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ABSTRACT
This paper introduces Kronos, a vectorizing Just in Time com-
piler designed for musical programming systems. Its purpose is to
translate abstract mathematical expressions into high performance
computer code. Musical programming system design criteria are
considered and a three-tier model of abstraction is presented. The
low level expression Metalanguage used in Kronos is described,
along with the design choices that facilitate powerful, yet transpar-
ent vectorization of the machine code.

1. INTRODUCTION

Computer music is a prime example of a field where computers are
used creatively. As usual, creativity flows most easily when the
operational mindset is flexible. Perhaps that is the fundamental
reason for the proclivity of software, especially non-commercial
software, that aims to provide the user with an ability to harness the
power of the computer yet without dictating any specific workflow
or a cultural idiom.

On one end of the toolchain there is the logical-arithmetic
computation engine of the computer hardware, on the other, the
musical intuition of an artist. The category of software that im-
poses - at least in theory - fewest restrictions on this interaction
includes the numerous programming languages that provide very
extensive and detailed control of the computation engine.

Yet, the mindset of computer programming is quite different
from the creative musical one. Not many computer musicians are
willing to learn industrial languages such as C++, Java, Lisp, etc.

The evidence for this is the popularity of software that tries
to maintain the general nature of programming languages, offer
ease of use for the artist and perhaps even borrow a little out of
how analog music studios used to work. There are textual lan-
guages such as SuperCollider [1], Faust[2] and Nyquist[3], visual
languages such as Pure Data[4] and PWGL[5], even commercial
systems like the Native Instruments Reaktor.

The problems in producing an ideal musical programming en-
vironment are myriad. This paper focuses on a narrow yet all-
important sector of musical programming: DSP - the task of churn-
ing out an audible waveform based on parameters and input sig-
nals, often in real time.

This paper is laid out as follows. In Section 2, design goals of
musical programming systems are examined. Section 3 presents
the concept of a three-tiered abstraction as a model for such a sys-
tem, as well as discussing the role of Kronos in such a model.
In Section 4, the mechanisms for producing vectorized code are
explained. In the final Section 5, practical examples of Kronos ex-
pressions as well as the compiler output are detailed with a brief
performance evaluation.

2. MUSIC DSP IN A PROGRAMMING ENVIRONMENT

The ideal musical programming platform that represents our cho-
sen design goals has the following features:

• Expressive
Ability to accomplish a lot in computational terms with
minimal user effort

• Intuitive
There shouldn’t be much the user needs to know about the
system in order to use it

• Powerful
Computational efficiency, fast response and flexibility

Kronos focuses on power. Representing the lowest level com-
ponent in a musical programming environment, not directly inter-
faced with the user, expressiveness and ease of use are not essen-
tial. Kronos is designed to be an intermediate layer, compiling
code that is generated by a higher level program rather than a pro-
grammer.

In practice, the user of a musical programming environment
might lay out a high level, conceptual representation of the task at
hand, with the system handling the intermediate step of turning it
into the Kronos patch required to perform the desired tasks.

2.1. Performance Issues

Some computer performance aspects are fairly general. Execution
time, traditionally the most evident performance metric, translates
to real time capability of a music DSP system. The faster the sys-
tem is able to compute, the more complicated a program can be
yet still capable of real time sound playback.

While general computer science often focuses on the singular
performance metric of execution time, musical programming also
introduces novel considerations. For example, the time taken from
delivery of the program source to executing it, while important,
is not the first priority for general compiler developers. The soft-
ware engineer often has a workflow more adapted to compilation
pauses, while a musician expects to press "Play" and hear sound,
immediately.

Further, the musician may want to change the program during
its execution. This was possible in the analog music studio, where
swapping out patch cords often resulted in immediate gratification.
In the digital world programs often have to be aborted, edited, re-
compiled, linked and launched. The all-important musical hacking
suffers from such a heavy compilation cycle, making a traditional
programming language less desirable for real time artistic expres-
sion.
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3. SYSTEM ARCHITECTURE

Let’s consider a practical example of using Kronos as a part of a
musical programming environment based on visual patching. The
user inserts an audio oscillator into the visual patch. She needs not
think about the implementation details of the oscillator, making
it, in this case, the primitive building block from her perspective.
The user perspective represents the conceptual level of the envi-
ronment, the highest tier of abstraction.

