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ABSTRACT

In this paper, we present a simplified model for the string-bridge
interaction in guitars or other string instruments simulated by dig-
ital waveguides. The bridge model is devised for the displacement
wave representation in order to be integrated with other models for
string interactions with the player and with other parts of the in-
strument, whose simulation and implementation is easier in this
representation. The model is based on a multiplierless scatter-
ing matrix representing the string-bridge interaction. Although not
completely physically inspired, we show that this junction is suf-
ficiently general to accommodate a variety of transfer functions
under the sole requirement of passivity and avoids integration con-
stants mismatch when the bridge is in turn modeled by a digital
waveguide. The model is completed with simple methods to in-
troduce horizontal and vertical polarizations of the string displace-
ment and sympathetic vibrations of other strings. The aim of this
paper is not to provide the most general methods for sound syn-
thesis of guitar but, rather, to point at low computational cost and
scalable solutions suitable for real-time implementations where the
synthesizer is running together with several other audio applica-
tions.

1. INTRODUCTION

Although more general frameworks, e.g. based on time domain
finite differences (TDFD) schemes [1] on non-uniform space-
time stencils have been proposed, the Digital Waveguide (DW)
paradigm [2] is appealing for the physically inspired synthesis of
musical instruments, including guitar, which is the object of this
paper. However, the basic propagating wave model based on the
ideal string model, which is implemented in the DW with simple
delay lines and pure reflections at the bridge and nut, is clearly not
sufficient. To achieve realistic synthesis the simple DW technique
must be extended to include dispersive propagation due to string
bending stiffness, accurate modeling of the bridge and the nut, as
well as usable models for the interaction of the player with the
instrument and for collisions of the string with other parts of the
instruments.

In a previous paper [3] we proposed a simple model of the
plucking action exerted by the player on the string, which is
demonstrated in the PluckSynth plugin, which can be freely down-
loaded at http://staffwww.itn.liu.se/~giaev/soundexamples.html.

New models for the collision of the string with the fretboard,
for the production of harmonics and for the imperfect clamping of
the fingers on the fretboard are proposed in a forthcoming paper
[4]. All these models were devised using displacement waves to

represent the solution. In particular, the collision model requires
continuous testing of the string displacement to detect the instants
in which the string comes in contact with the neck or other obsta-
cles. This is most efficiently performed in the displacement trav-
eling wave representation, without the need for time integration of
the solution.

Several approaches have been proposed for the accurate mod-
eling of the guitar bridge in classical or acoustic guitars [} (6} [7].
As in most models, the ultimate calibration requires accurate mea-
sures of the admittance functions of the bridge in both horizon-
tal and vertical string polarizations, together with cross-coupling
of these modes. In the measurements it is quite difficult to iso-
late the effect of the bridge from the influence of the guitar body.
The analysis is complicated by the fact that the bridge rests on
a vibrating soundboard, which is a complex mechanical system
deeply influencing the dynamics of the bridge in acoustic instru-
ments. This system is best described by modal analysis rather than
digital waveguide meshes. In electric guitars the bridge rests on
considerably more rigid supports. While the solid or partly hol-
low body still vibrates, its effect on the bridge dynamics is less
prominent.

In this paper we propose a simple approach for modeling the
influence of the bridge on the oscillations of the string based on
a multiplierless scattering matrix to model the generic interaction,
together with a transfer function modeling the termination. Al-
though our method is worked out in the displacement wave repre-
sentation of the solution, its principles can be translated to other
representations. As the general modeling task is quite overwhelm-
ing, we will confine ourselves, for the time being, to the model of
the considerably simpler bridge found in electric guitars, whether
archtop or flattop. In other words, we disregard the important de-
tails of the effect of the soundboard and radiation on the string
oscillations. We show that, in spite of its simplicity, the scattering
element preserves passivity and its use does not restrict the class
of termination transfer functions. The model is completed with
methods to introduce horizontal and vertical polarizations of the
string displacement and sympathetic vibrations from other strings.

The paper is organized as follows. In Section 2] we derive a
model for the string-bridge connection. In Section [3| we include
considerations on the simulation of horizontal and vertical string
polarization modes within the model. In Section ] we comment
on some of the results obtained. Finally, in Section[5]we draw our
conclusions.
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Figure 1: Diagram of the string-bridge geometry.

