But we will later see, that for the other
parts the choice is not trivial.

When implementing the fast convolution algorithm for
GPGPU computation, we are faced with some fundamental ques-
tions:

e How to parallelize the spectrum multiply-adds on the GPU?
e Where to perform the FFT/IFFT-transforms? Host or GPU?

e How to organize the data structures for
maximum efficiency?

In the following we present our parallelization approach and ad-
dress each of the questions in detail. Our parallelization founds on
two key principles:

e Avoid thread synchronization by avoiding
mutual write access on memory locations

e Keep data reordering operations to a minimum
by using well-arranged data structures

4.1. Data structures

Optimization in high-performance computing begins with a close
look at data structures. An efficient memory access pattern, espe-
cially with respect to the cache-hierarchy, is usually the biggest
leap forwards in increasing performance. This also holds for
GPGPU computing, but with different circumstances: Graphic
cards do not have a cache-hierarchy, but they benefit from a faster
memory link. But in the face of the GPUs massive parallelism,
data-structures must be carefully chosen to result in an optimal
performance.

A driving factor for our data structure design turned out to be
the option to perform FFTs/IFFTs on the graphic hardware. This
is appealing, because CUDA not only allows to calculate a single
FFT/IFFT, but a large number of equally-sized transforms in par-
allel on the graphics hardware. Throughout this work, we refer to
this feature by the term Batch-FFT. However, the input and out-
put data for such Batch-FFTs must be aligned accordingly. Input
blocks (time-domain) and output spectrums (frequency-domain)
must directly succeed each other in a linear sequence. Destina-
tion DFT coefficients cannot be shuffled in a clever way, so that
later calculations would benefit from a better memory access pat-
tern. In order to allow the computation of Batch-FFTs on the GPU
we maintain this alignment and arrange the input/output data, fil-
ter data and the frequency-domain delay-lines (FDLs) in a com-
patible fashion. Generally, we use real-to-complex Fast Fourier
Transforms (R2C-FFTs) and complex-to-real Inverse Fast Fourier
Transforms (C2R-IFFTs). Each sample or filter block of B val-
ues corresponds to a complex-conjugate symetric DFT spectrum
of B + 1 values.

The input and output data transferred between host and
graphic device consists of the input and output blocks for all chan-
nels. If the FFT-/IFFT-transforms are calculated on the GPU, we
transfer C' blocks of 2B samples (time-domain). When the sliding
window is implemented on the GPU, just C' x B samples need to
be transferred. However, this requires additional data reordering.
Since transferred stream data is rather small, we do not consider
this beneficial. When the FFT-/IFFT-transforms are calculated on
the CPU, we transfer C' complex-conjugate symetric DFT spectra
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Figure 1: Uniformly-partitioned fast convolution algorithm using the overlap-save scheme. By realizing subfilter delays and the accumula-
tion of subfilter outputs in the frequency-domain, only one FFT/IFFT-transform is required per processed input block.

of B + 1 complex-valued coefficients each (frequency-domain).
With every stream processing step the data has to be transferred
twice — from host-to-device and after calculation from device-to-
host. Important to mention here is, that stream processing enforces
a synchronous data transfer.

The filter data has to be transferred just once (host-to-device),
but is usually significantly larger. We consider filters to be parti-
tioned into K parts, each of B filter coefficients. For one channel
it consists of K blocks of B filter coefficients in the time-domain
or —alternatively—K complex-conjugate symetric DFT spectra
of B + 1 coefficients each. The amount of filter data increases
linear with the number of channels.

The frequency-domain delay-line is entirely stored within the
graphic memory. Figure[2]depicts the layout of the complete FDLs
for all C' channels. It consists of K FDL lines, corresponding to K
individual subfilters. Each FDL line covers delayed DFT spectra
for all C' channels. Note that even if they succeed each other, DFT
spectra within one line belong to independent channels and filters.
What they share is a common delay. We avoid shifting of the actual
FDL contents (cp. figure[T) in the stream processing, by using an
FDL cursor and accessing the FDL in the sense of a cyclic buffer.
The FDL cursor denotes the line that has been written last and is
incremented with stream processing step. This type of FDL layout
support direct write the input data into the destination FDL line
and prevents unnecessary data reordering.

