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ABSTRACT

This paper describes a system for cross synthésiasterised
time-domain audio. Rasterisation of the audio all@awgnment
of the macroscopic features of audio samples aftimgent tones
prior to principal component analysis (PCA). Speseifiy a novel
algorithm for straightening and aligning rastogrégatures has
been developed which is based on an interactiveegsincorpo-
rating the Canny detection algorithm and variableangpling.

Timbral cross-synthesis is achieved by projectirgivan instru-
ment tone onto the principal components derivethfeotraining
set of sounds for a different tone. The alignmdgbrithm im-

proves the efficiency of PCA for resynthesizing ®ne

1. INTRODUCTION

Principal component analysis (PCA) is a techniquechvite-
scribes sets of data in terms of the eigenvecsord,correspond-
ing eigenvalues, of its covariance matrix. Thet fm$ncipal com-
ponent is the eigenvector with the highest eigareahe second
principal component (PC) is the eigenvector with tiegt high-
est eigenvalue and so on [1]. This process allalestification
of features which are common amongst the data. Gdrishe use-
ful for data compression (eigenvectors with lowesigalues can
often be discarded with little detrimental effect the quality of
the representation of the data) and for identifizaia specific
profile of eigenvalues for a given set of eigengext may give a
strong indication that some data ‘belongs’ to aipalar entity
e.g. image data may belong to a particular face).

PCA has been applied in many areas from facialgreco
nition [2] to the frequency-domain synthesis of roakinstru-
ment tones [3]. Recent work has demonstrated howettterisa-
tion of one-dimensional audio signals into two-disienal im-
age-like representations can reveal useful visnalogies with
the audio, enabling compact audio display and gdpdieation of
image processing techniques [4]. This paper detadsk that
draws together these ideas in a system which tesctime-
domain audio in terms of its PCs and uses this septation as
the basis for cross-synthesis between differentument tones.
It differs from previous applications of PCA to aodn that it
employs rasterisation and operates in the timéerathan fre-
quency domain. Whilst PCA does not itself requirgtedsation
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(in fact when images are subject to PCA they areadterised),
good temporal alignment between different musioatrument
sounds is needed for the most compact represemgatid the
data and techniques similar to those applied t@éata, such
as faces for example, to align features are addpteslfor audio.

The paper is organised as follows. A brief sumnudry
PCA and an application of it to image data is giuethe next
section. Section 3 gives an overview of how PCAppliad to
time domain audio in order to produce hybrid instemt sounds
via cross-synthesis. The feature alignment whiclpdgormed
prior to PCA is described and assessed in Sectidtedults for
different instrument tones are presented in Sed&iand conclu-
sions given in Section 6.

2. PRINCIPAL COMPONENT ANALYSIS

We consider sets of data which are of the sameasideesach of
which represent a particular entity. For exampleheset of data
may be derived from an image of a human face, dig#al re-
cording of an instrument tone. In many texts on P&LAingle
data set is referred to as an observation of @fsktvariables,
whereN is the size of the data set. When PCA is used dta d
compression the idea is to produce fewer, newdfedata which
can then be linearly combined to reproduce the eathe origi-
nal data sets as closely as possible. The befdityitte the origi-
nal data is achieved, for a given compression ratieen the new
data sets are as highly correlated with each ofotiginal data
sets as possible, but are orthogonal to each other.

The implementation of PCA adopted here is that em-
ployed for determining so called ‘eigenfaces’ franset of face
images in [2]. Here we are interested in deternginigigen-
sounds’ from a set of recordings of a particulgretypf musical
instrument, the ‘training set’. Images require dezdsation prior
to PCA, for example ahl by N pixel image is transferred to an
N? vector. Usually this would not be a requirement $orgle-
channel audio recordings but the pre-processingr pa PCA
described in the next section of this paper reguiesterisation,
so in this case derasterisation is also requiredafmlio. Each
vector representing a single sound is then ceryeslibtraction
of the mean vector.
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The mean-centred vectors are then combined, esch v fewer wavetables, PCA was faster and offers thenpiateto be

tor forming a column of th&l by M matrix, A , whereM is the
number of data sets (sounds) addis the number samples in
each set. Next the covariance mat@xs calculated:

C=AAT 1)

The eigenvectors o€ are the eigensounds and the contribution

of each to the complete set of sounds is givertdbgdrrespond-
ing eigenvalue. The first PC of the set is the msgeind with the
highest eigenvalue, the next is that with the sdcbighest ei-
genvalue and so on.

