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ABSTRACT 

This paper describes a system for cross synthesis of rasterised 
time-domain audio. Rasterisation of the audio allows alignment 
of the macroscopic features of audio samples of instrument tones 
prior to principal component analysis (PCA). Specifically a novel 
algorithm for straightening and aligning rastogram features has 
been developed which is based on an interactive process incorpo-
rating the Canny detection algorithm and variable resampling. 
Timbral cross-synthesis is achieved by projecting a given instru-
ment tone onto the principal components derived from a training 
set of sounds for a different tone. The alignment algorithm im-
proves the efficiency of PCA for resynthesizing tones. 

1. INTRODUCTION 

Principal component analysis (PCA) is a technique which de-
scribes sets of data in terms of the eigenvectors, and correspond-
ing eigenvalues, of its covariance matrix. The first principal com-
ponent is the eigenvector with the highest eigenvalue, the second 
principal component (PC) is the eigenvector with the next high-
est eigenvalue and so on [1]. This process allows identification 
of features which are common amongst the data. This can be use-
ful for data compression (eigenvectors with low eigenvalues can 
often be discarded with little detrimental effect on the quality of 
the representation of the data) and for identification (a specific 
profile of eigenvalues for a given set of eigenvectors, may give a 
strong indication that some data ‘belongs’ to a particular entity 
e.g. image data may belong to a particular face). 
 PCA has been applied in many areas from facial recog-
nition [2] to the frequency-domain synthesis of musical instru-
ment tones [3]. Recent work has demonstrated how the rasterisa-
tion of one-dimensional audio signals into two-dimensional im-
age-like representations can reveal useful visual analogies with 
the audio, enabling compact audio display and the application of 
image processing techniques [4]. This paper details work that 
draws together these ideas in a system which describes time-
domain audio in terms of its PCs and uses this representation as 
the basis for cross-synthesis between different instrument tones. 
It differs from previous applications of PCA to audio in that it 
employs rasterisation and operates in the time, rather than fre-
quency domain. Whilst PCA does not itself require rasterisation 

(in fact when images are subject to PCA they are de-rasterised), 
good temporal alignment between different musical instrument 
sounds is needed for the most compact representations of the 
data and techniques similar to those applied to image data, such 
as faces for example, to align features are adopted here for audio. 
 The paper is organised as follows. A brief summary of 
PCA and an application of it to image data is given in the next 
section. Section 3 gives an overview of how PCA is applied to 
time domain audio in order to produce hybrid instrument sounds 
via cross-synthesis. The feature alignment which is performed 
prior to PCA is described and assessed in Section 4. Results for 
different instrument tones are presented in Section 5 and conclu-
sions given in Section 6. 

2. PRINCIPAL COMPONENT ANALYSIS 

We consider sets of data which are of the same size and each of 
which represent a particular entity. For example each set of data 
may be derived from an image of a human face, or a digital re-
cording of an instrument tone. In many texts on PCA a single 
data set is referred to as an observation of a set of N variables, 
where N is the size of the data set. When PCA is used for data 
compression the idea is to produce fewer, new sets of data which 
can then be linearly combined to reproduce the each of the origi-
nal data sets as closely as possible. The best fidelity to the origi-
nal data is achieved, for a given compression ratio, when the new 
data sets are as highly correlated with each of the original data 
sets as possible, but are orthogonal to each other.  
 The implementation of PCA adopted here is that em-
ployed  for determining so called ‘eigenfaces’ from a set of face 
images in [2]. Here we are interested in determining ‘eigen-
sounds’ from a set of recordings of a particular type of musical 
instrument, the ‘training set’. Images require derasterisation prior 
to PCA, for example an N by N pixel image is transferred to an 
N2 vector. Usually this would not be a requirement for single-
channel audio recordings but the pre-processing prior to PCA 
described in the next section of this paper requires rasterisation, 
so in this case derasterisation is also required for audio. Each 
vector representing a single sound is then centred by subtraction 
of the mean vector. 
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 The mean-centred vectors are then combined, each vec-
tor forming a column of the N by M matrix, A , where M is the 
number of data sets (sounds) and N  is the number samples in 
each set. Next the covariance matrix C is calculated: 
 

 T=C AA  (1) 