4.2. Kernel

Every GPU thread (CUDA thread) performs the complex-valued
multiplication of DFT coefficents within one ’column’ of the FDL
and adds up the result in an accumulation buffer. Figure |Z| de-
picts the responsibilities of one GPU thread, illustrated by the
grayed-out vertical bar. This parallelization strategy does not re-
quire thread synchronization, because every DFT coefficient in the
accumulation buffers underlies exclusive write access by just one
CUDA thread. Listing[T|shows the pseudocode of the GPU convo-
lution kernel. The accumulation is performed locally, in the reg-
isters of the SPs. Afterwards, the result is written into the graphic

memory. The number of loop iterations equals the number of filter
parts K. Since there are plenty of filter parts (cp. table [2), we
achieve a good balance between computation and memory access
on the SPs. This is executed in the GPU in thread blocks of 32
threads each. The number of allocated thread blocks therefore is
C-(B + 1)/32. Threads assigned to a streaming multiprocessor
(SM) work on neighbouring elements and we can benefit from co-
alescing.

k = GPUThreadlID; // Element-index

c = channelof (k); // Channel number

n = FDLCursor; // Last inserted FDL-line
// Initialize the local accumulator

accu = 0;

// Iterate over filter parts
for 1i=0 to NumFilterParts-1 {
// Complex-valued multiply-add
= FDL[line=n] [element=k];
= FilterSpectrum[channel=c, part=i];

~

<X
|

ComplexMulAdd (src=x, src=y, dest=accu);

n = (n+l) mod NumFilterParts;

// Write the result into the global memory
output [k] = accu;

Listing 1: Convolution kernel (pseudocode)

5. PERFORMANCE

In this section we analyze the performance of our method for
two applications: Time-invariant real-time filtering without the ex-
change of filters and time-varying filtering. Firstly, we introduce
our test system and regard important measures individually — the
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Figure 2: Structure of the frequency-domain delay-lines (FDLs)
and the frequency-domain accumulation buffers. The grayed-out
vertical bar illustrates the range of DFT coefficients, a single GPU
thread is responsible for.

data transfer and computation of Fast Fourier Transforms. After-
wards, we present the performance measures for static filtering.
Dynamic filtering can not be expressed by a single performance
value, because it depends on opposing parameters: The number
of channels and filter length versus the desired filter update rates.
Here we consider the performance by means of an example sce-
nario and discuss how these parameters relate.

5.1. Test system

The test system used is a dual quad-core machine, with two In-
tel Xeon X5570 (Gainestown) processors [27]] running at 2.93
GHz. Each processor has 8 MB of shared L3-Cache available.
The machine has 4 GB of DDR3-1333 memory. The graphic card
is an NVIDIA GeForce GTX 285 [28]. It features the NVIDIA
GT200b graphic chip, which has 240 SPs in total, each clocked
at 1476 MHz. They are arranged in 30 SMs. Our card has 1024
MB GDDR3 video memory, clocked at 1242 MHz and linked via
512-bit memory interface. It uses a PCI-Express 2.0 BUS inter-
face with 16 lanes (x16), resulting in a theoretical bus bandwith
of 8 GB/s. The operating system is Microsoft Windows XP Pro-
fessional (32-bit). We built our software using the Microsoft Vi-
sual Studio 2005 (SP1) C++ compiler. We use Streaming SIMD
Extensions (SSE) along with a 16-byte structure alignment. The
CUDA version used is 2.3. For FFTs on the host we employ the
FFTW library [29] version 3.2.2. All tests were carried out on 32-
bit single precision floating points. High-precision timing was re-
alized using the Win32-function QueryPerformanceCounter. We
used an RME Hammerfall audio device and Steinberg’s ASIO in-
terface [30] for low-latency audio streaming.

