
Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

SIMPL: A PYTHON LIBRARY FOR SINUSOIDAL MODELLING

John Glover, Victor Lazzarini, Joseph Timoney

The Sound and Digital Music Research Group
National University of Ireland, Maynooth

Ireland

John.C.Glover@nuim.ie
Victor.Lazzarini@nuim.ie

JTimoney@cs.nuim.ie

ABSTRACT

This paper introduces Simpl, a new open source library for sinus-
oidal modelling written in Python. The library is presented as a
resource for researchers in spectral signal processing, who might
like to access existing methods and techniques. The text provides
an overview of the design of the library, describing its data ab-
stractions and integration with other systems. This is complemen-
ted by some brief examples exploring the functionality of the lib-
rary.

1.INTRODUCTION

Simpl is an open source library for sinusoidal modelling [1] writ-
ten in the Python programming language [2] and making use of
Scientific Python (SciPy) [3]. The aim of this project is to tie to-
gether many of the existing sinusoidal modelling implementa-
tions into a single unified system with a consistent API, as well
as providing implementations of some recently published sinus-
oidal modelling algorithms, many of which have yet to be re-
leased in software.
 Simpl is primarily intended as a tool for other researchers in
the field, allowing them to easily combine, compare and contrast
many of the published analysis/synthesis algorithms. There are
currently several open source software projects that either in-
clude or are dedicated solely to sinusoidal modelling such as
PARSHL [4], the Sound Object Library [5], Csound [6], Loris
[7], CLAM [8], libsms [9] and SAS [10]. All of these systems ex-
ist as separate entities, and due to their internal workings it can
often be awkward to exchange analysis data between them for
comparison. However, they generally share common ideas, ter-
minology and abstractions (such as the concepts of spectral peaks
and partial tracking). Simpl allows these abstract data types to be
exchanged between different underlying implementations. For
example, one might wish to compare the sinusoidal peaks detec-
ted with the SMS algorithm with those found by the Loris imple-
mentation. Due to the flexible, modular design of Simpl this sort
of operation is straight-forward. Simpl analysis/synthesis is able
to render audio files in non-real-time as well as operate in real-
time streaming mode, as long as the underlying algorithms are
able to do so.

1.1.Sinusoidal Modelling

Sinusoidal modelling is based on Fourier's theorem, which states

that any periodic waveform can be modelled as the sum of sinus-
oids at various amplitudes and harmonic frequencies. For station-
ary pseudo-periodic sounds, these amplitudes and frequencies
evolve slowly with time. They can be used as parameters to con-
trol pseudo-sinusoidal oscillators, commonly referred to as
partials. The audio signal s can be calculated from the sum of the
partials using:

s t =∑
1

N p

A p t cos p t  (1)

p t =p 02∫
0

t

f p udu (2)

where Np is the number of partials and Ap, fp and ϴp are the
amplitude, frequency and phase of the p-th partial respectively.
Typically, the parameters are measured for every:

 t=nH /F s (3)

where n is the sample number, H is the hop size and Fs is the
sampling rate. To calculate the audio signal, the parameters must
then be interpolated between measurements. Calculating these
parameters for each frame is referred to in this document as peak
detection, while the process of connecting these peaks between
frames is called partial tracking.
 In [11] McAulay and Quatieri proposed to represent a speech
signal as a sum of sinusoids with time-varying amplitude, fre-
quency and phase. While it is possible to model noisy signals
with sinusoids, it is not very efficient, as large numbers of par-
tials are often required. It is also not particularly meaningful, and
does not seek to represent the underlying structure of the sound.
 Serra and Smith extended this idea in [12], making a distinc-
tion between the pseudo-periodic or deterministic component of
a sound and the more noise-like or stochastic component, model-
ling and synthesising the two components separately. Fitz and
Haken keep this distinction in [13], but use bandwidth-enhanced
oscillators to create a homogeneous additive sound model.
 Later advances and refinements in the field have mostly been
in the details of the analysis algorithms, in particular in the peak
detection and partial tracking processes. A good overview of
peak detection techniques can be found in [14]. In [15] Depalle

DAFX-1

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

and Rodet use the Hidden Markov Model to improve partial
tracking, while in [16] Lagrange et al achieve this using Linear
Prediction.

