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ABSTRACT

Similarity is a key concept for estimating associations agha set

of objects. Music similarity is usually exploited to retreerelevant
items from a dataset containing audio tracks. In this workap-
proach the problem of semantic similarity between shortgseof
music by analysing their instrumentations. Our aim is teelau-
dio excerpts with the most salient instruments (pigno, human
voice, drumpand use this information to estimate a semantic re-
lation (i.e. similarity) between them. We present 3 différmeth-
ods for integrating along an audio excerpt frame-basedsifieis
decisions to derive its instrumental content. Similarigtvbeen
audio files is then determined solely by their attached &abdle
evaluate our algorithm in terms of label assignment andlarityi
assessment, observing significant differences when cangpér
to commonly used audio similarity metrics. In doing so we tes
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on music from various genres of Western music to simulate rea Figure 1:The semantic gap and its roots. In this example, the low-

world scenarios.

1. INTRODUCTION

Music recommenders, automatic taggers, or corpus-basea s
native synthesis systems —to name just a few — use simitagtyr
sures to retrieve relevant items from an audio database [(d,9
[2], [3]). Here, the concept of similarity is often defined &ynet-
ric distance between low-level audio feature vectors. @lggance
is often used to estimate proximity of points in a highly dime
sional parameter space. It has been argued in literaturddiia
the dimensional and metric approaches are to question atd th
comparing many categorical and discrete features betemiles
human judgments of similarity for certain stimull [4]. Innpiaular,
similarity between pieces of music (owsicsimilarity) is difficult
to model with mathematical abstractions of pure acoustieal-
tionships[[5]. As a perceptual phenomenon it is defined bydmum
auditory perception per se. In other words, masic similarity
without perception[6]. Consequently, modellingnusicsimilarity
means addressing auditory perception and musical cognitio
Research in Music Information Research (MIR) currently
abounds in examples of an observed phenomena erglded ceil-
ing. Although state-of-the-art algorithms score around 75%oaf
curacy on various task5l[7], it seems nearly impossible tbeto
yond the current performance figures. This apparent shortgp
has been attributed to the so-callmantic gapvhich arises from
loose or misleading connections between low-level detmspof
the acoustical data and high-level descriptions of theciatanl se-
mantic concepts, be it in classification or in similarity essment
([8],[8]). However, both aforementioned terms can be itfient as

level description of the audio content yields a differerstoasation
between the tracks A, B and C than the semantic conceptedelat
to the instruments do.

conceptual problems, arising from the same source, namesj-t
ing a perceptual construct such as music as pure, indepeimen
it, data corpus (i.e. ignoring its inherent qualities likeisl, emo-
tional, or embodiment facetd)|[6]. Figl 1 illustrates thepa@nt
discrepancy between acoustically and semantically obtaimusic
similarity; although the low-level information indicatasstronger
correlation of track B and C, the semantic labels relatechéo t
instrumentation of all songs reveal a different similarfurther-
more, while description or transcription of monophonic musn
be roughly considered as “solved”, research on many polyigho
problems is still in its infancy and the community is lackiofgro-
bust algorithms for polyphonic pitch and onset extract&myrce
separation, or for the extraction of higher-level concéigéschord
or timbre qualities.

In this work we want to automatically tag a whole audio ex-
cerpt with labels corresponding to the most relevant imsémnts
that can be heard therein (egano, sax, drums and use these
labels to estimate instrument-based semantic similarfiegween
audio files in a dataset. As the instrumentation of an audiergt
is one of the primary cues the human mind uses to establish ass
ciations between songs (s€€l[10] and references thereis)di
rectly related to music similarity and therefore human pption.
Here, our focus lies on developing a general methodologyder
termining instrumental similarity — both in terms of the enlgling
data and modelled instruments. In other words, our aim isanot
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complete modelling of musical instruments nor any musitdes
one can think of — a far too ambitious goal with nowadays digna
processing and MIR algorithms. Therefore our results -oalgh
not perfect — will shed light on theoretical and conceptsalies
related to semantic similarity in music. Moreover, the deped
similarity may be used in any music analysis, transfornmatir
creation system.

