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ABSTRACT

Physical models of real or virtual instruments are usuatlly ex-
ploited for the generation of wave forms. However, modesvof
and three-dimensional vibrating structures contain at$orima-
tion about the sound radiation into the free field. This dbntion

presents a model for a membrane from which the required driv-

ing functions for a multichannel loudspeaker array areveei
The resulting sound field reproduces not only the musicabrm
of the sounding body but also its spatial radiation charaties.
It is suitable for real-time synthesis without pre-recarae pre-
synthesized source tracks.

1. INTRODUCTION

The spatial radiation characteristics of musical instmtadave

been a research topic for quite a long time. Many results have

been obtained by careful physical analysis of the acousdica
mechanical properties of musical instruments. Initiatiye main
intention of this research has been to obtain a scientifiexstand-
ing of the mysteries behind the sound production of traéian-
struments. For a compilation of selected research seelg.g. [

Recently the focus has shifted from pure understandingeto th
attempt of actual reproduction of the temporal and spatiaber-
ties of real instruments. This change of interest has beigerdr
by new spatial reproduction technologies, like Ambisonigave
field synthesis, and vector based amplitude panning. Wittereint
mathematical, physical, and perceptual methods, theseaemw-
duction technigues overcome the limitations of traditicstareo
panning.

However, to use these new reproduction techniques to the bes

of their possiblilities, a more precise knowledge of thetigpali-
rectivity of musical instruments is required. During thetlgears,

a lot of effort went into the careful measurement of the sgpati
radiation characteristics of many traditional musicatrimsents.
Ingenious recording devices have been developed to detertime
amount of acoustical energy radiated by musical instrumemt
the environment in dependence of azimuth and elevationeang|
and of the musical notes played, see e.g. [2,/3/4, 5, 6]. &imil
to head related transfer functions, this information carstoeed
and retrieved to reproduce not only the recorded wave fortm bu
also the position of a specific instrument in the orchesttapse
and the varying pose of the musician during peformance. Soch
approach might be called data-based, because it reliescorndre
ings of the musical piece as well as of the spatial radiattwar-c
acteristics of each single instrument. A related problesifeen
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studied in[[7] for the spatial reproduction of non-omnidtienal
loudspeakers. Similar to musical instruments, the diviggtof the
loudspeakers has to be determined from measurements.

A different route is taken here. Rather than relying on mea-
sured data, a physical model of a musical instrument is usdd-t
rive its spatial characteristics in an analytic way. Suchoaehcan
never reproduce all details of a real instrument but it mayicie
a parametric way for defining and manipulating certain tgpiti-
rectivities.

The physical model used here is not entirely new. It has been
used before to reproduce the waveforms of generic vibratbig

jects (strings, membranes, plates, air columns). In audit ex-

ploiting the physical model for its temporal charactecistonly,
also its spatial characteristic, i.e. its directivity, sed here.

As an example, a physical model of a membrane is consid-
ered. A detailed analysis of the membrane’s vibration atasebf
the sound propagation from the membrane to the locationiseof t
reproduction loudspeakers allows to determine their dgifunc-
tions in an analytic fashion. In contrast to a simpler pigtordel
presented earlier [8], the motion of the membrane does nvet toa
be calculated explicitly.

Sec! 2 discusses a simplified membrane model which is suf-
ficient to establish the proposed method. The calculatiothef
loudspeaker driving functions for wave field synthesis oelpic-
tion is briefly shown in Se¢.]3. The core results i.e. the liek b
tween the physical model and the loudspeaker driving fonsti
are presented in Sec. 4.

2. PHYSICAL MODELING OF TWO-DIMENSIONAL
STRUCTURES

This section gives a concise introduction to physical miodekith
functional transformations. The material discussed hereither
new nor complete. More detailed presentations can be found i
[9,110,/11) 12, 13]. The following analysis is included fomto
pleteness and it is restricted to those aspects which a@rfeny in
the context of spatial sound synthesis. Therefore only al#fied
vibration model and only the continuous-time case are densd.
These restrictions allow to focus on the calculation of thatisl
eigenfunctions, which provide the link to the spatial sovadia-
tion in Sec| 4. A few extensions to more general cases arélghor
discussed in Sec. 2.6.