 
The eigenvectors of C  are the eigensounds and the contribution 
of each to the complete set of sounds is given by its correspond-
ing eigenvalue. The first PC of the set is the eigensound with the 
highest eigenvalue, the next is that with the second highest ei-
genvalue and so on. 
 The difficulty with (1) is that the size of C is N by N 
which, for instrument sounds, could be several seconds long. At 
typical audio sample rates, such as 44.1 kHz, finding the eigen-
vectors and their associated eigenvalues may well be computa-
tionally intractable. An alternative approach is to consider the 

eigenvectors iv  of the M by M matrix TA A  whereby it can be 

shown that iAv are the eigenvectors of C  [2]. Any sound from 

the training set can be reconstructed by determining a set of 
weights to be applied to each eigensound. These weights are de-
termined by projection of the original sound (after mean-
centring) onto each eigensound in turn. Reconstruction is 
achieved by: 
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s is the ith sound in the training set, 
m

u is the nth eigen-

sound,
,m i

w is its weight for the ith sound and s is the mean vec-

tor.    

3. PCA FOR HYBRIDISATION OF TIME-DOMAIN 
AUDIO DATA 

3.1. Audio applications of PCA 

Applications to date of PCA to audio have focussed on the spec-
tra of audio, particularly for determining a reduced set of ‘basis 
spectra’ for multiple wavetable synthesis (MWS) [5]. MWS uses 
a fixed set of short waveforms to reproduce complex sounds 
which change dynamically by the alteration of the weights ap-
plied to each. The weighting is based on the short-time Fourier 
transform (STFT) analysis of a target sound, as the target short-
time spectrum changes so the weights of the wavetables are se-
lected to best match this. Where memory is at a premium, such as 
in mobile phones, it is desirable to reduce the number of spectra 
which are stored in order to represent that of a target sound and 
how it evolves over time. 
 Various techniques have been employed to find a suit-
able reduced set of basis spectra for controlling the amplitudes of 
the wavetables. In [5] the use of a genetic algorithm (GA) and 
PCA to select the spectra were compared. Although, using a nu-
merical measure of relative spectral error, they found that the GA 
was better able to accurately synthesize a recorded sound using 

fewer wavetables, PCA was faster and offers the potential to be 
fully automated. Various modifications to their method have 
been proposed. In [6] complex-valued PCA was used to obtain 
(i) a set of complex basis spectra, the magnitude of which were 
used to represent spectral amplitude information and (ii) a set of 
complex envelopes the magnitude of which were used to repre-
sent the overall envelope of the sound and the phase of which 
introduced deviations from pure harmonicity which, for example, 
result in the successful representation within the PCs of a flute 
tremolo. Recent work has improved the quality of real-valued 
PCA by normalisation of the spectral energy in each frame prior 
to formation of the covariance matrix [3]. PCA has also been ap-
plied to features (e.g. intensity, frequency centroid), for auto-
matic sound classification. For example, in [7] a system for dif-
ferentiating between silence, speech, music and noise is de-
scribed. 

3.2. PCA of time domain representations of audio 

The prime motivation for the work presented in this paper was to 
develop a novel technique for cross synthesis of instrument tim-
bres. This application of PCA for audio has received some atten-
tion but this has been focussed in the spectral domain. For exam-
ple, in [8] timbral interpolation was achieved by moving through 
a timbre space whose three axes were defined as the first three 
PCs derived from a concatenation of several different tone spec-
tra. In [9] a cross-synthesis method which applied the amplitude 
envelopes of the PCs derived from the spectra of one tone are 
applied to those of another. These examples indicate that PCA is 
a promising technique for the creative transformation of audio. 
However, to date no attention appears to have been paid to how 
PCA might be applied to producing hybrid timbres from time-
domain representations of instrument tones. This is the focus of 
the work presented here and the following sections of this paper 
describe and evaluate a method for doing this. 