In the presented system polyphonic instrument classifiers a
applied to tag excerpts of music. We use classifiers for 3yserc
sive and 11 pitched instruments (including the human vditE)
to get a probabilistic output curve along the excerpt forheaft
the target instruments. We design and evaluate three girat®
process the obtained probability curves and to assigndabehe
audio excerpts. Given the instrumental tags of all audis filehe
dataset we then calculate pair-wise similarities betwheritems.
Evaluation of the label assignment is finally done by calinga
precision and recall metrics for multi-label classificatiand the
presented semantic similarity is estimated as the Pearsolug-
moment correlation between assigned and ground truthwisé-
similarities. Thereby we both evaluate the quality of theeliing
method and compare the obtained similarities to results fils-
tance approaches usually found in MIR.

The paper is organised as follows: the next section covers re
lated works from MIR on estimating information about thetins
mentation of a piece of music. In SEE. 3 we describe the pregen
system along with the different labelling strategies. 8kgives
insights in the used data and the experiments done to egdluat
different approaches. Finally, after a discussion, weectbs arti-
cle with some conclusions.

2. RELATED WORK

In literature, labels related to musical instruments aréntyan-
corporated by systems that generate social tags from aadito d
In general, these algorithms use the information of therunsen-
tation of a piece of music along with dozens of other human-
assigned semantic concepts (e.g. genre, style, mood, oriceve
textual information) to propagate tags throughout andétrigve
relevant items from a music collection. Turnbell al. train a
probabilistic model for every semantic entry in their datay
modelling the respective extracted audio features with asGa
sian Mixture Model (GMM) [1]. Given all models of semantic
keywords the system is able to infer the probability for ekey
word for an unknown piece of music or query the collectiorhwit
a purely semantic input. Reported results regarding ingntal
keywords yielded a precision of .27 along with a recall vabfie
.38. Hoffmanet al. exploit a similar path by training Codeword
Bernoulli Average (CBA) models on a vector quantised regmes
tation of their music collectiori[12]. Again, a probabilityr each
label can be inferred from the models for an unknown track: Be
sides general performance results, no detailed informatimut
the performance on tags referring to the instrumentatianméce
of music is reported. Finally, Eckt al. use a music collection
consisting of about 90.000 tracks from 1.277 artists tanteaid
evaluate boosted decision stump classifiers for auto#agdid].
The 60 most popular tags extracted from nearly 100.00 antist
the social network Last.fm are taken for analysis, in whiwhdat-
egories genre, mood, and instrumentation form 77% of adllab
Furthermore, there has been interest in the problem of iden-
tifying musical instruments from audio data. A compreheasi
overview of works dealing with instrument classificatiomrfr
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monophonies as well as polyphonies can be found ih [14]. In a
more recent work, Essidt al. developed a methodology to di-
rectly classify the instrumentation within a narrow, ddtasen
taxonomy [[I5]. Instead of modelling the musical instrunseitt
self, classifiers were trained on the various combinatidmssbru-
ments (e.gtrumpet+sax+drumssax+drums etc.) of the training
data. The categories were derived from a hierarchical efingg,
whereas the labels were manually assigned to the respetise
ters. Every[[16] evaluated a large corpus of audio featwelis:
criminate between pitched sources in polyphonic music. nBve
containing stable pitched sources were extracted from th&ian
pieces and features computed from the resulting excergien,T
clustering of the values was applied to yield a performanea-m
sure of the separability of the applied features. ReceH#yttola
et al. presented a multi-staged system incorporating fO-esimat
source separation and instrument modelling for instrurkssi-
fication from artificial mixtures[17]. A Non-negative MatrFac-
torisation (NMF) algorithm is using the information proeil by
the pitch estimator to initialise its basis functions andéparate
the sources. After separation, features are extracted tihenne-
sulting streams and classified by GMMs. Finally, Fuhrmathn
al. trained statistical models of musical instruments withdess
directly extracted from polyphonic music [11]. Support Wec
Machine (SVM) models for both pitched and percussive instru
ments were developed along with an evaluation of the tenhpora
modelling of the used audio features.

The aforementioned works either strictly deal with insteurn
classification on a frame basis, i.e. the systems are buileaalu-
ated on the correct number of instruments detected in evanysf,
or predict instrumental tags from a “bag-of-concepts”, wehihe
meaningfulness of the accumulated extracted informatientbe
musical instrument) cannot be fully assured due to linotagiof
the quality of user ratings and the amount of data for maaiglli
Please note that the here-presented approach is methiddipg
quite different, as it attaches a finite set of labels relatdy to the
instrumentation to a whole audio excerpt, according to tlstm
confident classifier decisions (e.g. “This is a piece \fitie, vi-
olin, andorgar’). To our knowledge, no study in literature ap-
proached the problem in this way.