2.1. The Wave Equation

As a simple example of a two-dimensional structure congider
transversal vibrations of a membrane. Its spatial regiodeis
scribed by the vector of two-dimensional spatial coordinad.

The type of coordinates (e.g. polar, Cartesian, etc.) neatthe
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shape of the spatial region € V (e.g. a circle, a rectangle,
etc.). The vibration of the membrane is described by the ctéfle
u(x, t) in the third dimension normal t&", wheret is the contin-
uous time coordinate. The membrane is fixed to the bound&ry
of V, such that the deflection is zero at the boundary. An exoitati
f(x,t) shall act on the membrane, typically a drum stick, a mal-
let, or alike. In the simplest case the vibration is governgdhe
wave equation, which links the excitatigifx, ¢) to the deflection
u(x, t), subject to the boundary conditions as

1 0°

u(x,t) = f(x,t)
u(x,t) =0

xeV,

@)

x eV, (2)

wherec is the speed of sound. The Laplace operator= V?
(divergence of the gradient) describes the spatial diffatéon in a
coordinate free representation. When a specific coordsyetiem

is adopted A can be specified with respect to these coordinates.

2.2. Fourier-Transformation

Application of the Fourier-transformation with respectitoe

Ut ) = Flubc )} = [ ubxtep(-wndt @)
turns the wave equation into the Helmholtz equation
w\ 2
AU(x ) + (2) Uk jw) = Fx,jw)  x€V, (@)
U(x,jw) =0 x € dV. (5)

The differentiation theorem of the Fourier-transformationverts
the second-order time derivative into a multiplicationm(gw)?.
Thus a boundary value problem for the space variable remains

2.3. Sturm-Liouville-Transformation

To remove also the spatial differentiatiak, another transforma-
tion for the space variables is required, the so-calledn$iLiou-
ville-transformation.

2.3.1. Definition
Unlike Fourier- or Laplace-transformation, the transfation ker-

nel of the Sturm-Liouville-transformation depends on tpat&l
differentiation operator (hergl), the shape of the spatial region

(hereV), and the boundary conditions](5). Therefore, a generic

definition with an yet unspecified transformation kernel ieg

for the moment. The transformation kerri€l 3, x) depends on
the space variable and a scalar spatial frequency varialle
Then the Sturm-Liouville-transformatioh is defined by spatial
integration over the regiol’

0(8, jw) = T{U(x, jw)} = / Ulx, j)K(B,x) dx.  (6)
\%

2.3.2. Application to the Helmholtz equation

Application of the Sturm-Liouville-transformation to thielmholtz
equation[(4) gives
. w\? = . - .
T{AU(x,j0)} + (2) U(B,w) = F(B.jw) ()
Similar to the Fourier-transformation, a differentatibeorem for
the transformation oAU (x, jw) is required.

2.3.3. Differentiation Theorem

The procedure for obtaining a differentation theorem fer$turm-
Liouville-transformation differs from other transformats. E.g.
for the Laplace- or the Fourier-transformation, the transfation
kernel is known in advance=Xp(—st) or exp(—jwt), respec-
tively). From this transformation kernel, the differeimat theo-
rem is derived, e.g. through integration by parts.

On the other hand, the differentiation theorem for the Sturm
Liouville-transformation is constructed such that it iefid for
the problem at hand, here the boundary value probldm (4/%. T
transformation kernek (3, x) follows from the procedure for ob-
taining the differentiation theorem.

This approach is a generalization of the integration byspart
To start with, consider the expressidéh- VK — VU - K. Its
divergence is given by (the arguments are omitted for stitp)i

(8)

Now integrate both sides over the volurite For the divergence
on the left hand side, the GauR-integral-theorem can beeappl

V(U -VK -VU-K)=U-AK — AU - K.