The difficulty with (1) is that the size o€ is N by N
which, for instrument sounds, could be several sésdong. At
typical audio sample rates, such as 44.1 kHz, figpgdhe eigen-
vectors and their associated eigenvalues may veettdmputa-
tionally intractable. An alternative approach isdonsider the

eigenvectorsy; of theM by M matrix ATA whereby it can be

shown thatAv, are the eigenvectors & [2]. Any sound from

the training set can be reconstructed by determirdnset of
weights to be applied to each eigensound. Thesghtgeare de-
termined by projection of the original sound (afterean-
centring) onto each eigensound in turn. Reconstmctis
achieved by:

@)

% :(iwm,iumJ +§
m=1

where s is theith sound in the training setj_is thenth eigen-

sound,vvm‘i is its weight for theéth sound ands is the mean vec-
tor.

3. PCAFORHYBRIDISATION OF TIME-DOMAIN
AUDIO DATA

3.1. Audio applications of PCA

Applications to date of PCA to audio have focussedhe spec-
tra of audio, particularly for determining a reddcget of ‘basis
spectra’ for multiple wavetable synthesis (MWS). [BIWS uses
a fixed set of short waveforms to reproduce commexnds
which change dynamically by the alteration of theights ap-
plied to each. The weighting is based on the stioe-Fourier
transform (STFT) analysis of a target sound, agdhget short-
time spectrum changes so the weights of the walestaiye se-
lected to best match this. Where memory is at mjpra, such as
in mobile phones, it is desirable to reduce the lmemof spectra
which are stored in order to represent that ofrgetasound and
how it evolves over time.

Various technigues have been employed to findita su
able reduced set of basis spectra for controllimgamplitudes of
the wavetables. In [5] the use of a genetic algori{GA) and
PCA to select the spectra were compared. Althousgimgua nu-
merical measure of relative spectral error, theyntbthat the GA
was better able to accurately synthesize a recosdadd using

fully automated. Various modifications to their imed have
been proposed. In [6] complex-valued PCA was useobtain
(i) a set of complex basis spectra, the magnitdfdehich were
used to represent spectral amplitude informatiath (@ha set of
complex envelopes the magnitude of which were use@pre-
sent the overall envelope of the sound and theepbésvhich
introduced deviations from pure harmonicity whifdr, example,
result in the successful representation within Ri@@és of a flute
tremolo. Recent work has improved the quality of-wedued
PCA by normalisation of the spectral energy in efsaime prior
to formation of the covariance matrix [3]. PCA h&soebeen ap-
plied to features (e.g. intensity, frequency cedjrofor auto-
matic sound classification. For example, in [7]yatem for dif-
ferentiating between silence, speech, music andend de-
scribed.

3.2. PCA of time domain representations of audio

The prime motivation for the work presented in thégper was to
develop a novel technique for cross synthesis stfument tim-
bres. This application of PCA for audio has receisethe atten-
tion but this has been focussed in the spectrakitorfror exam-
ple, in [8] timbral interpolation was achieved bpving through
a timbre space whose three axes were defined afrshé¢hree
PCs derived from a concatenation of several differeme spec-
tra. In [9] a cross-synthesis method which apptieslamplitude
envelopes of the PCs derived from the spectra oftone are
applied to those of another. These examples iralitet PCA is
a promising technique for the creative transfororatdf audio.
However, to date no attention appears to have pa&hto how
PCA might be applied to producing hybrid timbresniréime-

domain representations of instrument tones. Thikasfocus of
the work presented here and the following sectmfrihis paper
describe and evaluate a method for doing this.

4. FEATURE ALIGNMENT OF TIME-DOMAIN
INSTRUMENT TONES FOR PCA

4.1. Rasterisation of audio

Rasterisation is the mapping of data into a two dsienal (2D)

space by scanning across the space (usually lgfihg) in single
lines, flying back (right to left) to begin mappirdgpm left to

right a line directly below the first and so on.d@rthe last line
of the 2D space has been filled with data, one drésrcomplete
and the fly-back is now from bottom-right to togtléo begin

filing the 2D space with a second frame, line mel Perhaps
the most well-known example of this is the physjpalcess per-
formed inside a cathode ray tube, for the represiemt of mov-

ing images on television screens etc.