The middle tier of the programming environment would then
examine the signal paths of the oscillator, determining its depen-
dencies on other primitive blocks, processing order, control signal
optimizations and such. Having done this, it builds the mathemat-
ical expressions required for the evaluation scheme it has chosen.
Control flow, scheduling and bookkeeping are handled by this mid-
dle tier.

The lowest tier of the environment turns the mathematical ex-
pression into a form suitable for a computer - machine code.

These three tiers form the theoretical framework of our musi-
cal programming system design. The highest tier, the conceptual
level, is exposed to the user. The middle tier, the system tier, takes
care of routine bookkeeping, signal routing and scheduling, while
the lowest tier focuses on interfacing with the computer processor.

3.1. Just in Time Compilation

Kronos aims to provide the very lowest layer of a musical pro-
gramming environment, namely high performance computation of
expressions configurable during run time. Kronos is a just in time
compiler[6] for expressions - given an expression, it creates ma-
chine code to compute that expression.

Interpreters, rather than compilers, have previously flourished
in musical programming. Environments such as PD[4] or PWGLSynth
1 can be viewed as interpreters, as they provide signal plumbing
and scheduling for a set of precompiled binary nodes. Interpreters
are easier to develop, and given the correct design parameters they
are also fairly efficient. However, the more primitive the precom-
piled building blocks, the lower computational efficiency they tend
to yield in comparison to compilers. Interpreted languages there-
fore tend to converge to fairly large, monolithic nodes, sometimes
at the expense of generality.

This is because an interpreter examines an internal data struc-
ture to find which nodes to process and where to find their input
data. These can be hardwired into a compiled program, yielding
huge performance improvements for the most primitive of nodes.
As the actual work performed by such a node is fairly small, any
interpreter-related code would actually take much longer to exe-
cute than the actual computation.

Complete control over the machine code executed requires the
use of compilation. Some systems, such as the BlockCompiler[7],
delegate code generation to an external C compiler. While this ap-
proach has many benefits, developing a custom compiler offers av-
enues for improvement. For example, by integrating the compiler
into the system it is possible to change portions of the program,
even during audio playback. Further, as discussed later in this pa-
per, language design parameters can make compiler optimization
more viable than in a generic programming language.

3.2. Metalanguage Design

Kronos Metalanguage is the intermediate format in which mathe-
matical expressions are given. It has two distinguishing features:

it is both strictly functional and absolutely deterministic.
This means that all Metalanguage operations are stateless. They

perform identically, given identical inputs. Further, the machine
code path is identical whenever the expression is evaluated. To-
gether, these features make it quite easy to produce efficient ma-
chine code from the metalanguage. The admittedly severe restric-
tion of determinism, which disallows branching, gently guides the
implementers to move branches and logic up to a higher tier of the
programming environment. The metalanguage is not intended to
be a fully functional programming language in itself.

Internally, the Metalanguage expressions are maintained as hi-
erarchial tree expressions. Diamond shapes are permitted, while
recursion is disallowed. Note that unit delay recursion in the ac-
tual DSP algorithm is possible, but must be provided by the middle
tier of the environment along with the associated signal routing and
state variables.

Together, these fairly draconian rules make it possible to com-
pile the Metalanguage into very high performance native machine
code.

4. AUTOMATIC VECTORIZATION OF GENERIC
EXPRESSIONS

To enable high performance code generation, Kronos includes a
system to vectorize generic expressions. The Metalanguage ex-
pression is examined for inherent parallelism, and Kronos is able
to leverage SIMD-style instructions to carry out a similiar oper-
ation on bundles of operands at once. SIMD operations are, de-
pending on circumstance, 2-4 times as powerful as regular scalar
operations. They are called vector instructions, as they operate on
vectors of operands rather than single, scalar operands.

SIMD vector instructions are present in architectures ranging
from x86[8] and PowerPC used in consumer computers to spe-
cialized Graphics Processing Units and Supercomputers. In order
to be able to use vectorized SIMD instructions, there has to be a
group of primitive operations that are of the same type and can be
executed in parallel. For example, a group of four additions can be
performed by a single vector instruction on the x86 provided there
are no dependencies between the constituent operations.

