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ABSTRACT

This paper discusses architectural aspects of a software library for
unified metadata management in audio processing applications.
The data incorporates editorial, production, acoustical and musi-
cological features for a variety of use cases, ranging from adap-
tive audio effects to alternative metadata based visualisation. Our
system is designed to capture information, prescribed by modular
ontology schema. This advocates the development of intelligent
user interfaces and advanced media workflows in music produc-
tion environments. In an effort to reach these goals, we argue for
the need of modularity and interoperable semantics in represent-
ing information. We discuss the advantages of extensible Semantic
Web ontologies as opposed to using specialised but disharmonious
metadata formats. Concepts and techniques permitting seamless
integration with existing audio production software are described
in detail.

1. INTRODUCTION

Loss of information in the media production workflow chain is a
major issue when it comes to collecting, managing and repurpos-
ing metadata about various aspects of the production process or
the media under consideration. This is especially true in the world
of editing and mastering audio.

Prominent reasons for collecting musical metadata include the
effective organisation of musical assets, such as sounds from a
sample library or previously recorded takes of multitrack master
recordings. These examples represent cases of content-based in-
formation management and retrievalm Another distinct catego:
can be designated as metadata extraction for creative applications%]
Often, this is overlooked by developers of metadata standards.

Several musical applications of these categories are discussed
in the literature (see [1], [2], [3], [4], or [5] for examples) focus-
ing on specific case-based implementations. However, no generic
formats and practices emerge from previous research and indus-
trial solutions. Disjoint purposes for covering overlapping musi-
cal domains produce a plethora of disharmonious standards and
methods. This seriously impairs the exploitation of metadata in
developing ubiquitous creative applications. A part of this prob-
lem can be identified in the use of non-normative development and
publishing techniques, rather than flaws in design. We recognise
that common approaches to overcome this, including standardis-

I'This typically involves feature extraction followed by machine learn-
ing or data mining techniques.
2¢.g. feature extraction followed by adaptive signal processing.

ing syntax through the use of XML '|or creating a reference library
(such as those accompanying SDIH'|or AAFE]) do not provide suf-
ficient ground for modularity and interoperability. The heart of
the problem lies in the assumption that musical information can
be expressed using structured static data sets. In our research, we
challenge this general assumption and hypothesise that musical in-
formation is better modelled as dynamic semi-structured data.

Because of corresponding needs in representing diverse, vir-
tually unbounded information, we turn to Semantic Web technolo-
gies for data modelling and knowledge engineering techniques. In
particular, we use the Resource Description Framework (RDF) as
our fundamental information model, and Semantic Web ontologies
as our basis domain model. Existing tools for building the Seman-
tic Web however are not designed for the use cases and require-
ments of audio and multimedia signal processing. They typically
fall short in efficiency, because of the vast amount of data required
for encoding content-based audio descriptors, and language com-
patibility, because of the dominance of scripting and Java based
solutions used in web tools, as opposed to efficient C++ imple-
mentations common in audio processing.

Our primary motivation is in creating software tools for easy
adaptation and use of the Semantic Web information model in au-
dio processing applications. For this purpose, we develop a soft-
ware library which provides an ontology based information man-
agement solution and easy integration with music production soft-
ware. Our library can be used as a shared, dynamically loaded ob-
ject. It relies on efficient local database implementation, low-level
RDF graph manipulation and automatic mapping between appli-
cation data and metadata governed by ontology schema. Our pro-
posed architecture therefore avoids the need for expensive query
processing and the overhead of network communication.

2. METADATA FORMATS IN RELATED WORK

There is no conclusive previous work addressing the issues we de-
scribed in the first section. However, we briefly review the most
relevant methods and practices in representing metadata for music
and audio processing. We also discuss some important problems
associated with them.

Music related metadata can be grouped into four distinct cat-
egories by scope or the sub-domain they address. Our framework
aims to capture and represent the following main metadata types
in a unified way:

3eXtensible Markup Language
4Sound Description Interchange Format
5 Advanced Authoring Format
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e FEditorial Metadata: General information about songs, artists
and other participants.

o Content-based Signal Descriptors: Spectral and temporal
characteristics of the recorded audio signal.

o Processing Workflow Data: Information about audio pro-
cessing, effects and parameters.

e Musicological Features: Musically meaningful features such
as notes, rhythm, key and chords.