/(U-VK—VU~K)dx:/U-Ade—/AU-de.
oV % \%

9)

So far, no assumptions about the transformation kdkhieave
been made. To adapt it to the given problem, two conditioss ar
required. One condition concerns only the bound#ry the other
one is valid inside of the spatial regién

The first condition requires tha&f (3, x) shall satisfy the same
boundary conditions & (x, jw) in (5), i.e.

K(B,x)=0

x € OV. (10)

Due to () and (10) the left hand side bf (9) vanishes and

/U~Ade:/AU~KdX
v 1%

remains. It is the equivalent to integration by parts for bgex
neous boundary conditions.

While the first condition foi< (3, x) is valid only on the bound-
ary 9V, the second one addresses the behaviour insidé. oft
requires that

AK(8,x) = (jB8)" K (8, %),
such that{(11) turns into

(11

xeV, (12)

/AU-de: (jﬁ)Z/U.de. (13)
Vv 14
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With the definition of the Sturm-Liouville-transformatidn (6))
follows the differentiation theorem

T{AU(x, jw)} = (jB)> T{U(x, jw)}.

Now also the transformation of the first term in (7) can be per-
formed. It removes the spatial differentiation Hyand replaces it
by a multiplication with(;3)?. The result is an algebraic equation

(14)

SN2 w\?2 - . =
(8 U(B,jw) + () 0(8,jw) = F(8,jw).  (15)
The differentiation theorem (14) can also be establishedHe
more general cases discussed in Sed. 2.6, see €.0. [10]14, 15

2.4. Transfer Function Description

It is straightforward to solvé (15) for the transformatigi3, jw)
of the unknown deflection by simple algebraic operationse Th
result can be written in the form of

with the transfer function
. N 1 . 2
Gu(ﬁa]w)_ (%)Q_BQ _LJQ*(Cﬂ)Q (17)

The roots of this transfer function resemble the dispersitation
of the wave equation wheyetakes the role of the wave number

p=2(2).

The transfer function description (16) is the starting péam
the derivation of a discrete-time synthesis algorithm \whaco-
duces time samples of the deflectiofx, t) within the accuracy
limits imposed by the audio sampling rate. This processliaga
continuous-to-discrete-time transformation®f (3, jw) like the
impulse-invariant or the bilinear transformation. The itge-in-
variant transformation preserves the eigenresonances #ins
free from frequency warping. Aliasing can be avoided, if $iya-
thesis is restricted to the audio range which is only reasiena

The discrete-time synthesis is not developed here because i
has been presented in e.g. [10, 16]. The spatial charauteyis
which are of interest here, can also be shown in the contswou
time representation. To this end, the spatial structureosad by
the above two conditions for the spatial transformatiom&ef
has to be investigated.

(18)

2.5. Eigenfunctions
2.5.1. General Case

The two conditions for the spatial transformation keriidirom (10)
and[(12) are compiled here as

K(8,x) + 8°K(8,%) =
K(B,x)=0

These conditions constitute a homogeneous boundary vedbe p
lem for K (3, x) with a similar structure as (4] 5). Boundary values
problems of this kind are known as Sturm-Liouville problesansi
are well studied, see e.g. [14,/15,17,(18/19, 20]. Equdlighdan

x eV,
x € JV.

(19)
(20)
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Figure 1: Computational structure in the space-time domain
be seen as an eigenvalue problem with the eigenValgig. Solu-

tions exist for a discrete set of values for= 5, with . € Z. The
corresponding eigenfunctions form a set of orthogonal tions

with
/Kﬂu, K ={ g nZr @
Thus the inverse Sturm-Liouville-transformatidn * has the form
of a generalized Fourier series (see (6))
(x, jw) = Z 77, U (B w)K (B x) (22)

2.5.2. Synthesis Structure

By inverse Fourier-transformation follows the deflectiontioe
membrane in the space-time domain

Z

In the same way also the velocity of the membrane can be @atain
as the time derivative of the deflection

-y N% 5(Bys t) K (B, X)

w

ﬁw (ﬁlw X) . (23)

v(x,t) (24)

where (3, t) is computed similar td (16) witi?,, (3., jw) in-
stead ofG . (8,, jw)

Gv(ﬂ#?jw) = _]UJ éu(ﬁ#?jw) .