4. FEATURE ALIGNMENT OF TIME-DOMAIN 
INSTRUMENT TONES FOR PCA 

4.1. Rasterisation of audio 

Rasterisation is the mapping of data into a two dimensional (2D) 
space by scanning across the space (usually left to right) in single 
lines, flying back (right to left) to begin mapping from left to 
right a line directly below the first and so on. Once the last line 
of the 2D space has been filled with data, one frame is complete 
and the fly-back is now from bottom-right to top-left to begin 
filling the 2D space with a second frame, line by line. Perhaps 
the most well-known example of this is the physical process per-
formed inside a cathode ray tube, for the representation of mov-
ing images on television screens etc. 
 Rastogram is the term used to describe the raster-
scanning of one-dimensional audio into a two-dimensional space. 
It has been proposed as tool for timbre visualisation, sound 
analysis and filter design. As a process it is invertible (2D images 
can be de-rasterised to produce time-domain audio signals) and 
an intuitive relationship exists between certain textures in images 
and the sounds produced by sonification of images processed 
using different visual filters [4]. The rasterisation of audio is de-
fined in [4] as the mapping of one audio sample to one pixel by 
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representing its value as the brightness in greyscale. Whilst ras-
tograms are a time-domain representation, they do offer useful 
insight into the pitch and harmonic content of sound. If the line 
width (number of audio samples mapped to each line) is an inte-
ger multiple of a sinusoidal component within the sound then 
vertical stripes will be seen (black for the positive part of the cy-
cle, fading into white for the negative cycle). For many sounds, 
there will be pitch fluctuations over time and a certain degree of 
inharmonicity between partials. These aspects can often be 
clearly seen in rastograms as curved or diagonal lines. What is 
depicted in such visualisations of audio is very similar to the 
mapping of analogue audio into the single spiralled groove of a 
phonographic disk.  

4.2. Feature alignment of rasterised audio 

PCA does not require rasterisation, in fact de-rasterisation is re-
quired before PCA can begin. The purpose of rasterising time 
domain audio for this application is that it allows similar feature 
alignment techniques to those used for images prior to PCA. For 
example, if using PCA for the analysis of faces it usually desir-
able for common features (e.g. nose, chin and eyes) to be in the 
same position for each analysed image. If these common features 
are not in the same position across the set of images then this 
commonality between images, and therefore ‘eigenfaces’ is lost, 
meaning that essential positional information is spread across a 
larger number of PCs than is necessary. 
 When using PCA for sound spectra it is usually impor-
tant that there is alignment in the pitch (fundamental frequency). 
When considering an instrument tone in the time domain it is 
important that different portions of the envelope of the sound are 
aligned and that variations in pitch and amplitude are either 
aligned or removed prior to analysis. Rasterisation offers the po-
tential for this kind of alignment. The following sub-sections out-
line the methods employed here. 

4.3. Fixed resampling of instrument tones to match period to 
rastogram width 

Inspection of how a rastogram changes as the row (or line) num-
ber changes provides visual information about that tone itself 
varies over time. This visual information is confused if the width 
of the rastogram is not matched with the time period (the recip-
rocal of the fundamental frequency) of the instrument tone since 
vertical alignment is lost between rows. In such cases the rasto-
gram gives the impression that there has been some change in the 
time domain waveform even where there has been none. The 
simplest solution to this problem is to adjust the width of rasto-
gram so that the number of pixels in a single line is the same as 
the number of samples in the period of the instrument tone. This 
offers an improvement over the unaligned case, but where the 
time period is not exactly an integer number of samples then 
there will be some diagonal skewing of features that would be 
vertically aligned if the period of the tone perfectly matched the 
width of the rastogram. A straightforward solution to this is to 
resample the audio. This is achieved via the standard procedure 
of up-sampling by one integer factor p followed by decimation 
by a second factor q, combined with low-pass filtering to yield a 
change in the sampling rate of p/q [10]. Provided p/q > 1 this 
process is reversible since no information is lost as a result of the 
low-pass filtering. The top panel of Figure 1 shows three raster-

ised instrument tones where the line width has been set to best 
approximate the mean period. The bottom  panel of the same fig-
ure shows rastograms of the same tones which have been resam-
pled in order to produce the best vertical alignment of features. 
The best ratio p/q was determined by trial and error. Time is in-
dicated on the vertical axes of these plots, however for aesthetic 
reasons the axes of subsequent plots are not labelled or quanti-
fied. 
 

 

 
 

Figure 1: Rastograms of single tones produced by, from 
left to right, saxophone, trumpet and electric piano. The 
top panel shows alignment by matching line width to 
time period, the bottom panel shows alignment by re-
sampling audio data. 