3. METHOD

In this section we describe our approaches of assigningimsin-

tal labels to audio excerpts. The front end, which is usedlby a
three labelling methods, consists of an instrument clasgi€in
system. It outputs probabilistic estimates for each of theelied
instruments on a frame basis. The so-obtained probabilityes
are then processed by the labelling algorithm to assign afset
labels and respective confidences to the audio excerpt.

3.1. Front End

Given an unknown — presumably multi-voiced — input audio ex-
cerpt, previously trained polyphonic instrument clasesfare ap-
plied within a sliding windo. The classifiers are trained with 11
pitched (namelycello, clarinet, flute, acoustic and electric guitar,
hammond organ, piano, saxophone, trumpet, vjaiind human
voice and 3 unpitched instruments from the drums basédrum,

1The parameters for window length and hop size are set to 219&n
sec, respectively.
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snaredrum andhihaf). The training data for the pitched instru-
ments consist df.5 seconds long polyphonic segments containing
predominant target instruments, all data taken from coriakgy
available musf. Percussive instruments are trained with sec
excerpts extracted from data of two public datasets, narinely
ENST [18] and MAMI [19] collections. Typical audio features
representing timbre were extracted frame-wise and intedm@aver
the segment length using mean and variance statistics dhthe
stantaneous and delta values to train the instrumental Is(gke
[11] for more details). The classifiers — we used supportorect
machines (SVMs) — output probabilistic estimates for &l tinen-
tioned instruments which leads to 14 probability curvesmglthe
segment.

3.2. Labelling

In the following we describe the methodology we have taken to
integrate the classifiers’ decisions to yield the final selabkls
and respective confidences for a given audio excerpt.

Contrary to the processing of the pitched instruments, @her
we are interested in assigning a possible label for all the-mo
elled instruments, we simplify the labelling of the perdussn-
struments. Here, we accumulate the three probability sufive.
bassdrum snaredrumand hihat) to label the excerpt with either
drumsor no-drums Similar to thePercussion Indeyresented
in [20], we count the number of unlabelled onsets and divide i
by the total number of onsBtsgiven the estimated onsets inside
the audif. If this ratio exceeds an experimentally defined thresh-
old 6,.+i0, the excerpt is labelled witho-drums otherwise with
drums

For the labelling of pitched instruments, we process albpro
ability curves which hold a mean probability value along seg-
ment greater than the activation threshéld;. Furthermore, to
filter out unreliable excerpts, we define an uncertainty degtar-
mined by the upper and lower valués, andé;,: if the 3 highest
mean probability curves fall into this area (as it signals &f-
sence of discriminable instruments) the excerpt is skifgpetinot
labelled at all. This is motivated by experimental evideasgon
excerpts with heavy inter-instrument occlusion or a higmhar of
not modelled instruments, the classifier output shows tfpal
behaviour. With the remaining probability curves we thearaine
three different strategies for labelling:

Mean Probability Values (MPV) Labelling is simply done by
taking the highestiys pyy mean probability instruments. The re-
spective label confidences are set to the mean probabilitgyaf
the instruments. Following this approach, temporal infation is
completely disregarded, as all probabilities are averad@uy the
excerpt.

Random Segment Selection (RSS) Random segments of length
lrss are taken from the audio input to account for variation in
the instrumentation. Within each of these segments, a major
vote is performed to attach either one or — in the case of a draw
two labels to the random segment. The assigned confidenees ar

2|In total, this training collection covers more than 2.508cgis of music
to account for the noise introduced by the underlying potyph

Swe count an onset as unlabelled if none of the three probabiiues
at the respective onset exceeds the threstigld .

4we used an energy based onset detection algorithin [21] ¢o thé
drum onsets.
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a result of the number of the majority label(s) divided bytotiite
lengthlrss and the total number of random segments extracted
from the input. All labels from therrss random segments are
merged and the confidences of multiple instances assignte to
same label summed.

Curve Tracking (CT) Probably the most elaborate and plausi-
ble approach from the perception point-of-view: classifarais
done in regions of the audio excerpt where a dominant ingnim
can be clearly identified. Decisions in regions where oyerla
ping components hinder confident estimations are inferreoh f
context. Therefore, we scan all instrument probabilityvesrfor
piece-wise predominant instruments. Here we define predomi
nance as having the highest probability value for 90% of a seg
ment with minimum lengtlicr. Once a predominant instrument
is located, its label is attached to the audio excerpt aloitly &
confidence defined by the ratio of the found segment’s lermth t
the total length of the excerpt. This process is repeatei alht
regions with predominant instruments are found. Finalllyjaa
bels are merged and multiple confidences of the same labetladd
During this process, we explicitly use the temporal dimensif

the music itself (and thereby the contextual informatioovied

by the classifiers’ decisions) to infer a set of labels.