Fig.[ 1 shows the structure in the space-time domain, asliteso
from (16), (24), and[(25). It consists of a number of parallel
branches from[(24), where only the one with the numbes
shown here. Note thaf, (3., jw) is the frequency-domain de-
scription of a continuous-time dynamical system. In a dissr
time realization it would be approximated by an IIR filter.

(25)

2.5.3. Circular Membrane

As a typical example consider a circular membrane with i

It is conveniently described in polar coordinates ») with 0 <

p < Rand0 < ¢ < 27. The eigenfunctiond( (3, x) are then
written asK (3, x) = K (3, p, ¢) and the Laplace operator has the

form
0 8

(26)

10
AK(B,p,p) = ——
(B, p, ) >0

3



Proc. of the 18 Int. Conference on Digital Audio Effects (DAFx-10), Grams&ia , September 6-10, 2010

such that the eigenvalue problém (19) can be written as

0 0 9?2 2
"3 (papr(ﬁ, 2 @)) + 8772}(([3, ps ) + (pB) K (B, p, ) = 0.
(27)
A real-valued form of the solution is
K(ﬂa p7 (P) = J’” (pﬁ) Ccos TLQO (28)

with the Bessel functionw,, of first kind and ordem. The well-
known properties of the Bessel functiof, show that[(28) is a
solution of (19) in the form of (27). However, the boundarneo
dition (19) still has to be considered. The boundaky of a circle
is described in polar coordinates py= R. The boundary condi-
tion (19) for the circular membrane thus requif€$s, R, ¢) = 0
which is fullfilled for RG,., = An. where\,, is the zero num-
ber v of the Bessel function,,, i.e. J,(An) = 0. Thusg is
restricted to

1

Buw = FAm, MEL, v=12.. (29)

and the eigenfunctions can be indexed in the order of thedBess

functionn and the number of its zerasas

KB, py ) = Jn (%f\nu> cosnp = Jn(pPnv) cosnp. (30)

The double index andv is not convenient, but it cannot be avoided

alltogether. As a link to the audio frequencies considerdikper-
sion relation[(18) with

<
R
The lowest eigenfrequency corresponds to the first zerd, ait
Ao,1 = 2.404826 withn =0 andv =1 as

A - (31)

Wny = 27rfnu = Cﬁnu =

1 ¢
1= w

Forc =340 T andR = 0.54 m follows fo,1 ~ 240 Hz.

Ao,1 - (32)

A simpler indexing scheme is obtained by ordering the val-
uesf, = [, inincreasing order of the resulting audio frequen-

vies (32). Both indexing schemes are used in the sequel.

2.6. Extensions

The concise presentation of the physical modeling methdhisn

section has been chosen because it provides a short andetempl

route from the initial problem to the structure of the eigerd-
tions (28) and their time evolution expressed by the coeffiisi
w(Bu,t) andv(B,, t) in (23) and[(24), respectively. However the
functional transformation approach is applicable to farengen-
eral problems. A few extensions are highlighted below.

2.6.1. Damping and Dispersion

More accurate models for vibrating bodies include alsoot$féke
damping or dispersion. Their physical description resultzddi-
tonal terms in the partial differential equation (1). Thengel
form of the eigenfunction remains but the functian@,., ¢) de-
cay through damping and the eigenvalygsare shifted through
damping and dispersion.

2.6.2. Non Self-Adjoint Problems

The spatial differential operataf of the wave equation (1) ap-
pears on both sides df (11). Boundary value problems with thi
symmetry are called self-adjoint. They are a special casecné
general spatial differential operatokscomprising more complex
spatial differentiation terms. In the general case, aimiatimilar

to (11) holds, with an operatdr on one side and its adjoint oper-
ator L on the other. Two different sets of eigenfunctiddisand K
result which are bi-orthogonal to each other.