4.4. Edge detection and gradient estimation for variable re-
sampling of instrument tones 

Whilst the method described in the preceding sub-section does 
improve the visualisation of the instrument tones it assumes pitch 
stationarity and periodicity. To deal with mild inharmonicity and 
variations in pitch an algorithm which is able to align according 
individual dominant components and is able to track variations in 
such components over time is needed. Since the tones are repre-
sented in rastograms this can be achieved by edge detection and 
straightening. The following procedure is employed after the in-
strument tone has been resampled at a fixed rate to give the best 
vertical alignment. 
 For edge detection the Canny algorithm is used [11]. 
This can reduce the number of false positives (pixels incorrectly 
identified as belonging to an edge) and improve the localisation 
of correctly identified edges (when compared with simpler edge 
detectors) [11]. The detector begins by smoothing the data with a 
Gaussian filter to reduce the impact of individual pixels which 
are particularly noisy. Following this the gradient magnitude and 
direction for each pixel is calculated from the first derivative of 
intensity. A process of thinning the probable edge areas then 
takes place by the suppression of points which are not local 



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009 

 DAFX-4 

maxima in the direction of the gradient. Finally thresholding with 
hysteresis along with connectivity analysis is applied to detect 
and link edges. 
 In order to use this to determine varying resampling 
ratios to be applied when moving from top to bottom, the rasto-
gram is divided into horizontal strips, each containing n lines. 
Within each strip the Canny algorithm is used to find the longest 
edge in the strip. The average local gradient s of the strip is de-
fined as being the difference (in pixels) between the positions (in 
the horizontal direction) between the top and bottom of the long-
est edge. If s is positive then the current strip is appended with s 
samples from the next strip, if s is negative then s samples are 
transferred from the end of the current strip to the beginning of 
the next strip. The strip is then resampled by the ratio v where: 

 
Wn s

v
Wn

+=  (3) 

where W is the width of the rastogram in pixels. 
 This entire procedure is then repeated until the entire 
rastogram has been processed. Best results are obtained by itera-
tively performing this process with differing values of n. This 
resampling and appending process can be reversed once analy-
sis/resynthesis has taken place, provided a resampling ‘map’ is 
retained. The top panels of Figure 2 show the vibrato being pro-
gressively removed from an oboe tone by four iterations of this 
algorithm, the bottom panels show the same process being per-
formed on a violin tone. The vertical axis is shown in pixels and 
it is repeated for the last panel in the figure since this algorithm 
can lead to a variation in the height of the rastogram. Where v < 
1 there may be a loss in quality due to the low pass filtering em-
ployed in the resampling process. However this loss of quality 
can be prevented by oversampling the entire rastogram before 
performing variable resampling. The values of n for each succes-
sive iteration in the figure (moving from left to right) are 18, 13, 
9 and 6 respectively.  
  

 

 

Figure 2: Rasterised instrument tone, oboe (top) and vio-
lin (bottom), variably resampled after edge detection 
with (from right to left) one, two, three and four itera-
tions. 

Further vertical feature alignment between rastograms is 
achieved by padding the beginning and end of the tone with zero 
samples so that the darkest column is centered in the image. This 
process is illustrated in Figure 3. 
 

 

Figure 3: Column alignment of rastograms 

4.5. Envelope alignment by row insertion or deletion 

Having aligned line-to-line features the next stage is to ensure 
that the rastograms each have the same number of lines. This is 
achieved by the insertion or removal of entire lines from the 
steady-state part of the rastogram. This simple approach can be 
employed since the alignment already performed will ensure that 
there is high similarity and synchronisation between lines. A ba-
sic assumption that the steady state of each tone begins 30% into 
its duration and is effective for the instrument tones used here, 
although to make this process more general a better steady-state 
detection algorithm is needed. To determine the position of the 
end of the steady state portion the sample values for each line are 
averaged to derive an amplitude envelope. Once the row ampli-
tude has fallen below one half of the mean amplitude for whole 
rastogram then the steady-state is considered to have finished. 
Once the position of the steady-state portion of the tone has been 
identified it is then expanded, or reduced, to achieve a standard 
number of rows for the tone. This standard number of rows can 
be determined by the user and is dependent upon the length of 
tones being analysed. After this process each rastogram should 
have the same number of lines.  
 Figure 4 shows this row insertion/removal (right hand 
panel) after straightening (middle panel) of a rasterised instru-
ment tone (left panel) for a violin (top) and trumpet (bottom) 
tone. Provided only insertion is performed and a map of the in-
sertion points is retained this process can be undone, if required. 
 

