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ABSTRACT

This paper investigates the properties of a recently proposed
physical model of nonlinear tension modulation effects in a
struck circular membrane. The model simulates dynamic
variations of tension (and consequently of partial frequen-
cies) due to membrane stretching during oscillation, and
is based on a more general theory of geometric nonlinear-
ities in elastic plates. The ability of the nonlinear mem-
brane model to simulate real-world acoustic phenomena is
assessed here through resynthesis of recorded membrane
(rototom) sounds. The effects of air loading and tension
modulation in the recorded sounds are analyzed, and model
parameters for resynthesis are consequently estimated. The
example reported in the paper show that the model is able
to accurately simulate the analyzed rototom sounds.

1. INTRODUCTION

With respect to other classes of instruments (e.g.string or
wind instruments) drums are relatively less studied in the
literature of physical modeling (see e.g. the two tutorial pa-
pers [1, 2]). Membrane models proposed in previous works
are mainly based on 2-D or 3-D digital waveguide meshes
(DWM [3]), which can provide accurate simulation of wave
propagation medium terms, depending on the mesh topol-
ogy [4], and with additional processing to compensate for
dispersion [5]. Finite-difference schemes have also been
used (see [6] for an analysis of various schemes). Models
based on modal synthesis [7] have been introduced. Cook [8]
proposed a series of “physically-informed” approaches to
the modeling of percussion sounds, including modal synthe-
sis. Rabenstein and coworkers have applied the functional
transformation method to the simulation of rectangular and
circular linear membranes [9].

The latter authors have proposed a nonlinear extension
of their approach to simulate tension modulation effects in
a rectangular membrane [10]. Tension modulation in strings
and membranes occurs because in the large oscillation regime
the assumption of constant string length (or membrane area)
does not hold, and the tension varies in dependence of the
instantaneous displacement. As a consequence, the oscilla-

tion frequency at large displacements is increased, and the
resulting sound exhibits characteristic glides.

Models for tension modulation in strings have been dis-
cussed in the context of both waveguide [11] and modal [12,
13] approaches. An extension to the 2-D case of rectangu-
lar membranes has been proposed in [10]. However, there
appear to be no previous analysis of physical models for
sound synthesis of tension-modulated circular membranes,
although the circular geometry is more relevant than the
rectangular one for musical applications.

More general models of geometrical nonlinearities in
membranes can be borrowed from the theory of vibrations
of elastic plates [14]. We have recently proposed such a
model in [15] for a 2-D problem with circular geometry,
and have shown that it can be efficiently integrated into a
modal synthesis engine.

The main goal of this paper is to assess the effective-
ness of the model in reproducing tension modulation effects
observed in real membranes. To this end, a set of record-
ings from three rototoms was collected. The rototom has
been chosen as a test instrument becauseby construction
it approaches quite closely the ideal case of a single circu-
lar membrane with fixed boundaries, with no other mech-
anisms affecting appreciably sound production (shell, air
cavity, coupling with a second membrane).

The recorded sounds have been analyzed in order to ex-
tract the most relevant parameters, particularly with regard
to the effects or air loading (detuning and increased dissi-
pation of lower partials), and those of tension modulation
(initial glides of partials). Resynthesis has then been ob-
tained by fitting the geometrical and physical parameters of
the model to those of the recorded membranes. The results
show that the model provides convincing simulation of the
most salient sound features.

Section 2 summarizes the physical model recently pro-
posed in [15] for tension modulation in a circular mem-
brane, and discusses a numerical realization. Section 3 dis-
cusses the main findings from analysis of the sounds recorded
from real membranes, and presents results obtained from
the resynthesis of the membrane sounds with the proposed
physical model.
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Table 1:Physical and geometrical membrane parameters.
Symbol Unit Meaning

σ Kg/m2 Surface density
T0 N/m Surface tension
d1 Kg/sm2 Freq. independent dissipation coefficient
d3 Kg/sm Freq. dependent dissipation coefficient
E N/m2 Young modulus
υ — Poisson ratio
R m Radius

2. A MODEL FOR TENSION MODULATION IN A
CIRCULAR MEMBRANE

2.1. Linear circular membrane

This section summarizes briefly the modal description of
a linear circular membrane with dispersion and dissipation
(an equivalent formulation can be found in [9]). The vertical
displacementz(r, ϕ, t) of the membrane, driven by a force
densityf (ext)(r, ϕ, t), is governed by the following equa-
tion [16]:

D∇4z(r, ϕ, t) + σ
∂2z(r, ϕ, t)

∂t2
− T0∇

2z(r, ϕ, t)

+ d1
∂z(r, ϕ, t)

∂t
+ d3

∂∇2z(r, ϕ, t)

∂t
= f (ext)(r, ϕ, t), (1)

where the coefficientD = Eh3/12(1 − υ2) is the bending
stiffness of the membrane. The units and meanings of all
the physical parameters in Eq. (1) are listed in Table 1. Ideal
boundary conditions are represented by zero deflection and
skewness at the boundaryB = {(r, ϕ) : r = R}, i.e.

z(r, ϕ, t)|(r,ϕ)∈B
= 0, ∇2z(r, ϕ, t)

∣

∣

(r,ϕ)∈B
= 0, (2)

Given these boundary conditions together with suitable ini-
tial conditions (e.g. zero initial displacement and zero ini-
tial velocity), Eq. (1) has a unique solution. The general
solution can be expressed in terms of its normal modes, i.e.
particular solutions of typēz(t)K(r, ϕ). With the boundary
conditions considered here, the equation has a numerable
set of modes with spatial eigenfunctions [17]

Kn,m(r, ϕ) = cos[n(ϕ − ϕ0)]Jn

(

µn,m

r

R

)

, (3)

wheren ≥ 0, m ≥ 1, andµn,m is them-th zero of then-
th order Bessel function of the first kind,Jn. These spatial
eigenfunctions define a Sturm-Liouville (SL) transform [9]).
The SL transform̄g of a functiong and the inverse SL trans-
form of ḡ are

ḡn,m(t) =

∫ 2π

0

∫ R

0

g(r, ϕ, t)Kn,m(r, ϕ) rdrdϕ,

g(r, ϕ, t) =

+∞
∑

n=0

+∞
∑

m=1

ḡn,m(t)Kn,m(r, ϕ)

‖Kn,m(r, ϕ) ‖
2
2

.

(4)

By virtue of these transformations, one can see that the orig-
inal PDE (1) forz is turned into a set of ordinary differential
equations for the modes̄zn,m:

¨̄zn,m(t) +
1

σ

[

d1 + d3

(µn,m

R

)2
]

˙̄zn,m(t)+

+
(µn,m

R

)2
[

D

σ

(µn,m

R

)2

+
T0

σ

]

z̄n,m(t) =
f̄ (ext)

n,m(t)

σ
, (5)

where the forcing term̄f (ext)
n,m is the SL transform off (ext).

Therefore the modēzn,m is a forced second order oscillator
whose parameters are determined by those of the original
PDE.

2.2. Nonlinear terms: impact force, tension modulation

In the following we summarize the nonlinear membrane
model proposed in [15]. We assume that the membrane
is driven by an impact force ideally applied at a hit point
xh = (rh, ϕh) of the membrane surface. In this assumption
the force density isf (ext)(x, t) = Fh(t)δ(x − xh) (where
x = (r, ϕ) andδ is a 2D Dirac Delta). Then̄f (ext)

n,m takes the
form

f̄ (ext)
n,m(t) = Fh(t)Kn,m(rh, ϕh). (6)

The forceFh is estimated with an impact model originally
proposed in [18], and previously applied to the synthesis
of impact sounds [19]. If the hammer is a point massmh

moving with a trajectoryzh(t) and hitting the membrane
at xh, then Fh is a function of the compressionζ(t) =
z(rh, ϕh, t) − zh(t):

Fh(ζ(t), ζ̇(t)) = kζ(t)α + λζ(t)αζ̇(t), ζ > 0, (7)

while Fh = 0 otherwise. The impact model parameters
are the force stiffnessk, the force dissipation coefficientλ,
and the exponentα (which depends on the local geometry
around the contact area). The hammer dynamics is com-
pletely determined by the equationmhz̈h = Fh.

Another very important nonlinear effect encountered in
real membranes is tension modulation. Since the membrane
area varies during oscillation, the tension also varies in de-
pendence of the membrane displacement, causing variations
of the frequency content during the sound evolution. In [15]
we have presented a model for tension modulation, in the
assumption of homogeneous and isotropic membrane mate-
rial, and of uniform clamping.