2.6.3. Other Types of Boundary Conditions

The so-called Dirichlet boundary conditions in (2) ahd] (20

not the only case where the left-hand side[df (9) vanishess Th
would also be the case for Neumann boundary conditions, i.e.
VU = 0andV K = 0onthe boundargx € 9V. Also impedance
type boundary conditions (Robin boundary conditions) aresp

ble. For non self-adjoint problems, different boundaryditians
for K and K are required.

2.6.4. Other Spatial Shapes

The formulation in Se¢. 2.5.1 and Sec. 215.2 does not impbra ¢
tain spatial shape, a specific coordinate system, or a fixetbau
of spatial dimensions. Therefore the representationsg28)24)
are valid for all shapes of practical interest. Practicialilties
may arise in the analytical calculation of the eigenfunti@and
eigenvalues. For certain standard shapes (e.g. rectangjtdalar,
elliptical, spherical, and others) they can be found by sajmn of
variables.

3. SPATIAL SOUND REPRODUCTION

3.1. Overview

Two-channel stereophony and common surround sound formats
for sound reproduction exploit the spatial hearing cajit#s! of
human perception. Phantom sources are placed by applymg pa
ning or other spatial effects. Besides these common forreats
eral massive multichannel reproduction methods have daice
ceptance. So far they are no alternative for home usershbut t
number of installations in cinemas, laboratories, andrgthefes-
sional acoustic spaces is increasing. Common spatial seymno-
duction methods are Ambisonics, wave field synthesis, antbve
based amplitude panning, see €.g/[21] for a descriptiorrefed
ences to the original literature. The focus in this contidouis on
wave field synthesis, although an extension to Ambisoniosldvo
appears to be feasible as well.

3.2. Wave Field Synthesis

Consider a planar loudspeaker array for reproduction wigkien
field synthesis. No special shape is assumed, but rectangles
circles are typical shapes. The position of an arbitrardémeaker

is xo and the vector normal to the arraysat is calledng. The
normal vector points inwards, e.g. for a circular array iing®to

the center of the circle. To calculate the driving functiémsthe
loudspeakers, the sound field at their positions must be kndtw
can be obtained either by suitable processing of spatiatdéetys

of an acoustic event or from a model of an acoustic scene. The
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model-based view is adopted here, where the membrane model A7

from Secl 2 serves as a description of a spatially extendadeso

The calculation of the loudspeaker driving functions from a

piston model has already been discussed |in [8]. Therefdyeaon
short account is given here for the sake of completeness.

The Fourier spectrunb (w, xo) of the driving function for a
loudspeaker at the positiot is derived in[[22, ch. 13.2][23] as

D(w,x0) = w(Xo, Xs)A(x0) Hwis (w) nOT VP(w,x0). (33)

where

e w(xo, Xs) is a spatial window which selects the active loud-
speakers for a certain source positiof

e A(xo) is an amplitude factor,

e Hss(w) is afrequency selective filter which is independent
of the loudspeaker position.

The essential component to determine the loudspeakengrivi
functions is the gradient of the sound pressW®(w,xo). Its

derivation from the membrane model in Sec. 2 is shown in the

following section.

4. SPATIAL SOUND SYNTHESIS

This section derives the loudspeaker driving functionsafevave
field synthesis array according to Set. 3 from the sound egigth

)
€o . i i
/ )
€o - 70
770 |\\\ /
| N
| / \\ l
I // \\O R
I / \\
[ / N
L b
_________ Co

Figure 2: 3D spatial coordinate system for the membrane mode
Small rectangles indicate right angles.

model of a membrane according to Sec. 2. Techniques similar4 5 petermination of the Sound Pressure Gradient

to the piston model from [8] are applied, but instead of adrigi
piston the eigenfunctions of a vibrating membrane fronj ¢@4)
considered. The result is a matrix description where eatty en
indicates the contribution of a specific eigenfunction tgacific
loudspeaker of the reproduction array.