 

Darkest column identified 

Column averages calculated 

Padded with zeros to align 
darkest column to centre 
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Figure 4: Rastograms of original instrument tones (left), 
variably resampled (middle) and steady-state aligned 
(right), violin tone (first panel) trumpet tone (second 
panel). 

4.6. Summary of rastogram preparation prior to PCA 

A summary of the procedures outlined in this section to align 
features within, and between, rastograms of different instrument 
tones is: 
 
1. Trim the audio clip to remove any silence at the beginning 
and/or end of the signal. 
2. Estimate pitch of steady-state portion of signal and use this to 
determine the width of the rastogram in pixels. 
3. Reshape the one-dimensional audio data into a two-
dimensional rastogram. 
4. Apply iterative edge-detection-based straightening algorithm 
(described in sub-section 4.4). 
5. Perform row insertion/removal to stretch/compress rastogram 
to desired length. 

5. RESULTS 

Having produced and aligned instrument tones within rastograms 
using the methods described in the previous section the audio 
data is ready for derasterisation and PCA analysis. As stated, the 
main purpose of this work has been to develop and investigate a 
novel time-domain cross-synthesis process. This is achieved by 
projection of the sound of one instrument onto the eigensounds 
obtained from a set of sounds produced by a different instrument. 
The purpose of this is to produce a sound that creates a plausible 
impression of a hybrid of the two instruments. The criteria em-
ployed to assess this are: 
 

1. The hybrid sound should be perceived as emanating from a 
single object. 
2. The hybrid should contain some identifiable attributes of both 
sounds. 
3. There should be some sense of acoustic plausibility – an in-
strument could feasibly exist which might produce such a sound.  
 
This final criterion is, of course, heavily dependent on the differ-
ences in the instruments chosen for hybridisation. The purpose of 
the alignment described in the previous section is to make the 
PCA more efficient. The following sub-section uses a simple sta-
tistic to measure this for two different sounds. Sub-section 5.2 
then describes and discusses different cross-syntheses. 
 

5.1. Effect of alignment on PCA efficiency 

Figure 5 shows the reconstruction of a horn sound, from different 
proportions of the 64 eigensounds generated from a training set 
of which it is a member. It can be seen that, as expected, the fi-
delity of the reconstruction to the original sound improves as 
more eigensounds are used. The more efficient a PCA representa-
tion of a sound is, the better the reconstruction when using fewer 
eigensounds. A highly efficient PCA representation of a sound 
will allow near identical reconstruction from just a few eigen-
sounds. Although the rastograms are very similar, there are some 
audible differences between the original and the reconstruction 
from 90% of the eigensounds. Below 70% and the reconstructed 
sound takes on a more reedy, accordion-like timbre. 
 

  (a) (b) (c) (d) (e) 
 

 

Figure 5: (a) Original rastogram of a french horn tone. 
Reconstructions using (b) 90%; (c) 70%; (d) 50%; and 
(e) 30% of the 64 available eigensounds. 

To assess the effect of the alignment procedures on the efficiency 
of the subsequent PCA, the mean square of the Euclidean dis-
tance between intensity values for each pixel (sample) of an 
original sound and its reconstruction using eigensounds is pre-
sented in Figure 6 for a violin and trumpet. A reduced training 
set has been used here giving a maximum of 5 eigensounds, 
which gives perfect reconstruction since the original sound is 
part of the training set. It can be seen that there is a clear im-
provement in PCA efficiency for the aligned rastograms over un-
aligned rastograms. For the violin sound the increase in effi-
ciency, averaged over the 1 to 4 eigensound cases, is 95 %. For 
the trumpet the average efficiency increase is 48%. 
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 These results show that these alignment processes may 
well be of use in applications which use PCA of time-domain 
audio for data compression, although the data required to remove 
the straightening and inserted rows would need to be 
stored/transmitted along with the retained eigensounds. 
 

 

Figure 6: Square of Euclidean distance between pixel in-
tensities for reconstruction using different numbers of 
eigensounds, with and without alignment for a violin 
(top) and a trumpet (bottom). 