Due to the strict rules of the Metalanguage, automatic vector-
ization is reduced to a simple pattern matching exercise. During
the vectorization process, each node of the Metalanguage expres-
sion tree is examined as a potential ’root’ for a group of operations.

Firstly, all nodes that do not share the operation type with the
root node are eliminated. This is because all vector instructions
require that grouped operations are of the same type.

Secondly, all nodes either upstream or downstream from the
root node are removed from consideration. This is due to the fact
that if a node can ’see’ another node by following all the branches
of the expression tree either up or down, they have a dependency
relation. One node must therefore be executed before the other,
making parallel execution impossible. Due to the strict functional
rigor of the Metalanguage, this check is all that is required to en-
sure the nodes can be executed in parallel.

The remaining nodes could potentially be bundled into a vec-
torized operation together with the root node.

4.1. Efficiency Considerations

However, due to the nature of x86 architechture, not all vector in-
struction bundles are necessarily beneficial. Whether they outper-
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form their scalar siblings depends on how the operands are laid out
in the memory. For a vector instruction to execute at full speed the
data it requires must be occupying a continuous region aligned on
a 16-byte address.

If this is not the case, scatter loading code must be added be-
fore the vector instruction to fetch operands from various memory
locations and pack them neatly together. If each operand of the
vector instruction must be separately loaded and packed, the extra
code handily undoes any performance advantages of using vector
instructions in the first place.

4.2. Vector Groups

To reduce scatter loading in the vectorized code, the Kronos Vec-
torizer looks for sequences of operations that could be vectorized,
namely vector groups. When two parallelizable root nodes are
found, the vectorizer follows the expression tree up from these two
nodes, comparing the operations upstream. If the upstream nodes,
in turn, are respectively vectorizable, the extent of potential vec-
torization is increased. If there is a mismatch, a scattered load is
counted for the potential vector group.

If a group of a sufficient size is found, then all operations
belonging to it are linked to become fused vector instructions.
By ensuring that the upstream vector instructions direcly provide
operands for the subsequent vector operations, operands are guar-
anteed to be in a vector-compatible format. Thus, scatter loading
only occurs at group boundaries.

Whether there is a performance benefit to vectorizing the group
depends on whether the number vector instructions within the ex-
tent is sufficiently high in comparison to the number of scattered
loading and packing operations vectorization will require.

5. CODE EXAMPLES

Kronos is aimed to be used as a low tier of a musical programming
system, in particular PWGLSynth 2. However, a general C/C++
interface is provided in order to facilitate direct access to efficient
vector arithmetic. Using overloaded operators, Metalanguage ex-
pressions can be generated by regular C++ expressions with spe-
cial functions for loading variables and memory locations. In this
section, examples of such C++ expressions are given, along with
annotated machine code generated by Kronos.

5.1. Primitive math

An example of a simple case aided by vectorization is the addition
of two 8 element vectors. Two arrays, named a and b in the source
code are added and stored in a third array, c. The Metalanguage
expression is generated with a loop creating 8 scalar additions, but
any formulation enabling parallel execution is sufficient for the
compiler to detect and leverage vector instructions. The C++ de-
scription is given in listing 1.

Kronos output is similiar to handwritten assembly code in this
case, performing eight loads, stores and additions in mere 6 ma-
chine instructions. The actual code is shown in listing 2.

5.2. Parallelizable FIR filter

The next example, shown in listing 3 is a convolution of an input
signal x with a second order FIR filter, described by the coefficients
h. The output of the convolution is stored in x. Four audio samples

are computed at once within the expression, hence the command
to append subexpressions to the main routine.

Kronos once again detects parallelism in the expression, vec-
toring the filter to process all four audio samples at once. The
machine code is shown in listing 4.

5.3. Recursive IIR Filter

The final example is more involved. The FIR filter described above
is enhanced with a feedback path, featuring unit delay and using
h[2] as the feedback coefficient. This turns the filter recursive,
eliminating any parallelism in the feedback section. Please refer
to listing 5.