In our brief review, we focus on the second and third categories
since they present the most prominent problems we address in this
work.

2.1. MPEG-7

The most widely used standard for content-based multimedia man-
agement is MPEG-7. It provides a comprehensive set of audio
descriptors and enables applications such as retrieval from digital
archives or filtering personal music collections. MPEG-7 descrip-
tors and descriptor schemes are specified using an extended XML
Schema Language. Although this was sufficient to express the
structural and syntactical requirements of the standard, it does not
provide a machine-understandable representation of the semantics
associated with its schemes. Therefore, the ability to integrate or
reuse descriptors or the metadata in other domains is severely lim-
ited. This led to efforts such as described by Hunter [6] or Garcia
[7] to provide mapping between MPEG-7 elements and Semantic
Web ontologies. However, they neither offer an efficient solution,
nor do they solve the fundamental problem of lack of semantics in
the standard specification itself.

2.2. SDIF

The original aim of SDIF (Sound Description Interface Format) [5]
was the efficient binary representation of frame-based spectral data
in an analysis/synthesis framework. However, this was soon ex-
tended towards the inclusion of more complex types and higher
level features. Although this format is available in existing au-
dio applications, unfortunately its rigid specification is too specific
to its original purpose. This compromises semantics and extensi-
bility. Moreover, its binary representation is not well suited for
searchable persistent database storage. Therefore this format can
not ideally be used in a general information framework.

2.3. ACE XML

ACE XML is a collection of multi-purpose file formats developed
for the jMIR package. It enables communication between its com-
ponents such as the jAudio [§] feature extraction library and the
ACE [9] classification engine. It provides Document Type Defi-
nitions (DTD) for storing audio features as well as training class
labels and taxonomies for classification. Unfortunately the format
wasn’t developed further to cover a wider set of use cases or a
wider range of audio features within a hierarchical relationship. It
falls short compared to MPEG-7 even in representation and com-
pactness with regards to multidimensional feature values. As a
common problem with XML based formats, it permits somewhat
ad-hoc definition of feature types without the possibility to estab-
lish meta-level relationships (such as equivalence) for the purposes
of interoperability or the reuse of data expressed using this format.

24. IXD

The Integra Extensible Data (IXD) format was developed within
the Integra project for the libIntegra [10] library. This software li-
brary provides interlinking and persistent storage facilities for au-
dio processing and live composition environments (such as PD and
Max/MSP) in a software independent manner. It is based around
the concept of multimedia module encapsulating signal process-
ing functionality. The IXD format appears to be well designed and
well suited for representing module information for the purposes
of storing module states and parameters in the local file system or
in a remote database. It provides a good example of an XML-based
schema which doesn’t entirely overlook semantics and ontological
considerations. For instance, it is possible to define hierarchical
inheritance relations between modules. However, it is not possible
to do so in defining module attributes, closely tied with module
definitions in an object-orientated manner. Although the format
moves in this direction, it does not permit the definition of seman-
tic associations rich enough to be used in a more generic way.

2.5. AAF and the AES31-3 standard

The Advanced Authoring Format (AAF) [11]] is in our concern be-
cause of its ability to describe media production workflows. It is
the successor of Open Media Framework (OMF) and considered
to be a superset of the AES31-3 standard. These formats deal with
the relationship of signals within an audio processing application
such as the clip composition of a project, and simple events such as
fades, transitions, and process automation. AES31 was published
in text, without the use of a definition language. Therefore, its se-
mantics is highly intermingled with its syntax specification. AAF
on the other hand provides a reference software library besides its
textual specification.