Rastogram is the term used to describe the raster-

scanning of one-dimensional audio into a two-dinemsd space.
It has been proposed as tool for timbre visuatisatisound
analysis and filter design. As a process it is itibke (2D images
can be de-rasterised to produce time-domain audials) and
an intuitive relationship exists between certaiiuges in images
and the sounds produced by sonification of imagesgssed
using different visual filters [4]. The rasterigatiof audio is de-
fined in [4] as the mapping of one audio samplene pixel by
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representing its value as the brightness in grégstdhilst ras-
tograms are a time-domain representation, they ftby aseful
insight into the pitch and harmonic content of shulfi the line
width (number of audio samples mapped to each Igaj inte-
ger multiple of a sinusoidal component within theursd then
vertical stripes will be seen (black for the pastpart of the cy-
cle, fading into white for the negative cycle). Foany sounds,
there will be pitch fluctuations over time and atam degree of
inharmonicity between partials. These aspects cten obe
clearly seen in rastograms as curved or diagonakliWhat is
depicted in such visualisations of audio is vemyilsir to the
mapping of analogue audio into the single spirafjeabve of a
phonographic disk.

4.2. Featurealignment of rasterised audio

PCA does not require rasterisation, in fact de-resstiéon is re-
quired before PCA can begin. The purpose of rastgrisme
domain audio for this application is that it allosigilar feature
alignment techniques to those used for images pi®CA. For
example, if using PCA for the analysis of facessitially desir-
able for common features (e.g. nose, chin and dgelkg in the
same position for each analysed image. If theseremmfeatures
are not in the same position across the set of émadlgen this
commonality between images, and therefore ‘eig@sfais lost,
meaning that essential positional information isead across a
larger number of PCs than is necessary.

When using PCA for sound spectra it is usually impo
tant that there is alignment in the pitch (fundatakfrequency).
When considering an instrument tone in the time aanit is
important that different portions of the envelofge¢h® sound are
aligned and that variations in pitch and amplituate either
aligned or removed prior to analysis. Rasterisatifiers the po-
tential for this kind of alignment. The followingls-sections out-
line the methods employed here.

4.3. Fixed resampling of instrument tones to match period to
rastogram width

Inspection of how a rastogram changes as the roWin@ num-
ber changes provides visual information about toae itself
varies over time. This visual information is corddsf the width
of the rastogram is not matched with the time mk(ibe recip-
rocal of the fundamental frequency) of the instraotrtene since
vertical alignment is lost between rows. In suchesathe rasto-
gram gives the impression that there has been shamge in the
time domain waveform even where there has been.nbne
simplest solution to this problem is to adjust #idth of rasto-
gram so that the number of pixels in a single Isxéhe same as
the number of samples in the period of the instnint@ne. This
offers an improvement over the unaligned case,vihére the
time period is not exactly an integer number of gias then
there will be some diagonal skewing of features thauld be
vertically aligned if the period of the tone petfganatched the
width of the rastogram. A straightforward solutitmthis is to
resample the audio. This is achieved via the stahpgeocedure
of up-sampling by one integer factprfollowed by decimation
by a second factay, combined with low-pass filtering to yield a
change in the sampling rate pfg [10]. Providedp/q > 1 this
process is reversible since no information is &ssh result of the
low-pass filtering. The top panel of Figure 1 shdiuge raster-

ised instrument tones where the line width has tsstrto best
approximate the mean period. The bottom pandi@tame fig-
ure shows rastograms of the same tones which hese fesam-
pled in order to produce the best vertical alignhenfeatures.
The best ratigp/q was determined by trial and error. Time is in-
dicated on the vertical axes of these plots, how&weaesthetic
reasons the axes of subsequent plots are notddbetl quanti-
fied.

time/s
time/s

time/s
time/s

Figure 1:Rastograms of single tones produced by, from
left to right, saxophone, trumpet and electric miaifhe

top panel shows alignment by matching line width to
time period, the bottom panel shows alignment by re-
sampling audio data.