2. A MODEL FOR THE CONTACT OF THE STRING
WITH BOUNDARY SYSTEMS

In this section we derive a scattering junction suitable to model
a typical bridge of electric guitars or other contacts of the string
with the nut and the frets. While bridge modeling is usually ac-
complished by considering wave impedances and admittances of
the bridge or the nut, these are most conveniently formalized in
the velocity waves representation of the solution [7]. While it is
true that most results can be carried over to the displacement wave
representation, the results depend on integration constants. It is
well known that D’ Alembert’s solution of the wave equation in
terms of the sum of traveling waves is invariant by the addition
of opposite sign constants to the two wave variables. Especially
when the string and the bridge interaction are both modeled by
means of waveguides, arbitrary constants mismatch on both sides
can cause amplitude jumps to the wave variables. These jumps are
not revealed in the solution as they cancel out. However, when the
interaction concerns one of the two wave variables in one waveg-
uide with another one in the other waveguide, constant mismatch
can cause problems. The same is true for interactions of the string
with other parts of the instrument as the amplitude jumps travel
along the string.

Motivated by a “clean,” mismatch-free, modeling in the dis-
placement wave variables, our starting point is the inclusion of a
generic system attached to each end of the DW to represent the
contact of the string with the termination. The generic system
that we propose is described by a multiplierless scattering ma-
trix, whose entries are +1/2. Although this matrix is not strictly
derived from a specific physical model, it includes all the neces-
sary features so that, in a linear model, the transfer function of the
bridge termination regulating how the incident transversal wave is
reflected by the string-bridge junction back into the string, can be
arbitrarily adjusted or fitted to measurements, under the sole re-
quirement of passivity.

In most guitars, the string is pulled from head to tail and “sees”
the nut and the bridge as obstacles on its way. As shown in Fig. [T]
at these points the string is slightly bent toward the body. Since the
vertical component of the static tension of the string is increased by
bending, it holds the string pressed against the bridge and the nut.
A similar bending occurs when a finger presses the string against
the fretboard in the proximity of a fret. A detail of the bridge and
the tailpiece in a semiacoustic guitar is shown in Fig. [2] The active
portion of the string spanning from bridge to nut or fret is free to
vibrate. The passive part of the string spanning from bridge to tail
piece is strongly damped, although in some guitars a fairly long
portion (= 10 cm) of the string lying between the string and the
tailpiece is only moderately damped.

Figure 2: The bridge and tailpiece in a Gibson ES335 semiacoustic
guitar.
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Figure 3: Overview of the digital waveguide layout.
2.1. Digital Waveguides and Exceptional Points
For a flexible string in a linear regime, the wave equation
Pu 1 0%u i
9z~ 2 o2’ M

where u = u(z,t) denotes the deformation of the string with re-
spect to the equilibrium position holds everywhere, except at spe-
cial points, which include the terminations and the segment where
the player plucks the string. In , ¢ = /Ko/p is the propa-
gation velocity,  is the linear mass density of the string and Ko
is the string tension that is assumed to be constant. D’ Alembert’s
solution of (T)) can be written in form as the sum

u(z,t) =u (z,t) +ut(z,1) )

where v ™ (z,t) = fi(t + z/c) is a regressive (left going) propa-
gating wave and u™ (z,t) = f.(t — z/c) is a progressive (right
going) propagating wave.

Wave propagation is simulated in a DW by space-time sam-
pling the solution u(z, t). Given a temporal sampling interval T’
the spatial sampling interval is chosen as X = ¢T', which simpli-
fies the form of the discrete traveling wave solution. This allows
us to compute propagation in terms of two delay lines consisting
of chains of elementary delays, constituting the two rails of a DW.
At any given location, the deformation of the string is computed
as the sum of the contents of the upper and lower rails. The com-
plete scheme of a DW including exceptional points, such as the
nut or fret, the bridge and the plucking zone is shown in Fig. [3]
Rather than modeling the exceptional points of the string as fixed
boundary conditions, e.g. enforcing null deformation or null ve-
locity on the string only, we model the string as being connected
to dynamical systems, as is common practice in accurate DW syn-
thesis. The exceptional points are modeled by means of junctions
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Figure 4: Diagram of the digital waveguide connected to the
bridge via a two-port junction.

consisting of two-port elements (two inputs - two outputs). These
elements characterize the change in the propagating waves due to
the interaction occurring at the special points.