This format specifies an object-orientated (OO) class model
for interchanging audio-visual content as well as associated meta-
data. This maps well on the typical class hierarchy of application
storage containers. For extensibility, the format specifies Meta-
Classes which can be included in Meta-Dictionaries and sent along
with an AAF file. Yet, the specification contains statically coded
information such as media types. Therefore it fails to support a dy-
namically extensible system. Most extensions would require gen-
erating and recompiling source code. This does not permit easy
adaptation to user’s needs in situations such as describing new sig-
nal processing elements of a production system. The rigid data
model consisting of closely joint objects and properties, and the
typically used binary encoding, do not support the development
of query interfaces to assist workflow management, nor does it
support automated inferencing on persisted metadata. Building an
interlinked database over various facilities would also be problem-
atic. Finally, the supplied SDK confines monolithic, single lan-
guage implementation. These drawbacks had led to the need for
mapping AAF terms onto XML based vocabularies and data en-
coding [12] types. However, the format is still lacking semantic
associations, therefore the afore mentioned problems are not fully
solved.

2.6. Common Problems and a Solution

It is generally recognised that the use of metadata requires agree-
ment on how it is produced, structured and interpreted. However,
an important problem can be identified as the lack of normative
methods in creating and publishing metadata formats. Describing
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a standard in a plain text document is equivalent merely to setting
conventions on how data should be understood. Using an XML
based schema language, such as XSD, is a significant step for-
ward. However, it permits ad-hoc definition of metadata elements,
and lacks the formalism of defining relationships between them.
This hinders modularity and reusability of the published schema,
and interoperability of the represented data. Although choosing
a formalised syntax allows machine-readability and translation, it
does not support automatic interpretation.

Ontology languages provide a solution by formalising the ex-
pression of semantics, that is, what we mean by certain concepts,
and how we intend to relate them to other concepts in a domain.
This permits modularity and extensibility of schema expressed us-
ing these languages, thus allows developers to focus on a field of
interest without limiting the use of their specification outside of
that domain.

The W3Cﬂ has issued a number of recommendations for rep-
resenting formal ontologies. Since machine-processable represen-
tation of heterogeneous data on the Semantic Web is similar to
the problem of representing diverse musical information, we argue
that these technologies provide good common ground for repre-
senting data in music processing applications.

3. DATA MODEL

In this section, we review the data model we use, and the set of
ontologies permitting the representation of main metadata types
we listed in section 2.

3.1. RDF and the Semantic Web

Similarly to the general Web: an interlinked network of docu-
ments, the Semantic Web is a heterogeneous network of intercon-
nected data and services. This network may only work if various
disjoint data sets and services speak the same language. Thus, they
have to follow some common data model or structured schema.
The problem however is that the Web exposes unbounded, di-
verse information, making it hard, if not impossible to design this
schema. Yet, the Semantic Web provides a surprisingly simple
solution to this problem: the Resource Description Framework
(RDF) [13]].

RDF is a conceptual data model providing the flexibility and
modularity required for publishing diverse semi-structured data—
that is, just about anything on the Semantic Web. It is also the
basis of more complex description languages, such as the OWL
Web Ontology Language, which provides a way of publishing ex-
tensible data schema. The model is based upon the idea of express-
ing statements in the form of subject — predicate — object. These
statements are also known as triples. A collection of triples can be
seen as a graph, with nodes representing subjects and objects, and
edges, representing predicates. Therefore, a large set of statements
form a complex network of semantic relationships.

Elements of these statements are literals or resources named
by a vocabulary of Unified Resource Identifiers (URI). This pro-
vides the model with an unambiguous way of referring to things,
as well as a resource linking mechanism through the use of HTTP.
RDF in itself does not specify a syntax for encoding information.
While XML is a common serialisation format for RDF data, more
compact and efficient representations exist such as the (both hu-
man and machine readable) N3 syntax.

6The World Wide Web Consortium (http://www.w3.o0rg/)

3.2. Ontologies

Although RDF provides a fundamental data model, it does not
have the facilities for expressing complex relationships required
in domain modelling. In order to precisely communicate informa-
tion in RDF statements, we have to be able to define and refer to
concepts: such as a specific algorithm we use for audio processing,
its concrete implementation and its parameters. We also need a vo-
cabulary of well defined relationships existing in the application.
For example, we link parameter values denoted as RDF literals
with conceptual representation of the parameter itself. Ontologies
are the tools for establishing these elements in a knowledge rep-
resentation model. Building ontologies is therefore the process of
Knowledge Engineering.