4.4. Edge detection and gradient estimation for variable re-
sampling of instrument tones

Whilst the method described in the preceding suties® does
improve the visualisation of the instrument tortesssumes pitch
stationarity and periodicity. To deal with mild ermonicity and
variations in pitch an algorithm which is able @@ according
individual dominant components and is able to tnzafations in
such components over time is needed. Since thes tamerepre-
sented in rastograms this can be achieved by eelgetibn and
straightening. The following procedure is employdter the in-
strument tone has been resampled at a fixed rajevéothe best
vertical alignment.
For edge detection the Canny algorithm is used.[11]

This can reduce the number of false positives (pikecorrectly
identified as belonging to an edge) and improveldicalisation
of correctly identified edges (when compared withger edge
detectors) [11]. The detector begins by smoothirgdata with a
Gaussian filter to reduce the impact of individpatels which
are particularly noisy. Following this the gradienagnitude and
direction for each pixel is calculated from thesfiderivative of
intensity. A process of thinning the probable edgeas then
takes place by the suppression of points which rexelocal
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maxima in the direction of the gradient. Finallyesholding with
hysteresis along with connectivity analysis is &plto detect
and link edges.

In order to use this to determine varying resangpli
ratios to be applied when moving from top to bottdhe rasto-
gram is divided into horizontal strips, each caomitag n lines.
Within each strip the Canny algorithm is used tal fihe longest
edge in the strip. The average local grad&aof the strip is de-
fined as being the difference (in pixels) betwe®s positions (in
the horizontal direction) between the top and bottd the long-
est edge. |5 is positive then the current strip is appendedh wit
samples from the next strip, $fis negative thers samples are
transferred from the end of the current strip te breginning of
the next strip. The strip is then resampled byr#tie v where:

Wn+ s
V:
Wn

whereW s the width of the rastogram in pixels.

This entire procedure is then repeated until thigres
rastogram has been processed. Best results araabtay itera-
tively performing this process with differing vati®f n. This
resampling and appending process can be reversz araly-
sis/resynthesis has taken place, provided a regagniphap’ is
retained. The top panels of Figure 2 show the wibbeing pro-
gressively removed from an oboe tone by four itenat of this
algorithm, the bottom panels show the same probesyy per-
formed on a violin tone. The vertical axis is showrpixels and
it is repeated for the last panel in the figurecsithis algorithm
can lead to a variation in the height of the rastog Wherev <
1 there may be a loss in quality due to the lowsd#igring em-
ployed in the resampling process. However this misgquality
can be prevented by oversampling the entire rastodvefore
performing variable resampling. The valuesdr each succes-
sive iteration in the figure (moving from left tiiht) are 18, 13,
9 and 6 respectively.

®)

Figure 2:Rasterised instrument tone, oboe (top) and vio-
lin (bottom), variably resampled after edge detatti
with (from right to left) one, two, three and fouera-
tions.

Further vertical feature alignment between rastograis
achieved by padding the beginning and end of the taith zero
samples so that the darkest column is centerdukiimtage. This
process is illustrated in Figure 3.

Column averages calculated

Padded with zeros to align

\:!:Tjjj:\:!jj :> darkest column to centre

Darkest column identified
Figure 3:Column alignment of rastograms

4.5. Envelope alignment by row insertion or deletion

Having aligned line-to-line features the next stégeo ensure
that the rastograms each have the same numberest [This is
achieved by the insertion or removal of entire dirffeom the
steady-state part of the rastogram. This simpleaguh can be
employed since the alignment already performed eviure that
there is high similarity and synchronisation betwéaes. A ba-
sic assumption that the steady state of each tegm$30% into
its duration and is effective for the instrumentds used here,
although to make this process more general a b&gady-state
detection algorithm is needed. To determine thétipasof the
end of the steady state portion the sample vahresaich line are
averaged to derive an amplitude envelope. Onceaiveampli-
tude has fallen below one half of the mean ampditiat whole
rastogram then the steady-state is considered ve fiaished.
Once the position of the steady-state portion efttime has been
identified it is then expanded, or reduced, to eohia standard
number of rows for the tone. This standard numliepws can
be determined by the user and is dependent upotetiggh of
tones being analysed. After this process each gesto should
have the same number of lines.