One of these systems represents the bridge and is located at
x = L, where L is the length of the active portion of the string
spanning from the nut (or fret if a finger is pressing the string on
the fretboard) and the bridge. For simplicity, the length of the
string L is assumed to be an integer multiple /V of the spatial sam-
pling interval: L = N X. Tuning the discrete model of the string
also requires the use of additional fractional delays, which we will
disregard in these preliminary considerations.

Another system represents the nut or the finger-fret coupling
and is located at x = 0. Both nut/fret and bridge two-ports are
terminated and the characteristics of the terminating element will
ultimately influence the frequency dependent decay of the string
sound. Terminations are implemented as linear time-invariant fil-
ters.

The third junction represents the plucking interaction for
which a model was presented in [3[], which allows for modeling
the player’s touch in the string excitation by means of a damped
spring-mass system subject to external force.

Since the two systems modeling the bridge and the nut/finger
are structurally similar, we will detail only the one representing the
bridge in the following sections.

2.2. The Bridge Junction

At the bridge termination, a short but finite segment of the string
is in contact with the bridge. All the static forces are assumed to
balance each other and do not intervene in our discussion which
concerns displacement with respect to the equilibrium position of
the string. The interaction of the string with the bridge is modeled
by the two-port block shown in Fig. [ where the bridge system
specifies the bridge termination of Fig. [3]

The incident traveling wave from the string continues to
“travel” in the bridge and is partly reflected back into the string,
possibly altered by multipath delay and frequency dependent
damping. The way in which the vertical displacement of the string
travels into the bridge can be described by the longitudinal com-
pression of a bar, but it should also include all the other elastic
elements in the chain from bridge to mounting screws and sup-
port. Since the string is usually snapped into a small notch, for the
horizontal displacement, i.e. parallel to the soundboard, bending
vibrations of the bridge can arise.

A similar type of mechanical interaction as that occurring at
the bridge is also valid for modeling the response of the string at
the nut and for modeling the imperfect finger-fret clamping of the

string. The important point is that the model of the interaction
of the string with the bridge or other element can be split into two
components: a generic scattering element and the equivalent trans-
fer function of the termination.

In the velocity wave representation of the solution for an ana-
log waveguide, a model of the bridge termination can be given in
terms of forces, velocities and driving-point impedances. In a sim-
ple model, the bridge and the two portions of the string share the
same velocity:

Vo(s) = Va(s) = Vp(s) 3)

where V,(s), Va(s) and V,(s) respectively are the Laplace trans-
forms of the velocities of the bridge, the active portion and the
passive portion of the string at the string-bridge junction. The con-
stant wave impedance Ro = /Ko links both V,(s) and Vj,(s) to
the corresponding force F,, = RoVa(s) and F,, = RoVj(s), while
the complex, frequency dependent bridge impedance Ry (s) links
the bridge force Fy to bridge velocity: F, = Rp(s)Vs(s). Using
the fact that the passive portion of the string is heavily damped at
the tailpiece termination, one can assume that the corresponding
velocity component V},(s)* incident on the bridge is 0. In other
words, one can treat the passive string segment as a transmission
line terminated on its characteristic impedance.

Enforcing the equilibrium equation (the sum of the forces at
the junction is 0) and using the methods in [8]], one can easily
derive the following reflectance, i.e. the transfer function for the
overall bridge junction from V,;" to V" :

Vi (s) -1

) = Vr ) T T 2R /R

@

where the convention is that the + superscript denotes velocity
waves incident on the bridge junction and the — superscript de-
notes velocity waves leaving the bridge junction.

In order to guarantee stability to the analog waveguide model-
ing the active portion of the string one must require that Hy(s) is
the transfer function of a passive system, i.e.

|Hy(jw)| < 1. ®)

It can be shown that this is equivalent to requiring that R,(s) is a
positive-real function, i.e. R(s) is real for s real and ¢ [Ry(s)] >
0 whenever s > 0, where R denotes real part.