5.4. Performance Comparison

A preliminary performance test was carried out by taking the re-
cursive filter, described in Listing 5, and converting it to C++ by re-
placing the Metalanguage Expression type with a native C++ float.
The resulting algorithm was compiled with Microsoft Visual Stu-
dio 2008. Optimization profile was set to maximize speed. Two
versions of the algorithm were profiled, one compiled for the stan-
dard x87 floating point unit and one compiled enabling the use of
the SSE2 instruction set, which Kronos is also using.

The code produced by Kronos ran nearly three times as fast
as the compiler optimized C++ code. Timings were obtained as a
cumulative hardware performance counter delta for 16 runs over
40000 audio samples. Execution times are displayed in table 1.

This result is encouraging, as C++ code is considered a stan-
dard of high performance. However, the findings are highly pre-
liminary. The test was limited to a single, small DSP component.
No attempt was made to improve the output of the C++ compiler
by tweaking the C++ source code or using vector intrinsics. Yet, if
Kronos is able to offer performance comparable or even superior
to natively compiled, even casually written C++ code, it should
mean a major improvement over the current state of musical pro-
gramming environments.

Table 1: Code Execution Speed Benchmarks

Compiler Execution Time
C++ FPU 0.0064s
C++ SSE2 0.0055s

Kronos 0.0021s

5.5. Future development

Various further research opportunities are present for the Kronos
compiler. Tuning, testing and benchmarking the compiler are a
high priority. Introducing multithreading, similarly transparent to
the user, is in the works. Experimenting with code generation for
Stream Processors and Graphics Processing Units is equally in-
triguing. However, the most important future development is the
integration of Kronos into PWGLSynth 2, an audio synthesis com-
ponent developed by the first author for the integrated musical pro-
gramming system PWGL. [5]

DAFX-3



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

6. CONCLUSIONS

In this paper, we presented the theoretical model of three-tiered
musical programming systems. Our emerging solution for the low-
est tier, the Kronos compiler, was examined in detail. The com-
piler facilitates very high performance execution of mathematical
expressions on general computer hardware.

In an informal, preliminary test, code generated by Kronos
was able to outperform native C++ code with a significant margin.
These findings validate the decision of pursuing a custom compiler
in the hopes of improving the performance of computer based mu-
sic DSP systems.
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9. APPENDIX: CODE LISTINGS

Listing 1: Vectored Addition described by C-code
f o r ( i n t i =0 ; i <8 ; i ++)
{

R o u t i n e . Append (
S t o r e (

Var ( a [ i ] ) + Var ( b [ i ] ) ,
c [ i ] ) ) ;

}

Listing 2: Vectored Addition: Kronos Output
; F i r s t , r e t r i e v e a[0−3] from memory

movaps xmm0, xmmword p t r ds : [ 1 2 FF20h ]
; Compute a[0−3] + b[0−3]

addps xmm0, xmmword p t r ds : [ 1 2 FEF0h ]

; S t o r e r e s u l t i n g sums i n t o c[0−3]
movaps xmmword p t r ds : [ 1 2 FEC0h ] ,xmm0

; Load a[4−7] from memory
movaps xmm0, xmmword p t r ds : [ 1 2 FF30h ]

; Compute a[4−7] + b[4−7]
addps xmm0, xmmword p t r ds : [ 1 2 FF00h ]

; S t o r e r e s u l t i n g sums i n t o c[4−7]
movaps xmmword p t r ds : [ 1 2 FED0h ] ,xmm0

Listing 3: Convolution with 2nd order FIR
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

f o r ( i n t i =0 ; i <4 ; i ++)
{

R o u t i n e . Append (
S t o r e ( x [ i ] ∗ h [ 1 ] + x [ i +1] ∗ h [ 0 ] , y [ i ] ) ) ;