Figure 4 shows this row insertion/removal (riglantl
panel) after straightening (middle panel) of aedsed instru-
ment tone (left panel) for a violin (top) and truehpgbottom)
tone. Provided only insertion is performed and g mfthe in-
sertion points is retained this process can be nedbrequired.
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Pixels
Pixels
Pixels

Pixels
Pixels
Pixels

Figure 4:Rastograms of original instrument tones (left),
variably resampled (middle) and steady-state alijne
(right), violin tone (first panel) trumpet tone ¢amnd
panel).

4.6. Summary of rastogram preparation prior to PCA

A summary of the procedures outlined in this sectio align
features within, and between, rastograms of differestrument
tones is:

1. Trim the audio clip to remove any silence at bieginning
and/or end of the signal.

2. Estimate pitch of steady-state portion of sigmad use this to
determine the width of the rastogram in pixels.

3. Reshape the one-dimensional audio data into a two

dimensional rastogram.

4. Apply iterative edge-detection-based straigimgralgorithm
(described in sub-section 4.4).

5. Perform row insertion/removal to stretch/compresstogram
to desired length.

5. RESULTS

Having produced and aligned instrument tones withgtograms
using the methods described in the previous sedtienaudio
data is ready for derasterisation and PCA analpsistated, the
main purpose of this work has been to develop amdstigate a
novel time-domain cross-synthesis process. Thiacigeved by
projection of the sound of one instrument onto éfgensounds
obtained from a set of sounds produced by a diffdrestrument.
The purpose of this is to produce a sound thatesemplausible
impression of a hybrid of the two instruments. Thigeria em-
ployed to assess this are:

1. The hybrid sound should be perceived as emanétim a
single object.

2. The hybrid should contain some identifiableilatttes of both
sounds.

3. There should be some sense of acoustic plaitysibilan in-
strument could feasibly exist which might produgetsa sound.

This final criterion is, of course, heavily depentien the differ-
ences in the instruments chosen for hybridisafitre purpose of
the alignment described in the previous sectiotbisnake the
PCA more efficient. The following sub-section usesiraple sta-
tistic to measure this for two different soundsb8ection 5.2
then describes and discusses different cross-seghe

5.1. Effect of alignment on PCA efficiency

Figure 5 shows the reconstruction of a horn sofrod) different

proportions of the 64 eigensounds generated frdraiaing set

of which it is a member. It can be seen that, geeted, the fi-
delity of the reconstruction to the original soumdproves as
more eigensounds are used. The more efficient arfe@senta-
tion of a sound is, the better the reconstructitenvusing fewer
eigensounds. A highly efficient PCA representatiéra sound

will allow near identical reconstruction from juatfew eigen-

sounds. Although the rastograms are very simiteare are some
audible differences between the original and tlemmstruction

from 90% of the eigensounds. Below 70% and the r=cocted

sound takes on a more reedy, accordion-like timbre.

@) (b) © (d) ()

Figure 5:(a) Original rastogram of a french horn tone.
Reconstructions using (b) 90%; (c) 70%; (d) 50%dan
(e) 30% of the 64 available eigensounds.

To assess the effect of the alignment procedurebeefficiency
of the subsequent PCA, the mean square of the Eadidlis-
tance between intensity values for each pixel ($&mpf an
original sound and its reconstruction using eigenss is pre-
sented in Figure 6 for a violin and trumpet. A regl training
set has been used here giving a maximum of 5 egeds,
which gives perfect reconstruction since the odgisound is
part of the training set. It can be seen that thigra clear im-
provement in PCA efficiency for the aligned rastogsaover un-
aligned rastograms. For the violin sound the irszem effi-
ciency, averaged over the 1 to 4 eigensound c&s88, %. For
the trumpet the average efficiency increase is 48%.
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These results show that these alignment procesags
well be of use in applications which use PCA of tidoenain
audio for data compression, although the data requd remove
the straightening and inserted rows would need ® b
stored/transmitted along with the retained eigendsu
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Figure 6:Square of Euclidean distance between pixel in-
tensities for reconstruction using different nunsherf
eigensounds, with and without alignment for a violin
(top) and a trumpet (bottom).