In order to adapt the analog description to a DW one must map
Hy(s) into the transfer function of a discrete-time filter, which can
be achieved by means of the bilinear transform. In order to trans-
late (@) into a form useful for displacement waves, one can mul-
tiply and divide both sides of the equation by s. In fact, in the
Laplace transform, velocity wave variables are related to displace-
ment variables as follows:

+
Ké9+C:Uﬂg (©6)

Letu (t) and u;r (t) respectively denote the inverse Laplace trans-
forms of U, (s) and U, (s). In the diagram in Fig. the quantities
U, and u;; are discrete-time wave variables, respectively, corre-
sponding to the displacement wave u, (¢), leaving the bridge in
the analog model, and to u; (t) entering the bridge. However, the
additive constant C' is arbitrary and the choice of the proper con-
stant for the wave variables at the interface of two waveguides is
non-trivial. In the next section we are going to introduce an in-
termediate “artificial” junction connecting the active portion of the
string string to the bridge termination.
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2.3. Multiplierless Scattering Junction

Suppose that the string and the bridge are each modeled by means
of a different waveguide in the displacement wave representation.
These two waveguides are connected at the string-bridge junction,
whose behavior can be described by a constant 2 X 2 scattering
matrix Sy, linking the input to the output signals:

{ tgue(m) } s, { g (m) ] %)

Ugye (M) ug, (m)

The task of modeling the frequency dependent response of the
string-bridge connection is delegated to the response of the waveg-
uides. The inputs uj, (m) and u], (m) to the junction are het-
erogeneous wave variables each pertaining to one waveguide and
driven by the external force, velocity or displacement signals.
Since the string and the bridge are in continuous contact with each
other, the total displacements on each side of the junction must be
identical. This gives us the condition:

Ut (M) + ud, (m) = ug, (m) + udy,(m). (8)

Since it is immaterial if the string waveguide is on the left or on
the right of the bridge junction, which happens, for example if the
roles of the nut and the bridge are reversed, the scattering matrix
should also be covariant by flipping. In other words, the changes
w2 w;, and u},, = u, should leave the result unchanged.
It is easy to see that (8) and the requirement that the matrix is sym-
metric are equivalent to this condition. The most general matrix

satisfying these requirements has the form

Sb:|: o 04—1}7 ©)

a—1 o

where « is an arbitrary constant. We remark that for « = 1 we
have the identity matrix, typical of a perfectly adapted connection
without reflection (as for contiguous string segments with equal
wave impedance). Moreover, for & = 0 the junction corresponds
to two completely disconnected waveguides, each reflecting waves
into itself as a result of rigid termination. For o = 1/2 we have

1141 -1
which provides a singular scattering matrix. In this case
1 1
Ugut (M) = Stuin (M) = Suiy (m)
2 2
1D
+ - 1+
uout(m) = —5Wn (m) + 7uin(m)7
2 2
and the equation
Ut (M) = —tug, (M) (12)

is satisfied. This is an important property which says that the dis-
placement wave signal transmitted to the bridge equals that re-
flected into the string with the sign reversed. This allows for vari-
ations of the displacement due to contact to originate from two
signals adding to zero at the junction and traveling along the two
waveguides.

To each of the wave signals one could add an arbitrary constant
without changing the total displacement at any point, provided that
an equal amount is subtracted from the other wave variable travel-
ing on the opposite rail of each waveguide. The additive constants

an -
N

u; (m) () )

Figure 5: Diagram of the scattering junction for the string-bridge
connection.

could differ in each waveguide. However, by virtue of (I2), any
constant mismatch is transmitted to the opposite rail of the other
waveguide. Notice that (IT)) can be rewritten as follows:

Uiy (M) + ugy, (m)
2

uly (m) 4+ u, (m) = M7

Ugur (M) + 1, (m) =
(13)

which shows that the total displacements on both sides of the junc-
tion equal the average of the displacement waves incident on the
junction from the string and the bridge reaction.

The diagram of the scattering junction connecting the active
portion of the string with the bridge is shown in Fig. [5] The junc-
tion is multiplierless. Moreover, the four multiplications by 1/2
(implementable as right-shift and complement operation in finite
arithmetic) can be factored out to the two outputs.

Notice that with open right terminals (u),, and u;, not con-
nected) only one half of the incoming wave u; is reflected to-

ward wu,,. However, also notice that if uj, = —ul,, then
u,,; = —u; and perfect reflection is realized when the bridge

is a rigid termination.