5.2. Data transfer

In advance of any calculation on the GPU, the required data must
first be copied onto the graphic card and after the calculation is
finished the results must be read back to the host. Data transfer
is fundamental — especially for real-time processing. Every mi-
crosecond that is spent on data transfer, cannot be used for GPU
calculations. Asynchronous data transfers can be used to mask

Data transfer times

10ms — T T T T
host-to—-device ——
5ms - device-to—-host ----x----
device-to—device --%--
—.  1ms
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E
3
[%2]
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F ES o
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Y . ‘
2 e
10us T
5us

R N AR

Data size [Bytes]

Figure 3: Data transfer times measured on the test system.

this problem. But it complicates matters much and is not consid-
ered here. For our later considerations, we measured the transfer
times and bandwidths for three important types of data transfers:

1. Host memory to graphic memory
2. Graphic memory to host memory (readback)

3. Graphic memory to graphic memory

All transfers we executed using the cudaMemcpy function.
The results on the test system are shown in figure ] Each op-
eration (function call) is loaded with a nearly constant time over-
head of 10-12 us. We presume that this falls back to bus latencies
and buffering. Only for larger data sizes, runtimes vs. data size
scale nearly linear. For host-to-device and device-to-host transfers
this starts at >32-64k and for on-device memory access for >1-2
MB. On our test system, the readback from device-to-host turns
out to be slower than in the opposite direction. Transferring 128
MB host-to-device takes 36 us, whereas the device-to-host trans-
fer accounts to 68 ps. he maximum bandwidths measured are 5,36
GB/s for host-to-device and 3,20 GB/s for device-to-host transfer.
Despite the function call overhead, the on-device data transfer is
impressively fast and peaks at bandwidth of 65,9 GB/s.

5.3. Fast Fourier Transforms

As explained in the introduction, the Fast Fourier Transform (FFT)
is a keystone for frequency-domain FIR filtering. Large-scale real-
time filtering applications with a multitude of individual channels
and with long filters, account to a considerable number of FFTs
and Inverse Fast Fourier Transforms (IFFTs) . But all of these
transforms have the small transform size 2-B, of two times the
block length. A typical 256-point FFT is a rather simple operation
and does not include too many arithmetical operations. Its single-
threaded execution on one CPU-core/-thread of the test system is
very fast and takes just 1,2 us. Such single small FFTs cannot be
efficiently parallelized on the GPU. But CUDA supports the calcu-
lation of multiple equally-sized FFTs, we refer to as Batch-FFTs.
These are exactly what is needed in the uniformly-partitioned con-
volution algorithm. Hence it is very interesting to see where they
can be carried out the fastest — on the CPU or GPU.
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Figure 4: Comparison of real-to-complex FFT between the CUDA
Batch-FFT executed in parallel on the GPU and an iterated single-
threaded calculation on the CPU

Num Block | Filter | Filter parts | Filter parts
channels | length | coeffs. | per channel in total
32 128 | 44.100 345 11.040
64 256 | 44.100 173 11.072
128 128 88.200 690 88.320

Table 2: Several filtering scenarious with different numbers of
channels and filter lengths. Again we consider a sampling rate
of 44.1 kHz.

Figure 4] shows the measured runtimes of the CUDA Batch-

FFT, for in-place real-to-complex forward transforms (R2C-FFT).
We have also measured the runtimes for single-threaded (serial)
calculation on one CPU-core with the FFTW library. Plotted
against the abscissa is the number of transforms — referred to as
the batch size. For small batch sizes (<128), there is not enough
level of parallelism in order to occupy all 240 stream processors
on the G200b graphic chip. Runtimes are almost constant and
do not increase with the batch size. Regarding 256-point FFTs,
the graphic card first gets fully utilized for more than 128 trans-
forms. For 1024-points FFTs — which have more potential for
parallelization — this begins earlier. Once the graphic card is fully
utilized, we observe a linear runtime progression with the batch
size. Interestingly, all CUDA Batch-FFTs are loaded with an over-
head of 146 us. The only exception can be found for 1-2 smaller
transforms <512 points.
Alternatively, Batch-FFTs can be calculated on the host, using a
loop. This can either be processed in serial (by a single thread)
or in parallel (multiple threads, loop parallelization). Thanks to
machine-tailored assembly code (called codelets [29]), small-size
transforms can be executed very fast on the CPU. Considering 256-
point FFTs, calculation on the CPU is much quicker, by several
magnitudes. The break-even point is reached for a batch size of
nearly 128 transforms. For parallel execution on the host with
eight CPU-threads/CPU-cores we estimate a break-even point of
3.200 transforms.

From these results we conclude that, for a reasonable number
of channels (<128), the FFT-/IFFT-transforms for the streamed in-
put and output data should be calculated on the CPU. The filter
processing usually involves much more transforms. Computation
on the GPU is beneficial here (cp. figure[d). These rules only apply
for filtering tasks with long filters and consequently a large num-
ber of filter parts. In general, it is adviced to consider the given
filtering circumstances.