5.2. Cross-synthesis 

In this sub-section example results, illustrating cross-synthesis 
are provided. Two training sets of violin sounds have been com-
piled: one containing 5 tones from different violins, the second 
containing 20. From these tones cross-synthesized hybrids have 
been produced by projecting tones from other instruments onto 
each violin eigensound. The range of pitches in the 5 violin set is 
C4-E4, the range for the 20 violin set is G4-E4. The instrument 
sounds used for hybridisation are those of a guitar, trumpet and 
oboe. Once the hybrid sounds have been constructed from PCA 
projection onto the violin eigensounds, the structure of the origi-
nal sound is reintroduced by reversing the alignment that has 
been carried out prior to PCA, thus returning their original pitch 
and any frequency modulation characteristics. Audio files for 

these examples are available online at 
www.jezwells.org/PCA_audio. 

5.2.1. Guitar 

This is the least successful of the cross-syntheses, due to the vast 
difference in amplitude envelope between a plucked guitar and a 
bowed violin. As can be seen from the rastograms in Figure 7a 
there is very little similarity with the original tone even for the 
twenty eigensound projection. The result is that the timbre of the 
violin dominates the hybrid. 
 

 

Figure 7a: Rastograms of original guitar tone (left), re-
construction from eigensounds produced from a 5 violin 
training set (middle) and a 20 violin set (right). 

5.2.2. Trumpet 

The trumpet has an amplitude envelope which is closer to that of 
the violin, particularly in the steady state portion. Whilst the vio-
lin timbre does dominate, as the training set size increases from 5 
to 20 the spectral envelope approaches that of a trumpet even 
though the excitation is still very violin-like. The pitch variations 
in the trumpet tone are retained and the sense of a single acoustic 
source is strong, making this an interesting and plausible hybrid 
albeit one which is not perceptually equidistant between the two 
original instrument types. What is particularly striking about the 
hybrid produced by this method is the detail which is retained 
which is often temporally smeared and ‘phasey’ in spectral hy-
brids  
 

 

Figure 8b: Rastograms of original trumpet tone (left), re-
construction from eigensounds produced from a 5 violin 
training set (middle) and a 20 violin set (right). 
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5.2.3. Oboe 

A hybrid which is more equally weighted perceptually, particu-
larly for the 20 violin training set, has been produced here how-
ever there is an apparent loss of temporal detail which is not the 
case for the trumpet-violin cross and there is also a chorus-type 
effect introduced which reduces the sense that there is just a sin-
gle sounding object. For the 5 violin training set the overall reso-
nant structure is close to that of an oboe but the excitation is vio-
lin-like, for the 20 violin training case the excitation sounds more 
like an equal hybrid of violin and oboe too. 
 

 
  

Figure 9c: Rastograms of original oboe tone (left), re-
construction from eigensounds produced from a 5 violin 
training set (middle) and a 20 violin set (right). 

6. CONCLUSIONS 

We have presented a novel technique for cross-synthesis of in-
strument tones in the time-domain using PCA. Prior to PCA the 
audio is rasterised, vertically aligned using edge detection and 
resampling and horizontally aligned using row insertion/removal 
during the steady-state portion of the tone envelope. This align-
ment improves the efficiency of the PCA representation of the 
training set, meaning that instrument tones in the set are more 
accurately reconstructed using fewer eigensounds. 
 The hybrids produced by projecting the sound of an 
instrument on to the eigensounds produced by PCA analysis of a 
different instrument demonstrate varying degrees of success. 
Where the instrument sounds are temporally very dissimilar the 
training set instrument dominates the hybrid. However where 
there is greater similarity the cross-synthesis is more successful 
and plausible, in some cases retaining more temporal detail than 
tends to be the case with hybrids produced using spectral meth-
ods. As the number of eigensounds increases from 5 to 20 there 
is more scope for the representation of one instrument in terms of 
the other and a more perceptually equidistant hybrid is usually 
produced. 
 There are certainly improvements to the alignment 
methods used here, particularly achieving horizontal alignment 
between tones prior to PCA which future work should investigate 
but the efficacy of this type of alignment for time-domain audio 
data prior to PCA has been demonstrated and a novel and useful 
hybridisation process developed. 
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