2.4. Transfer Function

Since the scattering matrix of the bridge junction is constant, the
z-transform version of (/) can be written as follows:

{g;tgg] =5 {g% Eiﬂ : (14)

As shown in Fig. [3|the bridge acts as a termination to the bridge
junction, whose behavior can be specified by a transfer function
G(z) relating U\, to U;, . In order to compute the overall string-
bridge contact transfer function from U, to U,,,, one needs to

out>
determine the matrix Sy, such that

)] =[],

The matrix Sp, is readily found by solving for UJL and U,
yielding

-0 5 6
Hence,
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Thus, the displacement wave reflectance, i.e. the overall trans-
fer function Hy(2) of the string-bridge connection from U;! (2) to
Ut 18
U,.:(2) -1
Hy(z) = —2ut = .
&= Ti ) T TR

mn

18)

The string-bridge interaction is fully specified once the termination
transfer function G(z) is specified.

The transfer function Hy(z) is very similar to that derived in
@ for the analog velocity wave case using physical arguments.
The main difference is that Hy(z) is passive provided that G(z) is
passive, i.e., if |G(e’)| < 1, while Hy(s) is passive if Ry (s) is
positive real.

It must be pointed out that when the bridge is actually simu-
lated by means of the given scattering plus termination, the ter-
mination transfer function G(z) must either contain a delay or
delay-free loops must be carefully handled as discussed in [9} 10].
Clearly, the process can be simplified by just implementing the
transfer function (T8) rather than the scattering matrix plus termi-
nation but, in this case, the system becomes less modular.

In turn, the transfer function G(z) can be obtained by a digital
waveguide model for the bridge. For example, one can consider a
model inspired by the transverse, longitudinal or torsional vibra-
tions of a bar, with different coupling modalities for the vertical
and horizontal polarizations modes. In the transverse vibration
case, dispersive behavior is observed where propagation delay is
frequency dependent. Thus, in first approximation, G(z) can be
given as follows:

G(z) = —dA(z) (19)

where 0 < d < 1 is an overall damping factor and A(z) is a
suitable allpass filter modeling dispersive propagation. Moreover,
the damping factor can be made frequency dependent, according
to the reflectance of the bridge model at the bridge-body contact
termination.

Alternately, the transfer function G(z) can be estimated from
measures of the bridge admittance I'(jw), which allows us to
model a specific guitar. In [11] a passive parallel filter structure is
developed for the direct modeling of the positive-real admittance.
In our case, at least two different alternatives are available to model
Hy(z) via G(z). In a first approach one can write G(z) = A(z)
where A(z) is a real allpass transfer function. The allpass is
formed by a number of second order allpass sections, each con-
taining two complex conjugated first order sections, whose poles
can be optimized in order to match the reflectance, in a design
similar to the one proposed in [12]].

The discrete counterpart of the reflectance is given by the z-
transform r r)

0 — V4
S = 53Tk

where I'(z) is obtained from I'(s) by either spectrum invariance or
bilinear transform and I'o = 1/Ro = 1/4/Kopu is the (constant)
admittance of the guitar string. In guitars the reflectance function
is in itself passive and almost allpass, as shown in Fig. |§l The
rationale is that the magnitude frequency response |Hp(e’*)| is
maximum and equal to 1 where A(e’*) = —1, i.e. at phase =,
and minimum and equal to 1/3, i.e. roughly 9.5 dB down, where
A(e*) = 1. Moreover, the radius of the pole of the allpass fil-
ter A(z) influences the bandwidth of the peaks of |Hp|. This is
illustrated in Figs. [7] and [8] where the magnitude frequency re-
sponse of the filter Hy(z) is shown for various values of the angle
and radii of the complex conjugate poles of a second order allpass

(20)
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Figure 6: Typical guitar bridge reflectance derived from admit-
tance data.
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Figure 7: Magnitude frequency response H, = —1/(2 + A) for
various angles 6 of the poles of the second order allpass filter A
(from 0 = £7/10 to § = £97/10), while keeping constant pole
radius p = 0.9.

filter. The results for angles different from 7/2 are less symmet-
ric, but are subject to similar interpretations. Moreover, the allpass
is defined up to a leading sign. Changing the sign transforms the
peaks in notches, useful in modeling reflectance curves.

In a higher order allpass design, the peaks at various frequency
locations are superposed, as controlled by the angles and radius
of the poles, as shown in the example of Fig. [0] The position
of the poles can be optimized by using the Nelder-Mead simplex
method with Lo norm for the error (difference between synthetic
and measured reflectance). However, in our experiments we ob-
served a tendency to instability of this method as the number of
allpass poles grows.