The model is derived from the general theory of elastic
plates. Specifically, it is based on the so-called Berger ap-
proximation of the von Karman equations, which describe
the dynamics of thin plates subjected to lateral and in-plane
forces [14]. Such an approximation has the fundamental ad-
vantage of decoupling the von Karman equations for stress
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and displacement, resulting in a single fourth-order PDE
which can be written as follows:

D∇4z + σ
∂2z

∂t2
− [T0 + TNL(z)]∇2z+

+ d1
∂z

∂t
+ d3

∂∇2z

∂t
= f (ext), (8)

where, for the specific case of the membrane, the nonlinear
functionTNL(z) can be interpreted as the surface tension
generated in dependence of the displacementz, in addition
to the tension at restT0. Such function has the form [14]

TNL(z) =
Eh

2πR2(1 − υ2)
·

∫ R

0

∫ 2π

0

[

(

∂z

∂r

)2

+
1

r2

(

∂z

∂ϕ

)2
]

rdϕdr. (9)

The double integral in Eq. (9) can be interpreted as the dif-
ference between the membrane areaA(z) corresponding to
the displacementz, and the area at restA0 = πR2. Accord-
ingly, the functionTNL(z) can be interpreted as a spatially
uniform tension modulation term, which depends only on
the total areaA(z), in analogy with the Kirchhoff-Carrier
equations for tension-modulated strings.

In the remainder of the paper we regard the nonlinear
tension term as an excitation termf (tm)(z) = TNL(z)∇2z,
which acts on the right-hand side of Eq. (8) similarly to
the impact force termf (ext). Analogously, in the SL trans-
formed domain we regard tension modulation as an addi-
tional forcing termf̄ (tm)

n,m acting on the second order oscilla-
tor (5). Such term has the form

f̄ (tm)
n,m(z̄) = −

(µn,m

R

)2

T̄NL(z̄)z̄n,m, (10)

with

T̄NL(z̄) =
Eh

4R2(1 − υ2)

∑

n,m

µ2
n,mz̄2

n,m

‖Kn,m ‖
4
2

J2
n+1(µn,m). (11)

This equation is obtained by first applying the SL transform
to f (tm), and then by rewritingTNL as a function of̄z. De-
tails about the derivation are reported in [15].

By looking at the second-order oscillators (5) and at
the nonlinear forcing terms (10,11), one can see that the
tension-modulated membrane model is written in terms of
the modal variables̄zn,m only.

2.3. A discrete-time model

The membrane model is realized as a bank of second order
resonators, each of which represents one mode of oscilla-
tion. Specifically, in the Laplace domain the(n, m) normal

z    (k)0,1
0,1
 (ext)f       (k)

 (ext)f       (k)n,m

K0,11/
2 h0,1K    (x   )

n,mK     (x   ) h
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n,mH     

0,1H     
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µ
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2
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Figure 1:Block scheme for the discrete-time realization of
the nonlinear membrane model.

mode is the output of the second order filter

Hn,m(s) =
σ−1

s2 + 2αn,ms + ω2
n,m

, (12)

where the dependence of the loss factorαn,m and the center
frequencyωn,m on the PDE parameters is determined from
Eq. (5): the coefficient of̄̇zn,m equals2αn,m, and the coeffi-
cient of z̄n,m equalsω2

n,m. Similarly, the hammer displace-
mentzh is the output of the second order filterHh(s)mh/s2

applied to the impact forceFh. The filtersHn,m andHh are
discretized using the bilinear transform. The resulting block
scheme is shown in Fig. 1. The impact force of Eq. (7) is
applied at the hit pointxh. The nonlinear tension modula-
tion is computed according to Eq. (11) and can be applied
to all the simulated modes or to a subset.

Note that the all the nonlinear terms appearing in the
block scheme depend nonlinearly on instantaneous values
of the modal displacements̄zn,m and act as feedback to
the filtersHn,m. Consequently, delay-free computational
loops are generated, and a nonlinear implicit system must
be solved at every computation step in order to find new
values of all system variables. We have shown in [15] that
the block scheme of Fig. 1 can be solved by applying a gen-
eral technique for the computation of nonlinear digital filter
networks with delay-free loops, recently proposed in [20].

