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ABSTRACT

Live performance situations can lead to degradations in the vocal
signal from a typical microphone, such as ambient noise or echoes
due to feedback. We investigate the robustness of continuous-
valued timbre features measured on vocal signals (speech, singing,
beatboxing) under simulated degradations. We also consider non-
parametric dependencies between features, using information the-
oretic measures and a feature-selection algorithm. We discuss how
robustness and independence issues reflect on the choice of acous-
tic features for use in constructing a continuous-valued vocal tim-
bre space. While some measures (notably spectral crest factors)
emerge as good candidates for such a task, others are poor, and
some features such as ZCR exhibit an interaction with the type of
voice signal being analysed.

1. INTRODUCTION

Real-time analysis of the timbre of a voice signal may provide use-
ful information for musical control, effects, or interactive systems.
Many acoustic features are available for timbre analysis (see e.g.
[1]). In this study we investigate various features and their suit-
ability for analysing the signals from vocal performances, where
suitability is judged in two ways: robustness to signal degradations
that may occur in live performances; and the amount of indepen-
dent information they contribute, determined using information-
theoretic methods.

“Timbre” is relatively ambiguous as a concept: some timbral
analyses are based purely on the harmonic strengths of pitched
sounds [2] while some are based on pitch-agnostic methods such as
MFCCs [3]. Evidence from perceptual studies tells us that timbre
perception is multidimensional and probably non-linear [4][5].

Our concern in this study is to evaluate continuous-valued and
pitch-agnostic instantaneous timbre features, which may be useful
in constructing a multidimensional “timbre space”. Many others
have evaluated timbre features in the context of classification tasks,
such as audio genre classification [6], beat detection [7] or speech
recognition [8]. In this study we do not perform any classification,
although a continuous timbre space could in principle be used as
input to a classifier.

We first describe the voice data used and the features investi-
gated, then present two experiments: one on the robustness of the
features to acoustic degradations, and one to investigate information-
theoretic dependencies between features.

2. DATA PREPARATION

For our experiments we prepared three datasets representing three
types of performing voice: singing, speech, and beatboxing. Par-
ticipants were aged 18–40 and with varying levels of musical train-
ing. For the singing and speech datasets we recorded 5 male and
3 female participants; for the beatbox datasets we recorded 4 male
participants (the beatboxing community is predominantly male).
All recordings were made in an acoustically-treated studio, using
a Shure SM58 microphone and Focusrite Red 1 preamp, recorded
at 44.1 kHz and 32-bit resolution. Each recording was amplitude-
normalised and long pauses were removed.

Feature analysis was then performed in SuperCollider 3.2 [9],
segmenting sounds into 1024-sample frames (with 50% overlap
between frames) and using a Hann window for FFT-based features.
Low-power frames (silences) were removed from the analysis.

The total number of audio frames in each dataset was then
approximately:

• Singing: 878,000 frames

• Speech: 987,000 frames

• Beatboxing: 454,000 frames

2.1. Features investigated

From the three datasets we derived the following features for each
frame (for definitions see [1]):

• Eight MFCCs, derived from 42 Mel-spaced filters

• Spectral centroid (power-weighted mean frequency)

• Spectral spread (power-weighted standard deviation)

• Spectral crest factor (SCF)

• Spectral crest factor in four log-spaced subbands
(50–400, 400–800, 800–1600, and 1600–3200 Hz)

• Spectral distribution percentiles: 25%, 50%, 90%, 95% (the
latter two are often described as “spectral rolloff” measures)

• High-frequency content (HFC)

• Zero-crossing rate (ZCR)

• Spectral flatness

• Spectral flux

In preliminary tests we also investigated some additional fea-
tures (using a smaller voice dataset): energy ratio in log-spaced
and in ERB-spaced subbands, SCF in higher-frequency subbands,
some other percentiles of the power spectrum, and HFC normalised
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against frame power. These features gave very poor robustness
performance compared against other features, so we did not in-
clude them in the main experiments.

In our preliminary tests we also visualised the distribution of
feature values and found by inspection that many of them were not
normally-distributed. Therefore all analyses we use in the follow-
ing experiments are based on non-parametric statistics.

3. EXPERIMENT 1: ROBUSTNESS TO DEGRADATIONS

To investigate the robustness of timbre features to signal degra-
dation, we applied the following degradations to the datasets, each
at 4 levels of effect:

• Additive white noise

• Additive crowd noise
(a “club crowd” recording from a commercial sample CD)

• Additive music noise
(“Come Back Clammy Lammy” by The Cardiacs)

• Clipping distortion

• Delay with no feedback

• Delay with feedback

• Reverberation (FreeVerb)

For each dataset this therefore created 7 x 4 = 28 degraded ver-
sions.