In an alternate and more stable design method, the transfer
function G(z) in is expressed in terms of the reflectance de-
rived from bridge admittance data as in 20):

1 _31—‘71—‘0
S(2) C To-T°

2D

In this case, ARMA filter design can be achieved, which pro-
vides highly accurate minimum phase modeling of G(z) and hence
Hy(z) from the admittance data, as shown in Fig. [10] While pas-
sivity is not guaranteed in this form, there is usually a margin (re-
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Magnitude (dB)
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Figure 8: Magnitude frequency response Hy, = —1/(2 + A) for
various pole radii p of the poles of the second order allpass filter
A (from p = 0.110 p = 0.9), while keeping constant phase 7 /2.

Magnitude (dB)

| | | |
0 0.1 02 03 04 05
Normalized Frequency (x 7 rad/sample)

Figure 9: Magnitude frequency response H, = —1/(2 + A) for
order 12 allpass filter A with poles at various angles and radii.

flectance curve slightly less than 1) so that the resulting filter turns
out to be passive.

Besides the bridge model filter, the complete waveguide simu-
lation also requires filters modeling frequency dependent air damp-
ing of the strings, which are typically lowpass.

In concluding this section, we remark that while the accurate
model of the bridge admittance requires a higher order filter, the
simple scheme modeling the reflectance as H, = —1/(2 — dA),
where A is a low order allpass filter and d is a damping factor
close to 1 provides quite realistic sounds at very low computational
cost. Since the order 2 allpass filter maps twice the unit circle
onto itself, the passbands of the filter are two in the notch filter
configuration. In order to eliminate this effect, one can allow the
damping factor d to be low-pass frequency dependent, which can
be thought of as the loop filter of the waveguide simulating the
bridge. Moreover, the damping factor d can be made frequency
dependent and designed as a zero phase filter such that the overall
frequency response matches the measured amplitudes of the peaks
in the reflectance. This simplified design provides a good and low-
cost alternative to the classical average filter in the Karplus-Strong
scheme, which depends on a few adjustable parameters.

0 0.05 0.1 0.15 0.2 0.25
Normalized Frequency (x 1 rad/sample)

Figure 10: Measured reflectance (dotted line) and magnitude fre-
quency response of order 79 ARMA model (solid line) for bridge
filter Hy, in the lower (1/4) frequency range.

3. POLARIZATION AND SYMPATHETIC VIBRATIONS

Polarization of strings and the sympathetic vibrations of the other
strings connected to the active string through the bridge are neces-
sary ingredients for accurate guitar synthesis. These extensions we
present are not novel (they can be found, e.g., in [2}15}16]), but they
are implemented in the simplified bridge model in order to add to
the realism of the generated sounds and to make the model com-
plete. In the simplest case, the bridge is modeled by the following
second order reflectance filter:

_ —142Rbz"t — |b]222
T2 —db|2 —2(2 — d)Rbz—! + (2]b]2 — d)z—2

Hy (22)

where d is an overall damping factor, b is a complex number with
|b] < 1 and b denotes the real part of b. Two filters, one for each
polarization mode are implemented, which differ by the numerical
values of the parameters b and d.

3.1. Polarization

The transverse vibrations of the string are two dimensional, con-
tained in a plane orthogonal to the string’s rest direction. In order
to represent this, we decompose the motion into the vertical and
horizontal components [[7 15 |6]. In the model we implemented,
each string is represented by two waveguides of the type shown in
Fig.3] The two components interact with each other at exceptional
points along the string.

First, at the bridge, the coupling of the two components im-
plies transmission of energy between the horizontal and vertical
components, making the string effectively rotate around its rest
position. The angle 6 is generally small and frequency dependent.
A general coupling relation is developed in [7]:

A-Fef) mell] e

H hh (Z ) Up
where u, and u}, respectively are the updated vertical and horizon-
tal displacement waves at the bridge computed from u, and us,
the incoming vertical and horizontal displacement waves. H,x(z)
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and H,p(z) are cross-coupling and H,(2) and Hpp(2) are self-
coupling transfer functions.
A simplified coupling relation is given by the rotation relation:

u, cosf —sinf] [u,

[uﬁj - [sin 6 cosf } [uh} 24
which can be used in implementations with low computational
cost, where the angle 6 is independent of frequency.