Given the set of labels and their respective probabilitas f
an audio excerpt, a final threshdld,, is used to filter out labels
which hold a too low probability value.

4. EXPERIMENTS

4.1. Data

For our experiments we collected a total number of 100 pie€es
Western music, spanning a diversity of musical genres astduin
mentations. It should be noted that the musical data faritrgithe
polyphonic instrument classifiers and the data for the otires-
periments were taken from different soufte$wo subjects were
paid for annotating a half of the collection each. After céenp
tion, the data was swapped among the subjects in order tdedoub
check the annotation. Moreover, a third person reviewetthalso-
generated annotations. In particular, the on- and offdetearly

all instruments were marked manually in every file, whereas n
constraints in the vocabulary size were imposed. This miweats

in addition to the labels of the 11 modelled instruments dvel t
labeldrums every instrument was marked with its corresponding
name. Hence, the number of categories in the test corpusasegr
than the number of categories modelled by the instrumessicla
fiers. Moreover, if an instrument was not recognised by thgest
doing the manual annotation, the lab@knowrnwas used.

For all following experiments we split the data into a depelo
ment and a testing set by assignih of the corpus to the former
and the rest to the latter subset. Tdlle 1 shows the genridist
tion of the whole 100 tracks and Fig. 2 ddd 3 show the frequehcy
all annotated instruments and the number of instrumentstated
per track, respectively. We hypothesise that with incregasium-
ber of tracks the shape of the histogram in [Elg. 3 will resembl
a gaussian distribution with its mean between 4 and 6 arettat

5This means that it is impossible that a certain piece of majears
in both datasets. Moreover, within each collection theeerar two tracks
of the same artist to avoid the so-calladist andAlbum effects
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Table 1: Number of tracks with respect to the different musical
genres covered by the whole dataset.

pop jazz
23 22

folk
9

electronic
8

classic
13

rock
25

Instrument Occurrence in Collection

# of Tracks

drubas voiunkgel piagac str orgsax tru flu vio cel braper tro cla haracchorobotub
Annotated Instruments

Figure 2: Frequency of annotated instruments in the used music
collection. Please note that all instruments modelled feygbly-
phonic recognition modules are top ranked.

instruments. Additionally, for estimating the proportiohinstru-
ments not modelled by the classifiers, we compute the mean rat
of modelled-to-total labels in a trackr(l) along with the average
number of not-modelled instruments per tratk6().

4.2, Labds

Besides the 11 modelled pitched instruments and the already
tioned “fused” labetlrums we introduce the two composite labels
bra (for brass sections) arstr (for string ensembles) for evalua-
tion purposes. This is motivated by the fact that both arguieat
labels used to describe the instrumentations of a giverepiéc
music (see Fid.]2). As they are not modelled by the polyphioric
strument classifiers, the individual predictions have tadapted

Annotated Instruments per Track

25

# of Tracks

1 2 3 4 5 6 7 8 9
# of Instruments

Figure 3: Histogram of the number of instruments annotated per
music track in the used collection.

depending on the respective set of ground truth labels. \&feth
fore substitute evergel andvio in the set of predicted labels with
str whenever there is a label “strings” in the annotation. Sanhy
we process the labelda, sax andtru when we find ara in the
respective set of ground truth labels.

4.3. Metrics

In this section, we introduce the metrics used to evaluatéliffer-
ent algorithms presented in the paper. First we define daveta
rics to estimate the performance of the instrumental tagasent
given the ground truth annotations. Then we present a measur
semantic similarity between two items, which have beenllate
by the aforementioned tagging algorithm.

4.3.1. Labelling

For estimating the labelling performance, the underlyingbfem
to evaluate is multi-class multi-label classification.d3e note that
in our specific case, as there has not been any restrictite ina-
cabulary size for the manual annotations, the set of all$abén
the dataset is theoretically not closed. But when considesnly
those labels, which are actually used to describe the mstntal
content of an audio excerpt (i.e. the 11 modelled pitchettuns
ments,drums and the two composite labdisassandstringg, we
can regard it as closed without loss of generality.