We then measured, for each audio frame in each degraded
recording, the absolute percentage deviation of the timbre features
from their “clean” values (taken from the original recording).

To gain an overview of the relative performance of each timbre
feature, we performed some statistics across the whole 28 degra-
dations per dataset:

• Kendall’s W test [10] to determine the extent to which some
features’ deviation was consistently better or worse than
others’. This statistic looks just at the relative ranking of
features’ deviation within a frame, ignoring the magnitudes
of differences between deviations.

• For each pair of features, the Wilcoxon Signed Rank test
[11, section 15.4] to determine whether one feature per-
forms better than another in terms of deviation, and if so
how strong the difference between the two is. This is in-
tended to “drill down” beyond Kendall’s W test to look at
the magnitude of differences in performance.

For practical reasons the data frames were subsampled by a factor
of 10 before calculating these statistics.

Note that these statistics amalgamate the performance of fea-
tures across different effect levels, which may mask an interaction
between robustness and effect level: a given feature might perform
extremely well under mild degradation but fail catastrophically un-
der high degradation. We therefore plotted graphs (not shown) of
the deviation values under the different settings. By visual inspec-
tion, the dominant trend was that features which performed best at
mild effect level also tended to perform best at strong effect level.

3.1. Results of experiment 1

3.1.1. Overall tests

Tables 1, 2 and 3 show (for each dataset) the median deviation of
the features, as well as the median ranking of the features within

Med. deviation Med. rank
Feature (%) (W=0.274)

crst1 2.17 5
25%ile 3.64 7

crst2 4.63 7
ZCR 5.18 9

mfcc1 6.62 9
95%ile 6.73 9
spread 7.01 8

crest 7.4 9
50%ile 7.71 10

crst3 10.9 10
90%ile 11.3 11

centroid 11.3 11
mfcc3 14.6 12

crst4 14.7 11
mfcc5 16.9 13
mfcc8 19.3 14
mfcc7 19.8 14

flatness 21.2 15
mfcc4 28.1 16
mfcc2 31.3 17

flux 36.6 17
mfcc6 40.9 18

HFC 6.33e+05 23

Table 1: Median deviation of each feature over all degradations;
and the median rank obtained for each feature, when ranked ac-
cording to lowest deviation for each audio frame. (In both columns
smaller values are better.) Singing dataset.

each frame (ranked by deviation within that frame). For the latter
(the median rank), Kendall’s W test indicated statistically signif-
icant rankings (p < 0.0001) in each of the three datasets. Each
table is sorted according to median deviation.

The tables indicate similarities across the datasets but also
some differences. In general it seems that the HFC, flux, flat-
ness and some even-numbered MFCCs are the worst-performing,
showing the highest typical deviation and the worst typical rank-
ing.1 The best-performing feature on all three datasets was crst1
(spectral crest in the lowest subband), typically followed by odd-
numbered MFCCs and others of the spectral crest features.

However, the ranking of some features shows notable differ-
ences across the datasets. The ranking of ZCR, 25-percentile and
95-percentile seems relatively high for the singing dataset, but then
is lower for the speech dataset and lower still for the beatboxing
dataset. We will discuss this further in section 5.

3.1.2. Pairwise tests

The results of applying the Wilcoxon Signed-Rank test to pairs of
features are shown in Tables 4, 5, and 6, formatted so that a plus
(+) sign indicates that the column feature has outperformed the
row feature with a z-score significant at the p < 0.0001 level, and

1Even-numbered MFCCs differ from odd-numbered MFCCs in the ef-
fect of the Discrete Cosine Transform: for even-numbered MFCCs the co-
efficient includes a positive contribution from the highest Mel-frequency
bins, while for odd-numbered MFCCs the contribution is negative.
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25%ile − − − − − − − − − − − − − − − − − − + − − −
50%ile + − + − + − + − − + + − − − − − − − + + − −
90%ile + + + + + − + − − + + − − − − − − − + + + −
95%ile + − − − − − + − − − + − − − − − − − + + − −
centroid + + − + + − + − − + + − − − − − − − + + + −
spread + − − + − − + − − − + − − − − − − − + + − −
flatness + + + + + + + − − + + − + − + − + + + + + +

ZCR + − − − − − − − − − − − − − − − − − + + − −
HFC + + + + + + + + + + + + + + + + + + + + + +
flux + + + + + + + + − + + + + + + − + + + + + +
crest + − − + − + − + − − + − − − − − − − + + − −

mfcc1 + − − − − − − + − − − − − − − − − − + + − −
mfcc2 + + + + + + + + − − + + + + + − + + + + + +
mfcc3 + + + + + + − + − − + + − − − − − − + + + −
mfcc4 + + + + + + + + − − + + − + + − + + + + + +
mfcc5 + + + + + + − + − − + + − + − − − − + + + +
mfcc6 + + + + + + + + − + + + + + + + + + + + + +
mfcc7 + + + + + + − + − − + + − + − + − + + + + +
mfcc8 + + + + + + − + − − + + − + − + − − + + + +
crst1 − − − − − − − − − − − − − − − − − − − − − −
crst2 + − − − − − − − − − − − − − − − − − − + − −
crst3 + + − + − + − + − − + + − − − − − − − + + −
crst4 + + + + + + − + − − + + − + − − − − − + + +