Semantic Web ontologies are created using the same concep-
tual framework that is used for communicating the data. However,
additional vocabularies are required for expressing formal ontolo-
gies, as well as for improving machine interpretability. To this
end, a hierarchy of languages is proposed by the W3C. This in-
cludes RDF Schema, for defining classes and properties of RDF
resources, and OWL for making RDF semantics more explicit. Us-
ing OWL—D[E] we can impose restrictions on the range and domain
types of properties, and constraints on cardinality, the number of
individuals linked by a property. In the next section, we review the
ontologies we use as basis for our information model.

3.2.1. The Music Ontology

The Music Ontology (MO) is a a standard base ontology for de-
scribing music related information. It is described in [[14] and for-
mally specified in [15]. This ontology provides the main concep-
tual framework and a development model we use in our work. It is
built on several ontologies specific to well-bounded domains. The
four most important ones are the Timeline Ontology, the Event
Ontology, the Functional Requirements for Bibliographic Records
(FRBR) ontology, and FOAF[ﬂ We only review those most perti-
nent to our application, therefore the interested reader is advised
to refer to the afore-mentioned documents. Besides reusing exist-
ing terms and ontologies, the Music Ontology provides ways of
plugging new terms under existing concepts. This aspect is of pri-
mary importance in our application, since it permits compatible
extensions.

3.2.2. Timeline Ontology

The Timeline Ontology [16] is conceptually derived from OWL-
Time. It is used to express temporal information related to audio,
including intervals and time instants, with possible references to
multiple timelines with different origins. As an example, we may
wish to relate a time based event occurring in an audio recording,
such as a note onset, to an audio timeline relative to the start of
the recording, or the universal physical timeline. The ontology
also provides mapping between relative timelines, such as that of
a continuous time signal and the regularly sampled version of it.
(see figure 1.)

7A version of the Web Ontology Language based upon Description
Logic which ensures computability in all circumstances.

8The Friend Of A Friend ontology represents relationships between
people.
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Figure 1: Using the Timeline Ontology

3.2.3. Event Ontology

Another important backbone of MO is the Event Ontology [17]. It
is a broad conceptualisation of events: ’'something, happening at
a particular place and time’. We can use this concept to describe
anything with a well-defined duration, location, and a number of
factors and agents. Therefore, it provides a very important link
between terms in ontologies. As an example, we use this for asso-
ciating effect automation parameters and acoustical features with
the audio signal timeline.

3.2.4. Audio Features Ontology

The Music Ontology provides a wide range of musical concepts.
This includes high level editorial data, production data about mu-
sical recordings, and finally structural information of music using
the Event and Timeline Ontologies described above. However, it
does not attempt to cover sub-domains that are too specific. These
are addressed using extensions such as the Audio Feature Ontol-
ogy (AF) and the Studio Ontology.

AF [18] provides an easily extended set of low-level and mu-
sicological features for modelling content-based audio descriptors.
Most features are seen as time-based events, therefore they are de-
rived from the Event concept. This concept is generic enough to
be used in cases where a specific feature is not yet fully defined in
the AF Ontology.

3.2.5. Studio Ontology

The Studio Ontology addresses music production environments. A
set of domain specific ontologies are used for covering production
details, for instance, the music editing workflow. This ontology
includes the Multitrack Ontology, relating the internal structure of
media production tools to broader concepts in the Music and Stu-
dio Ontologies, and the Edit Ontology, which provides the seman-
tic framework for collecting information about the music produc-
tion process.

The Multitrack Ontology defines a hierarchy of concepts for
the representation of audio clips and tracks, and relates them to
the general purpose signal concept in the Music Ontology. These
constructs can be used in modelling the typical procedure of non-
linear editing in modern record engineering.