5.4. Static filtering

The simplest case is time-invariant filtering, in which filters are not
changed during runtime. We refer to this as static filtering. Here,
filters can be preloaded into the graphic memory, before the audio
streaming starts. Data transfer during runtime reduces just on the
input and output data. We measured the achievable performance
by means of the maximum possible number of channels. Every
channel is convolved with an individual filter lengths of a fixed
length. In theory, the limit of channels is reached, as soon as the
available time budget for stream processing — the block duration
(cp. table[I) — is exhausted. In practice we cannot spend the full
block duration for computations. Other resources also employ the
CPU, host memory, PCI bus and of course also the graphic hard-
ware. There is also still a video signal that needs to be transferred
to the graphics card. For a seamless operation without dropouts
we need to include a safety margin. In our measurements, we ob-
served that runtimes of the stream processing are in general quite
constant. However, for some stream processings they vary and the
maximum stream processing time is 1 ms longer. This 1 ms dis-
turbance seems to stem from the system and is constant along all
tests. Consequently, small block length samples suffer this prob-
lem most. For B = 128, just 70% of the available time budget
should be used. The problem relaxes for longer block lengths. For
B = 512 a stable operation is achieved when 90% of the budget
are exploited.

The results of our benchmark are shown in table f] Again, a
sampling rate of 44.1 kHz is used. For a block length of B =
128 samples, we found that the filtering runs smoothly for 118
channels, each with a filter of 1s or 44100 coefficients. Here 1,77
ms account for the stream processing in total. The whole 2,9 ms
time budget gets fully exhausted for 192 channels, but then the
streaming has dropouts. For filters of 2 s or 88.200 coefficients,
we achieved 58 channels. The theoretical limit here is reached
for 112 channels. We considered filtering with very long impulse
responses of 5 s or 220.500 coefficients. Here we still managed to
run 7 channels smoothly. For longer block lengths and thus longer
input-to-output latencies, stability is achieved more easily and the
performance significantly increases. We managed for example to
convolve 256 channels with 1 s filters at block length of B =
256 samples. If we accept a latency of 11,9 ms (B = 512) even
more channels can be realized. For filters of 1.0 s we reached an
impressive 352 channels.

Reasoned by the timing issues as well as the mandatory syn-
chronous data transfer, we did not manage to utilize the full pro-
cessing power of the graphic chip in any case.

5.5. Dynamic filtering

For interactive audio rendering the exchange of filters during run-
time is required. Several issues complicate matters in this case:

e The filter data must be transferred to the graphic card
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e The filter parts need to be FFT-transformed

e The stream processing demands more computation

Consequently, we expect the overall performance to be less
than for the case of static filtering. In the following we will ana-
lyze this in detail. We approach this in the way, that we examine
how the filter exchange can be added to static filtering, without
causing any disturbances. All additional processing must there-
fore be performed within the remaining available processing time.

Direct switching of filters is rarely applied in practice, because
it mostly results in audible artefacts (e.g. clicks). A smooth ex-
change of filters is usually realized by cross-fading in the time-
domain. For the time of the cross-fade, two output branches need
to be processed — one with the old filter and another with the new
filter. Therefore, the spectrum multiplications and accumulations
and the IFFTs have to be performed twice, for every filter that is
exchanged.

Our performance considerations found on the following ex-
ample scenario: 64 channels, a sampling rate of 44,1 kHz, a block
length B = 256 samples and filter lengths of 1,0 s (44.100 filter
coefficients). We exhaust 80% of the block duration for computa-
tions — that is 4,8 ms. The measured average stream processing
runtime for this case is 2,26 ms. Consequently, we have 2,54 ms
left over for the filter exchange. For the filter transformation 173
FFT have to be computed for a single channel and accordingly
11072 FFT for all 64 channels together (cp. table2).

In the simplest of cases the filter of just one of the 64 channels
is exchanged at a time. The filter data for one channel comsumes
356 kB. Transferring this portion of data to the graphics card takes
182 us. For a single channel, the filter transformation (173x512-
point R2C-FFTs) is faster on the CPU and demands approximately
280 psfor computation. The stream processing is extended by one
additional spectrum multiply-add, one additional 512-point IFFT
and slightly larger output data. Including the filter transfer, we cal-
culate an increase in stream processing runtime by 216 usor 9,6%,
compared to static filtering. Both, data transfer and additional pro-
cessing fit into the time budget and the filter can be exchanged
instantaneously.