5.2. Cross-synthesis

In this sub-section example results, illustratimgss-synthesis
are provided. Two training sets of violin soundséndeen com-
piled: one containing 5 tones from different vislirthe second
containing 20. From these tones cross-synthesigbdds have
been produced by projecting tones from other imsémis onto
each violin eigensound. The range of pitches irbth@lin set is
C4-E4, the range for the 20 violin set is G4-E4. Tristrument
sounds used for hybridisation are those of a guitampet and
oboe. Once the hybrid sounds have been constrircedPCA
projection onto the violin eigensounds, the streetf the origi-
nal sound is reintroduced by reversing the aligrimieat has
been carried out prior to PCA, thus returning tleeiginal pitch
and any frequency modulation characteristics. Aufiles for

these examples are available online at

www.jezwells.org/PCA_audio.

5.2.1. Guitar

This is the least successful of the cross-synthekssto the vast
difference in amplitude envelope between a pludkgitar and a
bowed violin. As can be seen from the rastogramBigire 7a
there is very little similarity with the originabhe even for the
twenty eigensound projection. The result is thatttmbre of the
violin dominates the hybrid.

= ~=—
!
*

Figure 7a:Rastograms of original guitar tone (left), re-
construction from eigensounds produced from a &nvio
training set (middle) and a 20 violin set (right).

5.2.2. Trumpet

The trumpet has an amplitude envelope which iseclasthat of
the violin, particularly in the steady state pamti@Vhilst the vio-
lin timbre does dominate, as the training set sizeeases from 5
to 20 the spectral envelope approaches that ofirapet even
though the excitation is still very violin-like. €pitch variations
in the trumpet tone are retained and the sensesioigée acoustic
source is strong, making this an interesting amaigible hybrid
albeit one which is not perceptually equidistartineen the two
original instrument types. What is particularlyilstrg about the
hybrid produced by this method is the detail whistretained
which is often temporally smeared and ‘phasey’ pecéral hy-

brids

Figure 8b:Rastograms of original trumpet tone (left), re-
construction from eigensounds produced from a &rvio
training set (middle) and a 20 violin set (right).
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5.2.3. Oboe

A hybrid which is more equally weighted perceptyaparticu-
larly for the 20 violin training set, has been prodd here how-
ever there is an apparent loss of temporal detaitlwis not the
case for the trumpet-violin cross and there is alsthorus-type
effect introduced which reduces the sense thaetisejust a sin-
gle sounding object. For the 5 violin training et overall reso-
nant structure is close to that of an oboe buetuitation is vio-
lin-like, for the 20 violin training case the exatibn sounds more
like an equal hybrid of violin and oboe too.

Figure 9c:Rastograms of original oboe tone (left), re-
construction from eigensounds produced from a &nvio
training set (middle) and a 20 violin set (right).

6. CONCLUSIONS

We have presented a novel technique for cross-syistiof in-
strument tones in the time-domain using PCA. PaoPCA the
audio is rasterised, vertically aligned using edg¢ection and
resampling and horizontally aligned using row itisefremoval
during the steady-state portion of the tone enweldjnis align-
ment improves the efficiency of the PCA represeotatf the
training set, meaning that instrument tones in geeare more
accurately reconstructed using fewer eigensounds.

The hybrids produced by projecting the sound of an

instrument on to the eigensounds produced by PCHlsiaaf a
different instrument demonstrate varying degreesswuécess.
Where the instrument sounds are temporally vergimitar the
training set instrument dominates the hybrid. Hosvewhere
there is greater similarity the cross-synthesimm@e successful
and plausible, in some cases retaining more terhpetail than
tends to be the case with hybrids produced usiegtsgd meth-
ods. As the number of eigensounds increases freon2® there
is more scope for the representation of one ingnirim terms of
the other and a more perceptually equidistant dylsriusually
produced.

There are certainly improvements to the alignment

methods used here, particularly achieving horidoaignment
between tones prior to PCA which future work shadoiestigate
but the efficacy of this type of alignment for tirdemain audio
data prior to PCA has been demonstrated and a aodetseful
hybridisation process developed.
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