Table 4: z-scores for Wilcoxon Signed Rank test, between pairs of features. A diagonal line indicates that no difference between feature
distributions is proven (p > 0.0001) for that pair. Otherwise, a plus sign indicates the column feature deviates less, and a minus sign
indicates it deviates more, than the row feature. Singing dataset.

wSR-Z 25
%

ile

50
%

ile

90
%

ile

95
%

ile

ce
nt

ro
id

sp
re

ad

fla
tn

es
s

Z
C

R

H
FC

flu
x

cr
es

t

m
fc

c1

m
fc

c2

m
fc

c3

m
fc

c4

m
fc

c5

m
fc

c6

m
fc

c7

m
fc

c8

cr
st

1

cr
st

2

cr
st

3

cr
st

4

25%ile − − − − − − − − − − + − � − − − − − + + − −
50%ile + − − � + − − − − + + − − − − − − − + + − −
90%ile + + + + + − + − − + + − + − + − + − + + + +
95%ile + + − + − + − − + + − + − + − + − + + + −
centroid + � − + − + − − + + − + − + − + − + + + +
spread + − − − − − − − − − + − − − − − − − + + − −
flatness + + + + + + + − − + + + + + + + + + + + + +

ZCR + + − − − + − − − + + − − − + − − − + + + −
HFC + + + + + + + + + + + + + + + + + + + + + +
flux + + + + + + + + − + + + + + + + + + + + + +
crest + − − − − + − − − − − − − − − − − + + − −

mfcc1 − − − − − − − − − − − − − − − − − + − − −
mfcc2 + + + + + + − + − − + + + + + + + + + + + +
mfcc3 � + − − − + − + − − + + − − + − + − + + + −
mfcc4 + + + + + + − + − − + + − + + − + − + + + +
mfcc5 + + − − − + − − − − + + − − − − − − + + − −
mfcc6 + + + + + + − + − − + + − + + + + + + + + +
mfcc7 + + − − − + − + − − + + − − − + − − + + + −
mfcc8 + + + + + + − + − − + + − + + + − + + + + +
crst1 − − − − − − − − − − − − − − − − − − − − − −
crst2 − − − − − − − − − − − + − − − − − − − + − −
crst3 + + − − − + − − − − + + − − − + − − − + + −
crst4 + + − + − + − + − − + + − + − + − + − + + +

Table 5: z-scores for Wilcoxon Signed Rank test, between pairs of features. A diagonal line indicates that no difference between feature
distributions is proven (p > 0.0001) for that pair. Otherwise, a plus sign indicates the column feature deviates less, and a minus sign
indicates it deviates more, than the row feature. Speech dataset.
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crest − − − − − − − − − − + − + − + − + − + − − −

mfcc1 − − − − − − − − − − − − − − + − + − + − − �
mfcc2 + + + + + + − + − − + + + + + + + + + + + +
mfcc3 − − − − − − − − − − − + − − + − + − + − − −
mfcc4 − − − − − + − − − − + + − + + + + + + − − −
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Table 6: z-scores for Wilcoxon Signed Rank test, between pairs of features. A diagonal line indicates that no difference between feature
distributions is proven (p > 0.0001) for that pair. Otherwise, a plus sign indicates the column feature deviates less, and a minus sign
indicates it deviates more, than the row feature. Beatboxing dataset.

a minus (−) sign indicates the reverse, that the row feature has out-
performed the column feature. General tendencies confirm what is
seen in the median-rank tables, for example the very weak per-
formance of the HFC and flux features, which rarely outperform
any other feature on any dataset. The lowest-subband SCF (crst1)
performs very strongly on all datasets, and some of the other SCF
features show a tendency to outperform other features in terms of
robustness. Some MFCCs also perform strongly.

However, not all features show the same performance across
datasets: the ZCR seems relatively robust on the singing dataset,
outperforming many other features, while for the speech dataset its
performance is mixed and for the beatboxing dataset it is worse-
performing than most other features. This confirms what was seen
in the median-ranking data.

Another notable difference across the datasets is the relative
performance of the MFCCs. On the beatboxing dataset, the MFCCs
show strong robustness (especially the odd-numbered coefficients),
outperforming most other features in the pairwise comparisons.
However the singing dataset shows a different result: the MFCCs
are outperformed by the percentile features, by centroid and spread,
and by most of the SCF features. Results for the speech dataset lie
somewhere between the two: the even-numbered MFCCs perform
worse than most other features, while the odd-numbered MFCCs
perform better. We will return to these differences in section 5.