ConsiderL the closed set of labels = {l;},i = 1...N.
Given the audio dataséf = {z;},« = 1... M, with M items,
Y = {4:},i = 1... M, the set of ground truth labels for each
andY = {y;},i = 1... M, andy; C L, the set of predicted la-
bels assigned to the audio excerptXinWe then define precision,
recall, and F-measure for every labellin

Mo Mo
P = Zizj\l/jyl,lyk,l’ and R, = Zzzj\bylfyln’ (1)
Zi:l Yii Zi:l Yi,i
2P R,
= 2
l ]Dl ¥ Rl7 ( )

where, for any given instance y; ; and); ; denote boolean
variables indicating the presence of labéh the set of predicted
labels and in the ground truth annotation, respectivelyrtbeu-
more, to introduce a general performance metric, we defiae th
unweighted mean of label F-measures as

L / ~
Foaero = - ‘Z‘: 230 yuidi

macro — / / ~ )
1Ll = S i+ 2

where|L| denotes the cardinality af. AS Fiacro does not
account for individual label distributions (i.e. less fuent labels
contribute the same amount to the metric as more frequergt one
do), we additionally introduce

@)

L /] N
2 ZZ‘:‘l Zj\il Yi,iYi,i
M L M~
21:1 Yu,i + Z‘L:‘l 21:1 Yi,i

which considers the predictions for all instances together
Although the presented F-measure metrics give an objective
and adequate performance measure, under certain cirauwasta
is of advantage to evaluate the general system performaithe w
precision and recall measures separately. We thereforgedefi

N O

Fmic'ro = IZ|

=1
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L] M
1
Pre = —rear— > (Q_wa) P, (5)
121 D ie1 Yli =1 i
and
1 IL| M
Rec = W Z (Z 'gl,i)Rl, (6)

1=122i=1Yli 1=1 i=1

the weighted mean precision and recall across all labels, re

spectively.

4.3.2. Similarity

We then introduce a measure of music similarity using thessem
tic descriptions attached to the audio tracks (i.e. theuns¢ntal
tags). Instead of using a geometric model, which has beemepro
to be problematic under certain assumptions (seel€.qg. {(iledar-
ences therein for details), we apply metrics from set-thémesti-
mate associations based on the instrumentation betweaude
files in our dataset.

Again, assumeX = {z;},7 = 1... M being a set objects,
each represented by a set of lahels Y. We then define(x;, x;)
to be a measure of similarity betweepandz;, for all z;, x; €
X, given the matching functiof [4]:

s(@i, ;) = F(yi VY5, Y — Y5, Y5 — Yi)s 7
thatis, the similarity between; andzx ; is expressed by a func-
tion of their common and distinct labels. Following [4], wedilly
define a similarity scal& and a non-negative scafesuch that for
all z;,z; € X,

f(yiﬂyj) (8)
FQyi ) +af (v — ) + BF (g —vi)’

for a, 8 > 0. This relation, also known astio mode| nor-
malises similarity so tha$ is betweer0 and1.

S(xi,xj) =

4.4. Parameter tuning

The development set is used to find the optimal parameter val-

ues yielding the best overall labelling performance of tlgoa

Table 2: Acronyms and respective discrete values of the param-
eters used in the grid search for training. Bold values iatkc
best performance among tested values. See[Sdc. 3.2 fordtte ex
parameter meanings.

Acronym  Value
Oact  [.09,.14,.18, .27, .45, .68]
Oup  [14,.18,.27]
0o, .09
Orap  [.05,.1,.2,.3]
Oare [.5,.6,.7,.8]
Oratio  [.3,.5,.7]
nupy  [1,2,3,4]
lrss [27 37 4, 5] (Sec')
nrss mazx.4
ler [25,3.5,4.5,5.5] (sec.)

in the time series of the input data. We use the first 13 Mel Fre-
guency Cepstral Coefficients (MFCC$§)_[23], extracted frobn 4
Mel bands, as input to the algorithm, accounting for the tierdnd

its changes along the track. The algorithm shifts a textunelow
along the audio, which is splitinto two parts, where the vehaain-
tent of the window and its subparts are fit to a specific nfbdede
BIC-value — in general defined by the maximum log-likelihoad

tio of a given model and a penalty term — is then calculated by
the difference of the maximum likelihood ratio test (detered

by the covariance matrices of the three models) and the fyenal
term. If this value exceeds a certain threshold, a chang# i
detected, and the window is shifted for the next analysis réfé

to [24] for details on the implementation. Besides, with toere-
sponding parameter settings the algorithm can also be odeulit
boundaries between structural blocks of a song.