4. INFORMATION MANAGEMENT LIBRARY

In order to advocate advanced uses of metadata in audio process-
ing, we develop a unified information framework and metadata
collection tool. This tool can be easily integrated with existing au-
dio production software. Our primary motivation is in the use of
modular ontology schema, to overcome the limitations of currently
existing disharmonious metadata formats.

So far, we have discussed the advantages of using Semantic
Web ontologies, and introduced the ontologies we use. In this
section, we describe the software architecture of the RDF based
information back-end for managing metadata in audio and music
processing applications.

4.1. Design Decisions

Although ontologies provide modularity in specifying metadata
schema and flexible knowledge management, often, static software
implementations limit the extensibility of a system. Among the
most common problems we find the use of external (relational)
database software, which is often accessed through hard-coded
query templates. This limits the ability of a specific implemen-
tation to adapt to changes in metadata schema, besides, accessing
the database involves expensive query processing. It is not un-
common that an object-based or RDF-based information system
is used together with a relational database back-end. This incurs
complicated mapping to relational schema which would otherwise
be unnecessary.

Our system avoids these problems by relying on an efficient
local hash database implementation, providing a native RDF store,
and low-level manipulation of statements in an RDF graph. In or-
der to abstract these low-level calls, we develop an automatic map-
ping mechanism between application objects and RDF statements.
This system is able to persist application data, stored in an exist-
ing object hierarchy, together with semantic associations obtained
from ontology definitions. The mechanism also provides atomic
transaction management for groups of RDF statements associated
with data from common application objects.

Since our framework is to be used as an efficient semantic
metadata store, we avoid the overhead of network communication
between the database and the host application. Therefore, we im-
plement the system as a shared dynamically loaded library, com-
piled together with a database implementation.

Finally, our system is able to extend the application with stor-
age containers for representing metadata terms defined in ontolo-
gies. This is achieved using a meta-object protocol and an associ-
ated type system. This is described in sections .2 and [.3]

4.1.1. Primary Requirements

The most important requirements of the system can be summarised
as follows:

e FExtension: The system is be able to extend the application
with metadata storage dynamically.

e Mapping: The system is able to translate and store applica-
tion data represented in an existing object hierarchy.

o Consistency: The system maintains metadata and database
consistency during interaction with a user.

o [ntegration: The system can be appended to an existing
audio application with the least possible interference with
original code.
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4.1.2. Dependencies and Configuration

Our current aim is to build a reference implementation for existing
audio applications written in C++, such as the open-source audio
editor: Audacityﬂ This confines our choice of RDF tools to those
with C/C++ support. As basis for our triple store implementation,
we use the Redland RDF libraries. [20] This library permits in-
memory or persistent storage. We configure the library to use an
efficient hash database. For this purpose, we use BerkleyDB [ﬂ
a high-performance open-source embedded database solution dis-
tributed by Oracle. Our current implementation makes use of the
cross-platform framework wxWidgets E] for greater compatibility
with Audacity. Ideally, it shall be using the Standard Template
Library (STL). However, wxWidgets provides compatible classes
which makes such transition relatively easy.

4.2. Metaobject Protocol

Considering the previously described use cases, (see section[d.1.1)
finding an efficient way of accessing from or updating information
to a triple store from an audio editor is a primary challenge. Using
a local database which is dynamically loaded into the application,
this can be achieved in two ways: using in-process API calls, or
using SPARQLEI Because of the computational expense associ-
ated with query processing, we base our implementation on low-
level API calls. However, besides the burden of manipulating the
RDF store at a fairly low level, an important problem arises form
conflicting data models: the class hierarchy of a typical object-
orientated application, and the RDF graph. As a solution to this
problem, we use a software engineering technique called metadata
mapping. | ’| We provide a mechanism which allows persisting ap-
plication objects in an RDF database automatically. However, this
requires the data in the application to be associated with ontologi-
cal semantics. This is described in section[3.2] A further use case
entails that we have to be able to instantiate objects, representing
arbitrary metadata terms defined in an ontology. In our system, a
run-time Metaobject Protocol (MOP) [21]] provides the basis for
the solution to both of these problems.