1.2.SciPy

SciPy is a cross-platform, open source software package for
mathematics, science and engineering. It depends on NumPy
[17], which provides fast array processing. It has a syntax that is
very similar to Matlab [18], with implementations of many of
Matlab's functions: it contains packages for matrix manipulation,
statistics, linear algebra as well as signal processing. SciPy also
supports Matlab-style plotting and visualisation of data through
the Matplotlib [19] language extension. The vast library of func-
tions combined with the readability and power of the Python lan-
guage make SciPy a great tool for quick prototyping as well as
for the development of larger applications.

2.THE SIMPL LIBRARY

Simpl is an object-orientated Python library for sinusoidal mod-
elling. Spectral data is represented by two main object types:
Peak (represents a spectral peak) and Partial. A Partial is basic-
ally just an ordered collection of Peak objects.
 Simpl includes a module with plotting functions that use Mat-
plotlib to plot analysis data from the peak detection and partial
tracking analysis phases, but generating additional plots is trivial
using Matplotlib's Matlab-like interface.
 All audio in Simpl is stored in NumPy arrays. This means that
SciPy functions can be used for basic tasks such as reading and
writing audio files, as well as more complex procedures such as
performing additional processing, analysis or visualisation of the
data.
 Each supported analysis/synthesis method has associated
wrapper objects that allows it to be used with Simpl Peak and
Partial data, which facilitates the exchange of information
between what were originally unrelated sinusoidal modelling sys-
tems. The implementations that are currently supported are the
Sound Object Library, Spectral Modelling Synthesis (SMS, using
libsms) and Loris. Additionally, the following algorithms are in-
cluded: McAulay-Quatieri (MQ) analysis and synthesis as given
in [11], partial tracking using the Hidden Markov Model (HMM)
as detailed in [15] and partial tracking using Linear Prediction
(LP) as detailed in [16].
 Currently in Simpl the sinusoidal modelling process is broken
down into three distinct steps: peak detection, partial tracking
and sound synthesis. Python objects exist for each step, which all
of the analysis/synthesis wrapper objects derive from. Each ob-
ject has a method for real-time interaction as well as non-real-
time or batch mode processing, as long as these modes are sup-
ported by the underlying algorithm. For any given step, every
analysis/synthesis object returns data in the same format, irre-
spective of its underlying implementation. This allows
analysis/synthesis networks to be created in which the algorithm
that is used for a particular step can be changed without effecting
the rest of the network. The process is summarised in figure 1.

Figure 1: Simpl analysis-synthesis process

2.1.Peak Detection

PeakDetection objects take a NumPy array of audio samples as
input. This can be just a single frame of audio, or a longer signal
of arbitrary length that will be cut up into frames for further pro-
cessing internally and zero padded if necessary. For each frame,
spectral peaks are calculated. If the input was a single audio
frame, then a single list of Peak objects is returned. If it was a
longer signal, a separate list of Peaks is returned for each audio
frame.

2.2.Partial Tracking

The input to PartialTracking objects is either a list of Peaks or an
arbitrary number of lists of Peaks. This information is used by
the partial tracking algorithm to form Partial objects, which are
ordered lists of Peaks. The return value is always a list of Par-
tials.

2.3.Sound Synthesis

SoundSynthesis objects take a list of Partials and a NumPy array
of audio samples (the original signal) as input. They use this data
in various ways depending on the synthesis algorithm, but the
general process is to use the Partial data to synthesise the har-
monic (deterministic) sound component, then subtract this from
the original signal in order to obtain the residual (stochastic)
component. All derived objects can return a fully synthesised sig-
nal, as well as these two components in isolation if supported.
For example, the MQ algorithm does not make this distinction

DAFX-2

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

and between components and so the MQSoundSynthesis object
returns a synthesised signal based only on the Partial data. SMS-
SoundSynthesis on the other hand can return all three signal
types. Audio signals are returned as NumPy arrays.

3.EXAMPLES

In this section we will present three examples, demonstrating the
system. The first deals with the basic manipulation of audio data
using SciPy. The next two provide examples of the Simpl library
proper for two basic tasks of analysis-synthesis and spectral dis-
play.