We segment all songs of our test collection using the afore-
mentioned algorithm. If possible, we then take the 4 longegt
ments of each track to build the final test set, yielding altota
amount of 255 audio excerpts.

4.5.2. Results

In order to compare our results to a chance baseline, we-intro

rithm. We evaluate a gl’ld search over a predefined discrdtie va duce a random label assignment a|gorithm. It assigns a numbe

range for each relevant parameter. The best values are éten d

mined by the top scoringm:.r. valuel. Tabld2 shows parameter

acronyms, predefined discrete values set, and best foundsyal
respectively.

45. Labelling evaluation
4.5.1. Preprocessing

To obtain excerpts for experimental analysis, we segmerpitites
of music in the test set using a Bayesian Information Coteri
(BIC) segmentation algorithm [22]. This unsupervised &tfm,
working on frame-wise extracted features, is used to finchgba

81t should be noted that it is only our convention that the pesameter
values correspond to the highdst, ;.o score. Depending on the appli-
cation and its needs, another metric (e.g. precision) cdefihe the best
overall labelling performance and serve a different setetsitlparameter
values.

of labels with corresponding confidences to each of the géeer
excerpts. The number of labels and the corresponding comiéde
are taken randomly from the distribution of the number oklab
and of confidence values, respectifielyrhe former is modelled
as a histogram whereas the latter correspond to a normebdist
tion NV (u, o) with meany and standard deviatian, whereas both
distributions are determined by the observed data. Thé izledf
is randomly drawn from the distribution of annotated labelthe
test set.

We now present the results obtained for each of the labelling
methods, including the respective means of 10 runs of the ran
dom label assignment, by evaluating the attached tagsstghim
ground truth annotations. An analysis of variance of instdth,icro
values shows no significance for pair-wise comparison offiree

"here, the data is fit to a single gaussian distribution.
8The distributions are obtained when processing the telgtatioin with
the C'T labelling method and its best parameter settings from T2ble
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Table 3:Evaluation results for tag assignment on the testing data.

0.9

F-measure for all modelled instruments

We used the respective optimal parameters depicted in Bhiole sl
each of the 3 labelling methods. The random method values cor | E=— I%/ISPg/
respond to the mean of 10 independent runs. o7 |:I_ or
Method  Pre Rec  Fmacro  Fmicro 06 b
rand 0.424 0.155 0.11 0.227 sk
MPV  0.86 0534 0.441 0.659 w
RSS 0.857 0.521 0.429 0.648 o4r
CT 0.864 0.528 0.442 0.656

Pre and Rec metrics for different values of eac

t

09 |

08 |

03 |

02

0.1}

cel cla flu gac gel org pia sax tru vio voi dru str bra

Instruments

Figure 5: F-measures for individual instrumentst’ values are

— +— - MPV (Pre) plotted for all labelling algorithms, including the randoassign-
o o7} — A— - MPV (Rec) | ment.
=] RSS (Pre)
S sl RSS (Rec) | |
CT (Pre)
st '/’;/\K CT (Rec) as the ones ob, thus contributing more to the overall similarity
A measure. However, the problem here can be regarded as symmet
04t TSNA ric (i.e. S(zs,z;) = S(zj,x:)). We therefore set the parameters
i toa = 3 = 1/2, reducing Eq.[(B) to
03 4
0.1 0.2 0.3 0.4 0.5 0.6 2f(y¢ N yj)
act S, z3) flyi) + fyi) ©

Figure 4:Precision and recall metrics for varying values@f...
As it can be seefi, . determines the sensitivity of the labelling al-
gorithm: depending on its value the labelling performanegnos
show very different outputs.

labelling methodsV/ PV, RSS, andCT. However, the average
instanceF .., value of the combined three methodd (= 0.31,
SD = 0.15) was significantly higher than the one of the random
label assignment\( = 0.12, SD = 0.13), F'(1,508) = 217.29,
p < .001. Table[3 shows the evaluation metric values for the re-
spective best parameter settings found in the training.
Additionally, Fig.[4 shows the precision and recall metrics
Pre andRec for different values of,.:. For each labelling method
we used the respective best parameter settings from [Thiffe 2.
nally, the system performance in correctly identifyingiindual
instrument categories for all labelling methods is depidteFig [3.