Metaobject protocols were originally developed for the Com-
mon Lisp Object System (CLOS) [22]. They can also be found in
the context of more recent dynamic languages such as the Python
interpretel{ﬂ Metaobject protocols allow for extensible associa-
tion of data with semantics within an application. Therefore, the
application is able to inspect the internal state of its objects. For
our particular use cases, we do not need to implement the full
protocol required for a dynamic interpreter. Yet, it is beneficial
for blending functional and logic programming paradigms when
managing metadata in an efficient but static programming envi-
ronment.

In our library, we implement a metaobject protocol to facil-
itate metadata mapping between application data and RDF data.
Two specific types of metaobjects are used for representing RDF
classes and properties. These metaobjects are statically designed

nttp://www.audacityteam.org/

10http ://www.oracle.com/technology/products/
berkeley-db/index.html

Hwww.wxwidgets.org

1ZSPARQL Protocol and RDF Query Language, an SQL-like language
for accessing an RDF knowledge base.

31n the context of relational databases this is called object-relational
mapping.

“http://www.python.org/

to represent information defined by ontology schema, however,
they are dynamically instantiated by a generator via an inference
mechanism when loading schema documents into memory. This
is achieved using the following protocol: Ontology schema are
parsed into a model using a suitable Redland syntax parser. Obey-
ing RDF and OWL language rules, we build metaobjects for each
class and property defined in the ontologies in question. First,
we enumerate class and property declarations in the conjunctive
model and instantiate a skeleton object for each. Next, we sepa-
rately infer the inheritance hierarchy within the disjoint hierarchies
of ontological terms and relationships. This information is appro-
priately used to model the same hierarchy within the set of previ-
ously created metaobjects. This is followed by assessing equiva-
lence relationships and update the object model accordingly. Fi-
nally, the assignment of properties to classes in the model can be
made. The metaobjects resulting from this process are stored in
hash maps with keys corresponding to the resource URIs used for
identifying them. These objects are available in the application
and can be used to link data with semantics, and to create meta-
data containers according to their descriptions. In practice, this is
achieved by constructing objects of a specialised type system we
describe in section .3l

4.3. Type System

For the purpose of instantiating metadata containers as needed in
the editing workflow, we develop a type system associated with
the metaobject protocol and the basic node types appearing in the
RDF model. Elements of this system can be dynamically created
and used to store metadata in a generic way.

i
i
. - : ~
resource base typed literal base

example T
template specialisation

Figure 2: Type System

The system addresses the various data representation needs in
our software. Generic resource types are assigned a corresponding
metaobject, linking the resource to its ontological class definition.
These objects contain a map in order to model the properties as-
sociated with the class. Literals are modelled after the types per-
mitted in RDF and XML Schema. We can represent both plain
string literals, and string literals coupled with a language tag this
way. Numerical types however require a more complex represen-
tation. Our solution is based on C++ template specialisation. We
map permitted XSD typesE] to corresponding simple or complex
C++ data types wrapped into generic container templates. For in-
stance, vectors and matrix classes can be mapped as plain strings
or suitable XML literals in the RDF representation.

The classes of this subsystem can be configured in three differ-
ent ways. They can act as references simply associating semantics

15These are used in identifying data types in the RDF model.
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with data stored elsewhere. This is similar to the implementation
of logic references in the Castor logic programming library.[23]
The objects can be added to existing data structures, wrapping
existing functionality. Finally, they can be used independently,
within a separate hierarchy, for fulfilling more complex metadata
management needs. For example, this shall be used for storing the
wide range of audio features associated with a track. In all modes
of operation, a set of overloaded constructors are used for creating
appropriately configured objects, depending on their use.

4.4. Architecture

The architecture of the library consists of several classes with a
complex interaction model. A simplified diagram showing the
main building blocks can be seen in ﬁgure@

editor dialog host user interface

host application

|
. numeric and
class-objects = porperty maps literal tiies

object manager

meta-objects

meta-object manager

‘ meta-object map ‘ | object registry type mapper

‘ namespace manager

‘ inference layer interface and transaction layer

syntax parser storage interface serialisers

I Legend : (classes)
> D\ vreta tevel
RoF/ | " Application level
T 1 Dynamically generated

Figure 3: System Architecture

The inference layer is used to extract the class and property
hierarchy of ontology definitions to build metaobjects. Logic pro-
gramming functionalities can be added at this level in the future.