3.1 Using SciPy

The following example shows how SciPy can be used to read in
an audio file called piano.wav and plot it using Matplotlib. The
resulting plot is displayed in figure 2.

from scipy.io.wavfile import read
from pylab import plot, xlabel, ylabel, \
 title, show

input_data = read('piano.wav')

store samples as floats between -1 and 1
audio_samples = input_data[1] / 32768.0

plot the first 4096 samples
plot(audio_samples[0:4096])
ylabel('Amplitude')
xlabel('Time (samples)')
title('piano.wav')
show()

Figure 2: Resulting waveform plot

3.2.Using Simpl

This data can now be passed directly to the Simpl analysis ob-
jects. In the following example, peak detection is performed us-
ing the Sound Object Library, followed by partial tracking from
the MQ algorithm before finally the sound is resynthesised using
SMS. All operations are performed in non-real-time.

from scipy.io.wavfile import read
from scipy import asarray, float32
from SimplSndObj import SndObjPeakDetection
from SimplMQ import MQPartialTracking
from SimplSMS import SMSSynthesis
input_data = read('piano.wav')
store audio samples as 32-bit floats,
with values between -1 and 1
audio_samples = asarray(input_data[1], \
 float32) / 32768.0

This detects peaks using the SndObj lib
and stores them in a numpy array
pd = SndObjPeakDetection()
peaks = pd.find_peaks(audio_samples)

Here we have partial tracking using
McAulay-Quatieri method
pt = MQPartialTracking()
partials = pt.find_partials(peaks)

finally we synthesise the audio
using SMS
synth = SMSSynthesis()
our detected partials will be used to
form the harmonic component, and the
original audio signal will be used when
calculating the residual
audio_out = synth.synth(partials, \
 audio_samples)

3.3 Simpl Data Visualisation

Partial tracking data can be displayed using the Simpl plot-
ting module. The plot produced by this example is shown
in figure 3.

from scipy.io.wavfile import read
from scipy import asarray, float32
from SimplSndObj import SndObjPeakDetection
from SimplMQ import MQPartialTracking
from SimplPlots import plot_partials

read audio data
input_data = read('piano.wav')
audio_samples = asarray(input_data[1], \
 float32) / 32768.0

detect up to a maximum of 20 peaks. If
there are more, the 20 with the largest
amplitudes will be selected
pd = SndObjPeakDetection()
pd.max_peaks = 20
peaks = pd.find_peaks(audio_samples)

track peaks
pt = MQPartialTracking()
partials = pt.find_partials(peaks)
display them
plot_partials(partials)
show()

DAFX-3

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

Figure 3: Plot of partial data. Circles represent peaks, lines
show the resulting partials. Some extra peaks were created
by the MQ partial tracking algorithm, for partial 'birth' and

'death'.

4. FUTURE WORK

More visualisation functions will be added to the library. In par-
ticular, we want to add the ability to display data during real-
time analysis. The current plotting functions are not efficient
enough to achieve this. It is expected that more analysis/synthesis
algorithms will be added to the library, adapted from the many
published papers in the field. We would also like to add the abil-
ity to control algorithm parameters in real-time using OpenSound
Control [20]. Developers are encouraged to contribute to the pro-
ject, and can contact the authors via email.

5.CONCLUSION

Simpl provides a new environment for developing sinusoidal
modelling applications, unifying several of the existing solutions
in addition to implementing some of the most important advances
in the field. Together with the flexibility of Python and the ex-
tensive range of SciPy functions, Simpl should be a valuable tool
for other researchers and developers.
 Simpl is free software, available under the terms of the GNU
GPL. To download it or for more information go to:
http://simplsound.sourceforge.net

6.ACKNOWLEDGEMENTS

The authors would like to acknowledge the generous support of
An Foras Feasa, who funded this research.

7.REFERENCES

[1] X. Amatriain, J. Bonada, A. Loscos, X. Serra, "DAFX - Di-
gital Audio Effects", chapter Spectral Processing, pp 373-
438, Udo Zölzer Ed, John Wiley & Sons, Chichester, UK,
2002.