The sound signal is taken to be the membrane displace-
ment at a certain “pick-up” pointxp, which does not neces-
sarily coincide with the hit point. Such displacement signal
is obtained by applying the inverse SL transform, (the sec-
ond equation in (4)) at the pointxp.
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Figure 2:Recording setup: the rototom is tuned with a pre-
cision drum tuner, and the support is damped with foam.

3. RESYNTHESIS OF REAL MEMBRANE SOUNDS

3.1. Recordings

The rototom is a drum instrument consisting of a single head
in a die-cast metallic frame (often aluminium), without a
shell. Rototoms are most typically used to extend the tom
range of a standard drum kit, and their timbre is qualita-
tively similar to that of toms with the carry head removed.
They can be tuned by rotating the head, which is inserted
into a threaded metal ring: head rotation changes the ten-
sion hoop relative to the rim, and consequently the tension
of the membrane.

Rototom sounds were recorded for subsequent analy-
sis. The recording equipment included an AKG-C414 con-
denser microphone and an EDIROL UA-101 sound board.
Sound were acquired using a sample rateFs = 96 KHz,
with a resolution of 24 bits. The recordings were not taken
in anechoic settings and therefore include the impulse re-
sponse of the medium-size room where they were acquired.
Since the rototom frame was found to produce distinctive
and persistent resonances when hitting the membrane, it
was damped with foam in order to minimize this effect.
A picture of the setup used for the recordings is shown in
Fig. 2

Sounds were recorded with a wooden drumstick hitting
the membrane at three different hit points (with normal-
ized radius valuesr/R = 0, 0.5, 0.8). Two main impact
strength levels (’soft’ and ’strong’) were used, although the
impact velocity was not recorded. In order to properly tune
the membrane to an uniform tension, a precision drum tuner
was used (see Fig. 2). The tuner provides a measure (on an
arbitrary scale) of the membrane tension along the surface.
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Figure 3:First partials extracted from rototom sound spec-
trum. For each mode, the corresponding nodal pattern
(n, m) is indicated.

The tuning procedure is accomplished by moving the tuner
along the membrane circumference, resulting in an approxi-
mately constant membrane tension along the whole surface.
However, the tuner does not provide an absolute physical
value of the surface tension.

3.2. Analysis

The recorded rototom sounds were analyzed for resynthesis
purposes. Since some physical parameters (e.g. the mem-
brane tension) could not be measured, they had to be es-
timated throughad-hocanalysis on the sound recordings.
For the sake of clarity, all the analysis examples and re-
lated plots discussed in this section are based on the same
recorded sound, obtained with a hit point atr/R = 0.5 and
with a ‘strong’ impact level.

First, a matching procedure between theoretical modal
frequencies and the measured ones has been performed, in
order to identify the mode series of the membrane. An ex-
ample is shown in Fig. 3. As expected, partial frequencies
are lowered with respect to theoretical values, due to the
air load acting on the membrane. This effect is noticeable
mostly for frequencies below500 Hz [17]. In fact from
Fig. 3 one can notice that the error between measured and
theoretical frequencies decreases with increasing frequency
and becomes extremely small above500 Hz.

In order to take into account this air loading effect, the
simplified model reported in [17] was used (a similar model
has been used in [21] in the context of waveguide membrane
modeling). The model makes use of a piston-like approxi-
mation for which the effective air mass loading is given by:

mair =
8

3
ρ0R

3, for f <
c

4πR
, (13)
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Figure 4:Air load modeling through the piston-like approx-
imation: comparison between theoretical, air-loaded, and
measured frequencies.

and decreases for higher frequencies as1/f2. The frequen-
cies of the modes(n, m) affected by air mass loading are
lowered to valuesω(air)

n,m, which are related to the theoretical
valuesωn,m through the relation

ω(air)
n,m = ωn,m ·

√

σ

σ + σair
, (14)

whereσair = mair/πR2 is the resulting added surface den-
sity corresponding to themair added mass. Figure 4 shows
an example of comparison between theoretical modal fre-
quency values, those measured from the recording, and those
estimated with the air-load correction by means of Eq. (14).
It can be seen that the air load model matches extremely
well the measured values. For higher mode numbers the
theoretical curve progressively approaches the other two.