The interface and transaction layer is responsible for persist-
ing the data stored in the object system, wrapping low-level graph
manipulation calls and coordinating the addition of triples that
must be stored atomically.

The mapping layer consists of a name space manager, a meta-
object map, an object registry and a type mapper class. It is mainly
responsible for linking meta-objects and dynamic-objects used in
the system. The TypeMapper class maps XSD data type URI’s
used for identifying RDF typed literals onto function objects. These
function objects (or functors) are used for creating dynamic ob-
jects, appropriate instances of dynamic class templates as described
in the previous section.

The object management layer consists of the meta object and
dynamic object managers. Their primary function is storing and

maintaining the objects created during the interaction with the model.

Some additional functionality, common across dynamic objects, is
implemented here using external polymorphism.

Meta-objects contain information corresponding to RDF and
OWL classes and properties. For example, a classInfo object holds
the inheritance hierarchy of a particular class. These instances are
dynamically generated when parsing ontology schema.

Dynamic objects represent terms and relationships as objects
in the application, string literals, simple XSD types as well as more
complex numerical types. The previously described type system is
implemented here.

4.5. The System in Use

Although the library is under development, it is already capable of
storing a wide range of manually entered data, as well as captur-
ing information while a user interacts with the audio editor inter-
face. In order to test the capabilities of the system, we created a
SPARQL query interface (figure E[) which allows the user to build
and execute complex queries, and retrieve data stored in the RDF
model.

B0 MO Editor

"Projecr People Instruments Devices SPARQL | Diagnostics |

Enter Query:

SELECT ?clip ?track
WHERE
{
?project mt:track ?track .
OPTIONAL { ?track mt:clip ?clip. }
} .
ORDER BY ?track v
Results:
VarName: Value:
track [http:/ fwww.ex.org/trk0001]
VarName: Value: m
clip
VarName: Value: a
track [http:/ fwww.ex.org/trk0002] v

Tabled Results:

clip track

[http://www.ex.org/cl0002] [hitp: f/www.ex.org /trk0001]

[http://www.ex.org/cl0001] [http://www.ex.org/trkD001]
[http: / /www.ex.org [trk0002]

Clear Query Run Query

il B Sl il 49

Figure 4: SPARQL query interface

SPARQL is a W3C recommendation for accessing RDF data
stores. It’s standardisation and increasing support promotes the
adoption of RDF as a main metadata language. It allows retrieving
information from RDF knowledge bases in a similar manner to
querying relational databases using SQL. A query consists of a set
of triple patterns that are matched against the data in the RDF store.
Query results are composed of variable bindings from matching
statements, typically based on a SELECT clause specified by the
user.

The above example shows the use of the Multitrack Ontology
for representing two audio tracks and two audio clips created in
the editor. When queried appropriately, the model returns a list of
clips and tracks they are associated with. This interface enables
novel ways of accessing audio related metadata, for example, we
will be able to answer queries such as: list all audio tracks where
dynamic range compression was applied with the ratio of 1:5.
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5. CONCLUSIONS AND FUTURE WORK

We presented a software library for collecting audio related meta-
data in an extensible, ontology-driven framework. Our approach
is using techniques borrowed from the Semantic Web commu-
nity, and demonstrates the application of these techniques in an
audio editor application. By overcoming the limitations imposed
by disharmonious metadata practices and standards, our library fa-
cilitates advanced and creative use of metadata in music produc-
tion environments. Typical use case examples include advanced
queries, enabling navigation by semantic associations or highlight-
ing audio sections processed in a particular way. The system can
also be used for publishing data about the music production pro-
cess. This can be valuable in forthcoming music related Semantic
Web applications. Future work includes interconnecting our li-
brary with a number of audio processing host environments, such
as the Ladspa/LV2[25] and Vamp[24] plugin host libraries, as well
as providing further ontological extensions enabling these connec-
tions.
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