4.1. Membrane Coordinate System

The sound pressure gradievit” according to[(3B) is now deter-
mined in the temporal frequency domain. At first, Fouriensa
formation with respect to time for the velocity from (24) g&/

V(Ew) =Y 5 VKB £V, @)

So far no special type of spatial coordinates has been assume The sound pressure at the locatigm is obtained similar to the

Also no distinction has been made between the coordinati of

membrane model and the coordinates for the loudspeakey. arra

For practical reasons, it is of advantage to use two sepewateli-
nate systems for the membrane and for the array. The position

the membrane with respect to the array is not fixed and the mem-

brane might change its position or its orientation with setgo
the array. Therefore a coordinate system suitable for alleirc
membrane is introduced first, the connection to a loudspeske
ray is then shortly discussed in Sec.]4.7. The spatial coatéli
system for the membrane is shown in Fig. 2.

The coordinates for the membrane are denoted with greek let-

ters. The components of the vector of space coordirgsees

e=[¢ n " (34)

The circular membrane resides in the center ofitheplane with
§=pcosy (35)

n=psing (36)

¢=0 37)

The loudspeaker position for the calculation of the sourdgure
gradient is an arbitrary location

=1 mo CO]T

with the assumption that the distangefrom the&-n-plane is large
compared to the membrane radius, {€:> R.

(38)

piston model discussed in|[8] as

P(€0,w) = jwpr, / V(E,w)G(El€o,w) e, (40)
\%

whereG (€€, w) is the Green’s function in the temporal frequency
domain for the propagation from a point on the membritethe
arbitrary locatiorg,. Note that in contrast to the piston model, the
velocity is different for all point€ € V and thus has to be part
of the integration. However, it is not very attractive tofpem the
spatial integration in_(40) over the vibrating membranedeery
time instant.

Instead, the sound pressuPé&,, w) can be expressed by the
spectral coefficient¥ (3,,, w) from (39) by inserting inta (40) as

Pl€o,w) = 3 3 V(B ) H(5p 0)

o 7

(41)

with

H(Bu, €0) = juwp, / K(B,, &) G(eléo,w) dE . (42)
\%

Each functionH (8., &0) describes the contribution of the eigen-
function with numbey: to the sound pressure induced by the mem-
brane at the locatiogo. Note thatH (5., &o) is independent of
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the actual state of the membrane. Similar to the eigenfonsti
K(B,,€), alsoH(8,, &) can be calculated in advance.

For the sound pressure gradient at the locageraccording
to (33) the gradient has to be calculated with respegitdhen((41)
turns into

VP(E0,w) = 3 5 V(B w) VH(Bu o) (43)
“w

w

with

VH (B, E0) = juwpr / K (B, €) VG(Eléo,w) dE . (ad)
\%

Fig.[3 shows the resulting computational structure for thensl
pressure gradient. The structure on the top is an extensgithre o
membrane model from Figl 1 by an integration similar to (46).
disadvantage is that each pogfor a sufficiently dense grid) has
to be calculated in order to perform the spatial integratigtn
VG (€|€o,w). The strucuture on the bottom results from the sim-
plification by obtaining the sound pressure gradient diyefodbm
V(By,w) with (43). The functionsV H (8, &o) are called the
transfer coefficient&rom the eigenfunction to the locatior¢,.

The sound pressure gradiénf’ (£, w) can be calculated from
(43) once the transfer coefficients accordingltol (44) arenkno
Since the eigenfunction& (3., &) for a circular membrane are
already given by((30) it remains to determine the gradienhef
Green’s functiorVG (€|€o, w).