Having estimated a set of partial frequencies corrected
according to the air load model, the corresponding mem-
brane tensionT0n,m

was estimated from Eq. (5) as:1

T0n,m
= σω2

n,m

(

R

µn,m

)2

− D
(µn,m

R

)2

. (15)

This is the tension which would produce the expected theo-
retical valueωn,m for the frequency of the(n, m) mode. An
example (based on the same sound analyzed in the preced-
ing figures) of the resultingT0 estimate is shown in Fig. 5
for the first 10 modes. As expected, at least for the lowest
modes theT0n,m

values computed from Eq. (15) are reason-
ably constant with respect to the mode index, thereforeT0

is estimated to be the average of these values.
In order to estimate values for the dissipation coeffi-

cientsd1 andd3, the decay timeste for a set of extracted

1Note that the computedT0 value does not necessarily coincide with
the real surface tension, since the surface densityσ was not measured and
instead tabulated values were used.
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Figure 5: Equivalent membrane tension estimated from
measured frequencies (corrected with the air load model).

partials have been computed through a Least Squares fit-
ting procedure on the partials amplitudes envelopes. From
Eq. (5), one can see that the decay timeste(ωn,m) decrease
with the square of the frequency. More precisely, the fol-
lowing approximate relation holds:

te(ωn,m) ≃
2

d1 + d3 · K · ω2
n,m

, (16)

whereK =
(

µn,m

Rω0,1

)2

. Through this fitting procedure the

dissipation coefficientsd1 andd3 were determined. An ex-
ample of estimated decay time values and the corresponding
fitting curve are shown in Figure 6. It can be noticed thatte
values for the lowest modes of vibration are largely over-
estimated by the damping model. This phenomenon occurs
because the model described by Eq. (16) does not include
the effect of the air load, which damps strongly the low-
est modes. On the other hand for frequencies at600 Hz or
more, the behavior of decay times is more in accordance
with theory, as expected. Therefored1 andd3 were deter-
mined using partial frequencies above600 Hz only, while
the dissipation coefficients of the lowest modes were man-
ually set in order to cope with the non-ideal behaviour in-
duced by air loading.

Finally analysis of the recorded rototom sounds was per-
formed in order to investigate the effects of tension modula-
tion. Figure 7 shows an example of sound spectra extracted
from two frames of the same recording (’strong’ level), the
first taken close to the impact instant and the second taken
after a few tenths of second. The expected effects of mem-
brane nonlinearity can be clearly noticed through compar-
ison of the two spectra: partial frequencies glide in time,
with the glide becoming more and more noticeable as the
impact velocity increases. In general the glides are concen-
trated in the first200 − 300 ms of the sound.
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Figure 7:Effects of tension modulation for high impact ve-
locities: glides of partial frequencies can be clearly noticed
by comparing the FFT of a frame close to the attack, and
that of a frame a few tenths of second later.

3.3. Resynthesis

Figure 8(a) shows the spectrogram of a recorded rototom
sound, while Fig. 8(b) show the spectrogram of the corre-
sponding resynthesis. It can be noticed that glides in the
frequencies of partials are realistically simulated by thenu-
merical model, and resemble closely those observed in the
real membrane. Moreover, as a consequence of the analysis
procedure outlined in the previous section, the frequencies
and the decay times of the modes are accurately simulated
in the resynthesis. On the other hand, several distinguishing
features of the recorded sound can be noticed in Fig. 8(a).
In particular, mode doublets can be observed, which are due
to non perfect tuning of the membrane (non constant surface
tension). Moreover, a richer spectral content at higher fre-
quencies and at the attack can be noticed. In fact informal

listening tests reveal that the simulated impact is qualita-
tively different from the recorded one, which hints at the
limitations of the impact model currently employed.

4. CONCLUSIONS

In this paper, the properties of a recently proposed physical
models for sound synthesis of nonlinear circular membranes
were investigated. It was shown that tension modulation
effects in a struck circular membrane can be simulated by a
modal sound synthesis model, by including a nonlinear term
that computes the time-varying tension as a function of the
membrane displacement.

Comparisons between recorded membrane sounds and
numerical simulations show that the model captures the most
relevant effect of tension modulation, i.e. variations of fre-
quencies of the membrane modes. Although the focus of
the paper is not about exact resynthesis of sounds recorded
from real membranes, it has been shown that proper choices
of the geometrical and physical parameters of the membrane
model result in sound spectra that resemble closely those
observed in real circular membranes.
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