}

Listing 4: FIR Filter: Kronos Output
; l o a d x[0−3]
movaps xmm0, xmmword p t r ds : [ 1 2 FF20h ]
; l o a d h [ 1 ]
movss xmm1, dword p t r ds : [ 1 2 FED4h ]
; make 4 c o p i e s o f h [ 1 ]
s h u f p s xmm1, xmm1, 0
; compute x[0−3] ∗ h [ 1 ]
mulps xmm0, xmm1
; l o a d x[1−4]
movups xmm1, xmmword p t r ds : [ 1 2 FF24h ]
; l o a d h [ 0 ]
movss xmm2, dword p t r ds : [ 1 2 FED0h ]
; make 4 c o p i e s o f h [ 0 ]
s h u f p s xmm2, xmm2, 0
; compute x[1−4] ∗ h [ 0 ]
mulps xmm1, xmm2
; compute x[0−3]∗h [ 1 ] + x[1−4]∗h [ 0 ]
addps xmm0, xmm1
; s t o r e i n t o y[0−3]
movaps xmmword p t r ds : [ 1 2 FEF0h ] ,xmm0

Listing 5: Convolution with a Recursive Filter
f o r ( i n t i =0 ; i <4 ; i ++)
{

E x p r e s s i o n y0 = x [ i ] ∗ h [ 1 ] +
x [ i +1] ∗ h [ 0 ] +
y_zm1 ∗ h [ 2 ] ;

S t o r e ( y0 , y [ i ] ) ;
y_zm1 = y0 ;

}

Listing 6: Recursive Filter: Kronos Output

; compute x[0−3] ∗ h [ 1 ]
movaps xmm0, xmmword p t r [0 x0011fcc0 ]
movss xmm1, dword p t r [0 x0011fca4 ]
s h u f p s xmm1, xmm1, 0x00
mulps xmm0, xmm1

; compute x[1−4] ∗ h [ 0 ]
movups xmm1, xmmword p t r [0 x0011fcc4 ]
movss xmm2, dword p t r [0 x0011fca0 ]
s h u f p s xmm2, xmm2, 0x00
mulps xmm1, xmm2

; sum x[0−3]∗h [ 1 ] + x[1−4]∗h [ 0 ]
addps xmm0, xmm1

; i n i t i a l i z e f e e d b a c k from memory
movss xmm1, dword p t r [0 x0011fce0 ]

; m u l t i p l y by h [ 2 ]
mulss xmm1, dword p t r [0 x0011fca8 ]

; y [ 0 ] = x [0]∗h [ 1 ] + x [1]∗h [ 0 ] + f e e b a c k∗h [ 2 ]
a d d s s xmm0, xmm1

; y [0]∗h [ 2 ]
movss xmm1, xmm0
mulss xmm1, dword p t r [0 x0011fca8 ]

; r e t r i e v e x [1]∗h [ 1 ] + x [2]∗h [ 0 ]
movaps xmm2, xmm0
s h u f p s xmm2, xmm2, 0x01

; y [ 1 ] = y [0]∗h [ 2 ] + x [1]∗h [ 1 ] + x [2]∗h [ 0 ]
a d d s s xmm1, xmm2

; y [1]∗h [ 2 ]
movss xmm2, xmm1
mulss xmm2, dword p t r [0 x0011fca8 ]

; r e t r i e v e x [2]∗h [ 1 ] + x [3]∗h [ 0 ]
movaps xmm3, xmm0
s h u f p s xmm3, xmm3, 0x02

; y [ 2 ] = y [1]∗h [ 2 ] + x [2]∗h [ 1 ] + x [3]∗h [ 0 ]
a d d s s xmm2, xmm3

; y [2]∗h [ 2 ]
movss xmm3, xmm2
mulss xmm3, dword p t r [0 x0011fca8 ]

; r e t r i e v e x [3]∗h [ 1 ] + x [4]∗h [ 0 ]
movaps xmm4, xmm0
s h u f p s xmm4, xmm4, 0x03

; y [ 3 ] = y [2]∗h [ 2 ] + x [3]∗h [ 1 ] + x [4]∗h [ 0 ]
a d d s s xmm3, xmm4

; s t o r e r e s u l t s
movss dword p t r [0 x0011fdb0 ] , xmm0
movss dword p t r [0 x0011fdb4 ] , xmm1
movss dword p t r [0 x0011fdb8 ] , xmm2
movss dword p t r [0 x0011fdbc ] , xmm3
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