4.3. Gradient of the Green’s Function

The integration in[(44) collects the contributions of alirgelike
regions inside of the membrane ar€a Therefore the Green'’s
function of a point source is chosen as propagation model

Gl€leo,w) = e, r=lea—gl, k=2, (49)

The distance: from an arbitrary point on the membrane (formally
& € V) to the arbitrary loudspeaker positigg is given in detail
by (seel(35=37) and Figl 2)

rE) =6~ &2+ —mP+E.  (46)

The distance:(&o) is written as a function of, because the gra-
dient is calculated with respect to the loudspeaker lonaio
Application of the chain rule of derivation to (45) gives

0
VG (El&o,w) = 7 G (€l€o,w) V. (47)
From [45) and (46) follows with simple calculation rules

S-GElEo,w) = ~(1+ kr) L VG(Eléo,w)  (48)

Vr=1(6 ~ &) (49)
such that
VG(Elgo,w) = —(1+ k) 5 GElén, ) (60 — &)
= LI e (g - g, (50)

Due to (46)V G (&|€o,w) turns out to be a complicated function
of &, and&. Therefore some approximations are required before
the integration in[(44) can be carried out efficiently.
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4.4, Approximations for the Green'’s Function

Some simplifications are permitted since the loudspeakstipo
has been assumed to be somewhat remote from the membrane (see
Sec[4.1). However, care has to be taken not to oversimgidy t
problem. The derivation below is known from a simplified pist
model [24| 25]; here it is applied to the membrane model dised
in Secl 2.

For the magnitude terms ih (50) it is suitable to replace the
distancer = |£,—&]| by the distance to the center of the membrane

ro = |£0‘ i.e.
ro(€o) = [€o| = \/&5 + 3 + (5 - (51)

Applying the same approximation to the phase term in (50)lgvou
reduce the whole membrane model to a point source (see [8]).
For a more detailed approximation the distamcis formulated

with (46) as
r? = (& +m + ) =2 +mom) +E+1° (52)
and rewritten with the polar coordinates (85+36)
2 2

r? =15 — 2p(&o cos o + no sin @) + p°. (53)

The second term on the right hand side is a mixture of Cartesia
(€0, mo) and polar coordinatep (). Expressing, andno also in
polar form with the magnitudg and the angle (see Figl. 2)

lo =4/ &2 + 12, z—s=tan’y (54)

results in
&ocos + mo sing = lgcos(p — ) (55)
and
r? =rg —2plocos(p — ) + p°. (56)

In this form, it is easy to recognize the dependencyoNeglect-
ing the second order term and keeping the first order ternsgive

r? &g — 2p Lo cos(p — 7). (57)

Further approximations are possible by writings

I
r(p,p) = 7"0\/1 —2 L2 2 cos(p — 7). (58)
To To

With p < 70, lo < 70, andy/T —z ~ 1 — 3z follows

l
r(p, ) X 1o = pi > cos(ip = 7). (59)
The fractionly /7o can be expressed as
2
l—O: 17<C—0) =sin?d . (60)
ro o

The angled = ¥(&o) depends only on the positig of the loud-
speaker and is shown in Fig. 2.

The distance- in the exponential term of (50) can finally be
approximated by

(p,p) = 1o — psind cos(p — 7). (61)

6
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Figure 3: Computational structures for the sound presstadignt. Top: Cascade of the membrane model from Fig. 1 and the integration
with the gradient of the Green’s functionG (¢|&o, w). Bottom: Simplification through the transfer coefficientd (5., £o) from (44).

Inserting into[(50) and collecting terms gives
VG(£|€o,w) = VG(0[&o, w)

This approximation foW G (€|&o, w) can be interpreted as the gra-
dient of the Green’s functioR’G(0|&o,w) from the center of the
membrane t&, and an exponential directivity term which consid-
ers the positior(p, ©) on the circular membrane. The directivity
term affects only the phase but not the magnitude due to ffex-di
ent approximations (1) and (61).

exp(jkpsind cos(p—7)). (62)

4.5. Determination of the Transfer Coefficients

In the approximation fok G(¢|€o, w) in (62), the dependency on
the polar coordinates of the membrameand ¢, is restricted to
the arguments of elementary functions (exponential atggbmnio-
metric functions). Therefore the integrationfin (44) carchaied
out partly in closed form. Writing the integration in (44) polar
coordinates gives

27

R
//K B, €) VG(E]€0,w) oo dp

(63)