[2] G. Van Rossum, F. Drake, "The Python Language Reference
Manual", Network Theory, Bristol, UK, 2006.

[3] E. Jones, T. Oliphant, P. Peterson and others, "SciPy: Open
Source Scientific Tools for Python", http://www.scipy.org,
accessed April 6, 2009.

[4] J. Smith, X. Serra, "PARSHL: An Analysis/Synthesis Pro-
gram for Non-Harmonic Sounds Based on a Sinusoidal Rep-
resentation." Proceedings of the International Computer
Music Conference (ICMC), San Francisco, USA, 1987.

[5] V. Lazzarini, "The Sound Object Library", Organised Sound
5 (1), pp 35-49, Cambridge University Press, Cambridge,
UK, 2000.

[6] J. Ffitch, "On the Design of Csound5", Proceedings of the
3rd Linux Audio Conference (LAC), pp. 37-42, ZKM,
Karlsruhe, Germany, 2005.

[7] K. Fitz, L. Haken, S. Lefvert, M. O'Donnel, "Sound Morph-
ing using Loris and the Reassigned Bandwdith-Enhanced
Additive Sound Model: Practice and Applications", Pro-
ceedings of the International Computer Music Conference,
Gotenborg, Sweden, 2002.

[8] X . Amatriain, P. Arumi, D. Garcia,"CLAM: A Framework
for Efficient and Rapid Development of Cross-platform Au-
dio Applications", Proceedings of ACM Multimedia, Santa
Barbara, California, USA, 2006.

[9] R. Eakin, X. Serra, "libsms Library for Spectral Modeling
Synthesis" http://www.mtg.upf.edu/static/libsms/, accessed
April 06, 2009.

[10] M. Desainte-Catherine, S. Marchand, "Structured Additive
Synthesis: Towards a Model of Sound Timbre and Elec-
troacoustic Music Forms", Proceedings of the International
Computer Music Conference (ICMC), pp. 260-263, Beijing,
China, 1999.

[11] R. McAulay, T. Quatieri, "Speech Analysis/Synthesis Based
on a Sinusoidal Representation", IEEE Transaction on
Acoustics, Speech and Signal Processing, vol. 34, no. 4, pp.
744–754, 1986.

[12] X. Serra, J. Smith, "Spectral Modeling Synthesis A Sound
Analysis/Synthesis Based on a Deterministic plus Stochastic
Decomposition", Computer Music Journal, Vol. 14, No. 4
(Winter), 12-24, 1990.

[13] K. Fitz, "The Reassigned Bandwidth-Enhanced Method of
Additive Synthesis", Ph. D. dissertation, Dept. of Electrical
and Computer Engineering, University of Illinois at Urbana-
Champaign, USA, 1999.

[14] F. Keiler, S. Marchand, "Survey on Extraction of Sinusoids
in Stationary Sounds", Proceedings of the 5th International
Conference on Digital Audio Effects (DAFx), Hamburg,
Germany, 2002.

[15] P. Depalle, G. Garcia, X . Rodet, "Tracking of Partials for
Additive Sound Synthesis Using Hidden Markov Models",
Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Min-
neapolis, Minnesota, USA, 1993.

[16] M. Lagrange, S. Marchand, M. Raspaud, J. Rault, "En-
hanced Partial Tracking Using Linear Prediction ", Proceed-
ings of the 6th International Conference on Digital Audio
Effects (DAFx), London, UK, 2003.

[17] T. Oliphant, "Guide to NumPy",
http://numpy.scipy.org/numpybook.pdf, accessed April 06,
2009.

[18] The MathWorks, "MATLAB - The Language of Technical
Computing", http://www.mathworks.com/products/matlab,
accessed April 06, 2009.

[19] J. Hunter and others, "Matplotlib - Python Plotting",
http://matplotlib.sourceforge.net/, accessed April 06, 2009.

[20] M. Wright, A. Freed, A. Momeni, "OpenSound Control:
State of the Art 2003", Proceedings of the Conference on
New Interfaces for Musical Expression (NIME), Montreal,
Canada, 2003.

DAFX-4