Second, the bridge has a different effect on each component
due to its material and geometry. As such, the filter applied will
have different characteristics for each component. The horizontal
polarization mode uses a different allpass in the reflectance filter
Hy(z) in (18) and than that of the vertical polarization mode,
corresponding to different decay rates. The different group delays
of the reflectance filters also introduce a slight detuning of the two
components which gives the guitar note its characteristic ampli-
tude modulation.

In our experiments with the simplified second order re-

flectances (22)), we found that reference values yielding acousti-
227

cally satisfactory results for the pole position b are b, = 0.7¢*7 3
for the vertical component bridge filter, and b, = 0.3e™7 % for the
horizontal bridge filter.

Third, the attack angle is also taken into account at the pluck-
ing position. That means that the vertical projection of the attack
stimulus is applied to the vertical component of the string, and
identically the horizontal projection of the attack is applied to the
horizontal component of the string.

3.2. Sympathetic vibrations

For even more realistic sound, sympathetic vibrations can be added
to the model. Sympathetic vibrations are the vibration of the
strings the player has no interaction with that are due to the trans-
mission of energy through the bridge from the plucked string to
the other strings.

In order to model this energy transfer, we use a coupling ma-
trix as defined in [3} [13]. Considering that the gains of the trans-
fered signals are symmetric, i.e. that the gain of the coupling from
a to b is the same as from b to a, the bridge will couple IV strings
as follows:

Uy = ChoUn + HyU, (25)
and
Un = ConUy + HrnUn (26)
where
Uy = (Up1, U2, - - - ,qu)T
Un = (un1, un2, - - - ,uhN)T
and Ch,, and C,, are of the form
c11 ... CIN
27
CN1 ... CNN

The constants cg., correspond to the gain of the horizontal
component of the kth string that is transmitted to the vertical com-
ponent of the mth string.

An example of synthetically generated sympathetic vibrations
is shown in Fig. [T1] where the spectrogram of the vibration of the
other simulated strings due to the played 5-th string is reproduced.

Frequency (Hz)

0 0.5 1 1.5 2 25 3
Time (sec.)

Figure 11: Spectrogram of the sympathetic vibrations of other
strings (waveguides) when plucking the synthetic open 5th string.

4. RESULTS

The results produced with the use of the proposed bridge model
are quite realistic even in the simple second order approximation
of the bridge reflectance. The model we propose, by applying well
chosen frequency dependent damping adds much naturalness to
the sound. The frequency dependent decays of the partials can be
changed by means of the poles of the allpass filter in (T9) such as
in for example.

Figs. [12] and [T3] show the spectrograms of 3 second sounds
generated, respectively, with the Karplus-Strong model and with
our model. We can see that the frequency-dependent decay in Fig.
[[3]is much closer to the one of a real guitar, in that higher frequen-
cies disappear much quicker. This can be evaluated by means of
the T30 decay time, which is the time in which a given frequency
component decays by 30 dB with respect to the initial amplitude.
Fig. [[4] shows the T30 decay times of the first 10 harmonics of
the synthetic sounds generated with different poles for the bridge
transfer function (thin lines) compared to the T30 decay times of
the 10 first harmonics of a real guitar note (thick line). Even if not
identical, the T30 plots show that the synthetic and real curves fol-
low the same trend. By implementing higher order filters (more
poles) the decays of the synthetic harmonics can reach a good
match with specific guitar sounds through parameter optimization.

Sound examples are available at:
http://staffwww.itn.liu.se/~giaev/soundexamples.html.

5. CONCLUSION

Driven by the need for low computational cost, possibly scalable
solutions, in this paper we provided a simplified model for the
string-bridge interaction in the displacement wave variables. The
model is part of the design of an evolving plugin for the synthesis
of guitar introduced in [3]]. The model of interaction is based on a
simple multiplierless scattering junction (T0), completed by a pas-
sive bridge termination transfer function G(z), together forming
the bridge reflectance filter (T8). Extensions of the model include
string polarization and sympathetic vibrations briefly discussed in
Section 3] The model provides realistic sounds with simple de-
sign. Moreover, the scalable design of higher order filters match-
ing prescribed or measured bridge termination characteristics and
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Frequency (Hz)

05 1 15 2 25
Time

Figure 12: Spectrogram of a guitar note generated with the
Karplus-Strong bridge model.

Frequency (Hz)

Figure 13: Spectrogram of a guitar note generated with the pre-
sented bridge model.

the modeling of the bridge transfer by means of a digital waveg-
uide or waveguide mesh are possible.
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