The worst-case scenario is that the filters of all 64 channels
are exchanged synchronously at a time. A complete filter set for
all 64 channels consumes 22,7 MB. The data transfer in this case
takes 6,88 ms. This exceeds our time budget of 2,54 ms signifi-

Block Filter || Maximum Average GPU
length length || number of | stream processing | load
[samples] [s] channels runtime [ms] [%]
128 1,08 118 1,77 ms 41%
128 2,0s 58 1,47 ms 40%
128 5,08 7 2,06 ms 68%
256 1,08 244 4,91 ms 46%
256 2,0s 158 4,82 ms 58%
256 5,0s 78 4,78 ms 68%
512 1,0s 352 10,53 ms 36%

Table 3: Static filtering performance achieved on the test system.
Here, filters are time-invariant and not changed during runtime. A
sampling rate of 44.1 kHz was used, resulting in filters of 44.100,
88.200 and 220.500 coefficients. All values have been measured
under stable operation.

cantly. Thus the transfer cannot be done in one step. Considering
an asynchronous data transfer here, we would still have to wait
three blocks. The computation of FFT-transforms for all 11072
filter parts demands 2,24 ms on the GPU. This introduces another
block of delay. For the stream processing the number of spectrum
multiply-add and IFFTs doubles, so does the size of the output
data. This increases the an overall stream processing runtime to
4,13 ms, which marks an increase of 82,7%, compared to static
convolution. The good news is that the 4,13 ms are still within our
set time budget of 4.8 ms. Apart from the transfer of the filter data,
a seamless streaming operation is threreby still possible. Unfortu-
nately, we have to accept a filter exchange latency of at least four
block durations or 23,6 ms. Thereby we achieve a worst-case filter
update rate of 42,4 Hz.

For time-varying filtering significant amounts of filter data
need to be transferred. Consequently the data transfer matters even
more here. But we like to point out, that the filters can benefit from
asynchronous data transfers. Nevertheless, the dynamic filtering
performance is still remarkable and fulfills the needs for audio ren-
dering. As illustrated at the example, dynamic filtering demands
different considerations: For applications, first the required filter
update rate must be defined. Then the two parameters, number
of channels and filter lengths, can be adjusted for the given task.
In practice such worst-case scenarios occur seldom, so the actual
filter update rate will be greater.

6. CONCLUSIONS

We have presented an implementation real-time FIR on graph-
ics hardware. Our method achieves an outstanding performance,
which exceeds all prior implementations. On a NVIDIA GTX
285 card we successfully realized static filtering of more than 200
channels with individual filters of more than 40.000 coefficients
at an input-to-output latency of less than 6 ms. We like to point
out, that all measures have been benchmarked under stable opera-
tion. The theoretical peak performance is even higher, because this
performance was achieved by just utilizing 44% of the computa-
tion power of our GPU. This is reasoned by subtile problems that
emerge under real-time conditions. For a stable operation, varia-
tions in the processing runtimes must be tolerated. In order to pre-
vent dropouts, not the full time budget time can be exhausted for
computations. We discovered randomly occuring system latencies
of approximately 1 ms. These turned out to be critical especially
for very low latency applications.

We also analyzed time-varying filtering in detail, where filters
are exchanged during runtime. Dynamic filtering demands more
computation and relies even more an fast data transfers. Never-
theless, for 64 channels and 1,0 s filters, the full filter set (all 64
channels at once) can still be updated with over 40 Hz. This is
impressive, but we like to state the PCI-Express BUS can still be a
bottleneck. When many long filters are exchanged synchronously,
additional filter exchange latencies occur. However, this has minor
relevance for applications in practice. Here, typical filter update
rates are in the range of 50-100 Hz. Moreover, long filters are
usually not entirely exchanged with such high rates [[1]].

We summarize, that graphic hardware is very well-suited for
real-time FIR filtering and pushes the possible filtering perfor-
mance a big leap forward. Thereby, our technique can excellently
be applied for audio rendering of complex virtual scenes. As an
outlook, it will be interesting to see the potential of non-uniformly
partitioned fast convolution for GPU computation.
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