(Bu, 50

The argumeng of K andVG has to be understood also in polar
form according to[ (35- 36).
Inserting the approximation fov G (¢|&o, w) from (62) gives

an approximatior’v H for the transfer coefficient$ (63) and the
eigenfunctionsk (5,,, &) from (30)

R
H(By, €0) = jwpr.VG(0[€o,w / In(pBnv) Q1 pdp . (64)
0
with Ql = Ql(pa P {07”7 V)
27

Q1= /exp(jkpsinﬁ cos(yp — 7)) cosnep dp .
0

(65)

From the definition of the Bessel functiods follows the identity
2
/ eI cosnp do = ™ 27 Jn(x) cos ny,

0

(66)

such that the integral if (65) can be expressed in closed form

Q1(p, ¢, &0,n,v) = §" 21 Ju(kpsind) cosnry . (67)

For the approximate transfer coefficieRts7 follows from (63)

vﬁ(ﬁuv 50) = 27Tjn+lpr cosny VG(O|£07 w) Q2 (507 n,v, R)
(68)

with

Jn(pBnv) Jn(kpsind) pdp . (69)

R
Q2(€07 n,v, R) =
/

This integral over a finite range cannot be expressed by tirelly
terms and has to be evaluated numerically. However, it dépen
only on indicesn andv of the respective eigenfunction, the fixed
location&, of the loudspeaker, and the radiBf the membrane.
The other terms il (68) can be evaluated in closed form. The

termVG(0|&o, w) follows from (50) with¢ = 0 and consequently

r = 7o (see[(52)). The terneosny can be expressed by the
Chebyshev Polynomials, (z) of ordern and with [(54) as

1
2\ ~2
cosny = Tp(cos7), cosy = (1+ (2—0) > . (70)
0

Thus the transfer coefficient§ H can be evaluated by the
equations[(68) -{ (70). Now all components in the spatial doun
synthesis model in Fi§.|3 are determined and an approximafio
the sound pressure gradieVif® at an arbitrary locatiog, can be
calculated from the physical model of the membrane.

4.6. Spatial Sound Synthesis Structure

So far it has been shown how to obtain the sound pressureegtadi
at an arbitrary location within the limits of reasonable @pma-
tions. In principle this process can be carried out for déffe loud-
speaker positiong,, as required by a specific wave field synthesis
arrangement. Then the above process yields a matrix offtnrans
coefficients, where the entfy:, m)

VHM,m = VH(ﬂI,M E’m) (71)
determines the contribution of the eigenfunctiprto the loud-
speaker positiom:. The driving functionD(w, &, ) for this loud-
speaker results from (33).

4.7. Membrane and Array Coordinates

For practical reasons it is convenient to use different dioate
systems for the membrane and for the wave field synthesig. arra

DAFX-7
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The membran coordinatéshave been introduced in Séc. 4.1 and
in Fig.[2. A system of array coordinatescan be chosen to suit

the spatial shape of the loudspeaker array. The link betwetn
coordinate systems is provided by a matrix description afta-r
tion and a translation. Details for a circular array are giire[8].
The choice of two different coordinate systems makes itegdsi
change the position and the orientation of the membrane reith
spect to the reproduction array.

5. CONCLUSION

This contribution presented a combined physical modeldpra-
ducing both the waveform and the spatial radiation charastits

of a sounding membrane. The focus of the development was the,

calculation of the transfer coefficients from each eigecofiom of

the membrane to each loudspeaker of the array. These transfe

efficients are the link between physical modelling soundtsssis

(9]

(10]

(11]

(12]

on the one hand and wave field synthesis on the other hand. The

key feature of this approach is that any numerical integnativer
the surface of the membrane can be avoided.

This procedure is not restricted to the simple membrane mode

used as illustration here. Several extensions have beeadsir

mentioned in Sed. 2.6. On the other hand, physical modelling

(13]

sound synthesis is not necessarily connected to wave figld sy [14]

thesis. A model-based determination of the Ambisonics eticg
process should be possible along the same lines.
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