4.6. Similarity Assessment

Using the instrumental tags assigned to the audio excergiari
dataset we then compute pair-wise similarities betweetréuogs.
In accordance with E.]8), we need to determine three pdeame

Finally, the scalef has to be determined. One straightforward
approach would be to simply use the counting measure. Thus,
similarity is estimated by just counting the number of comraad
distinct features. As it obviously puts the same weight tergv
label regardless of its frequency in our dataset, we weighhe
label by its relative occurrence in the dataset before sumgmi

A proper evaluation of the obtained pair-wise distanceslavou
require ground truth data based on similarity ratings fraiman
listeners. Although desirable, these are not availabldééncur-
rent stage of the research process and therefore remairi the o
scope of this work. However, we can relate our observed data t
results from previously used distance approaches. Therefiee
first build binary feature vectors from the assigned insenotal la-
bels and calculate the pair-wise euclidean distances eetitem.
Second, we model each audio excerpt in our test set as a single
gaussian distribution with meanand covariance matriX (both
diagonal and full covariance matrices are considered)dase
frame-wise extracted MFCCs. The distance between two reodel
is then expressed by the symmetric Kullback-Leibler dieears.
This approach has been shown to be superior in similaritppro
lems where timbral information is pivotal (i.e. artist anithiam
similarities)[25].

In order to estimate how well the results resemble the seman-

the scalef, measure of the common and distinct features, and the tic similarity expressed by Ed.](9), we correlate the obsevair-

parametersy and 3, which weight the influence of the respective
distinct features to each other.

The parametera and 3 define the symmetric aspects of the
similarity measure. Suppose any non-symmetric similaetg-
tion S(a, b), where the labels af have more weight than the labels
of b. By settinga > (3, the distinct labels o get a higher weight

wise distances — obtained by both the semantic and euclitisan
tance approach using the computed instrumental labelsehasv
the gaussian modelling via the Kullback-Leibler divergeravith
the similarities obtained by applying Ef] (9) to the manuaia
tated labels. Tablg 4 shows the resulting Pearson prodantent
correlation coefficients.
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Table 4: Pearson product-moment correlation coefficients for the
four similarity test scenarios. The first column represehessim-
ilarity obtained via Eq.[(P), the second the euclidean dists
from the instrumental tags, the third and forth the distanesult-

ing from the gaussian modelling with diagonal and full casace
matrix, respectively. All obtained correlations hold sfgrance
valuesp < .001.

euclidean

—0.24

semantic

0.54

KLd'Lag
—0.11

KLy
—0.12

5. DISCUSSION

The results presented in the precedent sections demantsteata-
pabilities and potentials of our algorithm and thereforlessantiate
our taken methodologies. On the one hand it is shown thatavith
standard pattern recognition approach towards musicaliment
modelling in polyphonies, and with a straightforward anusie
labelling strategy, reliable tags containing informataioout the
instruments playing can be attached to an audio excerpirdeg
less its musical genre or instrumental complexity. Moreoieese
labels can be used to construct basic and effective asgmsdte-
tween audio tracks, based on their semantic relations coince
the instrumentation. On the other hand, much room for improv
ments can be identified, both in classification and labelliide
will now discuss all parts of our algorithm consecutively:

First let us examine the polyphonic instrument classifocati
Given the fact that there are still 8 categories in the grouath
annotations which are not modelled by the classifiers, wesee
need in adapting the instrumental modelling in this regaek (
Fig.[d). Moreover, the categomynknownis ranked on 4th posi-
tion, indicating that we are still lacking the right conceéptover-
come problems with inputs which are not known by the syBtem
A simple solution regarding the unknown categories wouldde
move away from predicting the presence of the instrumeryimia
towards a more general concepttbis instrument sounds like....
However, the predictions for the trained instruments abeisband
are shown to be useful in our context.

the value is due to a low recall. Moreover, the low perforneaot
theviolin can be explained by the merging of the labels when cre-
ating the composite labstrings(i.e. the labelio mostly appears
together with the labedtr, and therefore all predictions ofo are
transformed into predictions sfr). Furthermoregla andbra only
appear in a minority of the audio excerpts under analysis.

Reviewing the different parameters in Table 2 and their im-
pacts on the overall labelling performande,: is the most influ-
ential one. Of course, small adjustments in performanceatsm
be accomplished by varyingas, lrss, of lor , butf..¢ deter-
mines the overall sensitivity of the algorithm. Dependingtbe
need of the application using the instrumental taggingrétiya,
one can adjust the number of true and false positives by gimpl
altering this parameter (see Hig. 4).

Nonetheless, in general the labelling algorithm is onlyeabl
to identify a fraction of all instruments playing in an audg-
cerpt. This is due to the fact that primarily predominantrses
are identified. On average, the algorithm outputs 2 labalepe
cerpt, which is less than half of the maximum that can be olesker
in Fig.[ Y. Evidently we will not be able to recognise instruments
in a dense mixture without more elaborate signal procedsiolg
like source enhancement or polyphonic pitch and onset tietec
Moreover, to improve recognition performance we clearbnitfy
a need for a complete probabilistic modelling with knowledig-
tegration from different sources. Also, prior informaticould be
very useful (e.g. reliable genre information can reducentimaber
of instruments to recognise, thus minimising the errorodticed
by instrument confusions). However, deploying the infaiioraof
the predominant instruments is not only useful for tramsfation
and computational analysis, but also important from theqer
tual point-of-view, as the predominant sources contrilmogst to
the overall timbral sensation of the audio excerpt.

Regarding the presented semantic similarity, the useduneas
is both simple and intuitive. Our approach, which is solegdxd
on the overlap of the predicted labels, resembles groutia $fon-
ilarities and shows significant differences when compaoeaidis-
tance approach applied to the tags as well as to metric-tmgsed
proaches based on low-level features. From the resulte e
in Tabld4 there is evidence to suggest that it reflects baghitive
principles and carries complementary information withpees to
the other similarity estimations. On the other side, theilaim

Regarding the labelling methods we can observe that none ofity we are presenting relies on a simple merging of instrusaden

the proposed methods performs superior than the others ighi
even more surprising when considering the conceptualrdiffee
of taking just the mean probability of the instruments alding
whole segment and scanning their output probabilities feces
wise maxima. We may explain it by the fact that if an instrumen
is predominant it is recognised by all three methods witlpoab-
lems. On the other hand, if the algorithm is faced with an gubi
ous scenario, all methods perform equally bad.

When looking at the instrument-specific performance of the
labelling algorithm, we can observe an excellent perforreamith
the labelsdrumsandvoice Also the labelling of the instruments
sax organ, trumpet acoustic guitar andelectric guitaras well as
the composite labetringsyield satisfactory results of our evalua-
tion metrics. Theianoperforms slightly inferior as the aforemen-
tioned, but it is not clear if the resulting value in Fig[5 is due
to a low precision or recall. We hypothesise that as the piano
often used as an accompaniment instrument for the humaa,voic

9Besides, this problem is prototypical for many classifimatiasks and
only a minority of works are considering it as part of theipegach.

labels along the segment to form a closed set. It remains more
than to question if this merging resembles similarity juégns of
humans based on timbre. Moreover, in what extent instruahent
information is used by humans to find associations betwesrepi
of music is difficult to estimate, but this information may\seas
an essential brick in the concept of a general audio sirtylari

In general, the presented method is thought to be used irtmusi
creation, transformation and analysis algorithms. Whéreréng
relevant items from a database, the concept of relevancé&an
extended by the presented instrumental similarity. It mdy an
interesting aspect to these systems which largely relyroiiagity
metrics based on geometric models. Or consider any musie mod
elling algorithm, be it for genre classification, for moodiestion
or, more general, for similarity assessment; having an éteait
the instrumentation of the analysed track can dramaticatiyce
the parameter space to search for and, therefore, lead ® noor

1%please recall that we are only tagging excerpts taken frdnpigces
of music. The problem may be reduced when analysing differegments
of one track and combining the so found labels.
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bust — thus perceptually more plausible — results.

6. CONCLUSIONS

In this article a general methodology to derive a semantiglai-
ity based on the instrumentation of an audio excerpt wagpted.
We used polyphonic instrument classifiers to process segnoén
music and integrate their predictions over the whole excetm
this basis, three strategies for assigning tags corresmpmal the

instrumentation were examined. Thereby we did not find apgsu

rior method, indicating that labelling performance is nependent

on the specific method. Furthermore, we introduced a meadure

similarity coming from set-theory, which is only based obdha

overlap, and is rooted on the way humans judge conceptu@ sim

larities. Labelling performance evaluation yielded psemi values

up to 0.86 and F-measures greater than 0.65 (for randomimesel

of 0.41 and 0.22, respectively); moreover, significantedléhces
were observed when comparing the presented similaritynasti

tion with metrics usually found in MIR systems. The develbpe

algorithm may be used in any music creation, transformaton
analysis system.
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