4. EXPERIMENT 2: FEATURE INTERDEPENDENCE

Using the same datasets and features, we also investigated the ex-
tent of interdependence and redundancy between timbre features.

The non-parametric distribution of timbre features suggests

that parametric analyses (e.g. correlation) may be problematic. In-
stead, we applied information-theoretic measures calculated using
model-free methods. Since we are interested in the application of
timbre features in live performance situations, we performed our
information-theoretic analyses across the expanded datasets con-
sisting of the “clean” recording plus 28 degraded recordings per
dataset.

Firstly, to investigate relationships between pairs of features
we determined the mutual information between each pair of fea-
tures. The mutual information is given as

I(X; Y ) =
X
y∈Y

X
x∈X

p(x, y) log

„
p(x, y)

p(x) p(y)

«
(1)

where p(x, y) is the joint probability distribution of X and Y and
p(x) is the marginal probability distribution of X . We calculated
this using an adaptive partitioning method with 16 bins per feature,
giving a range of 0 to 4 bits for the mutual information value.

Secondly, in order to provide an information-theoretic ranking
of the contributions of the timbre features, we performed a “greedy
rejection” feature selection algorithm on each dataset, as follows.
Starting with the full set of features, we evaluate the conditional
entropy of each feature (the entropy conditional on all the other
features):

H(X|A) = H(X, A) − H(A) (2)

where X indicates a feature, A indicates all features other than
X and H(.) is the entropy. The conditional entropy in this context
indicates the uncertainty of a feature’s value given the values of the
other features, and therefore the amount of “extra information” that
the feature adds to the ensemble. For high-dimensional entropy
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Med. deviation Med. rank
Feature (%) (W=0.102)

crst1 7.24 7
mfcc1 8.9 9

crst2 9.32 8
25%ile 10.2 10
spread 11.2 9

crest 11.3 9
50%ile 12.1 11
mfcc5 14.8 11

crst3 15.4 10
ZCR 16.2 12

mfcc7 16.7 12
mfcc3 17 12

95%ile 17.2 12
centroid 17.3 12

crst4 17.3 11
90%ile 19 13
mfcc4 20 13
mfcc8 24.1 15
mfcc2 29.9 16
mfcc6 29.9 16

flatness 30.8 17
flux 33 16

HFC 47.7 19

Table 2: Median deviation of each feature over all degradations;
and the median rank obtained for each feature, when ranked ac-
cording to lowest deviation for each audio frame. (In both columns
smaller values are better.) Speech dataset.

estimation we used an adaptive partitioning method (related to that
of [12]) which estimates the differential entropy. Hence entropy
values can be negative, and depend on the scaling of the feature
ranges. In this test we therefore normalised feature values to a
range of 0–1.

We identify the feature(s) whose conditional entropy is the
lowest, and remove it from consideration. We then repeat the pro-
cedure using the now-smaller set of features, and continue the pro-
cess until only one feature remains. (Note that conditional entropy
of a feature depends on the context, i.e. which features are included
in A. It must be recalculated at each step since discarding one fea-
ture changes the context for the remainders.)

A practical limitation in our entropy estimation algorithm meant
that it could not analyse the full 24-dimensional space without a
much larger volume of data. We therefore excluded four of the
least-robust features (as determined in Experiment 1): power, flat-
ness, HFC, flux and 2nd MFCC. We subsampled the data by a
factor of 3.

4.1. Results of experiment 2

4.1.1. Pairwise mutual information

The mutual information between pairs of features showed the same
general tendencies in all three datasets, so we include here only
one table, the results from the speech dataset (Table 7). Note that
the values in Table 7 are expressed as percentages for ease of read-
ing.

Med. deviation Med. rank
Feature (%) (W=0.0887)

crst1 9.74 8
mfcc5 10.1 9
mfcc7 10.2 9
mfcc1 10.9 10
mfcc3 11.7 10

crest 12.6 11
mfcc8 12.9 11
spread 13.2 10
mfcc6 14 12
mfcc4 14.1 11

25%ile 15.4 13
crst2 15.5 11
crst3 16.7 12

50%ile 18.3 14
95%ile 18.4 12

crst4 18.9 13
centroid 20.7 13
90%ile 23.4 14

ZCR 23.5 14
mfcc2 24.5 15

flatness 34 17
flux 41.9 18

HFC 46.7 20

Table 3: Median deviation of each feature over all degradations;
and the median rank obtained for each feature, when ranked ac-
cording to lowest deviation for each audio frame. (In both columns
smaller values are better.) Beatboxing dataset.

Five features seem to have a high interdependence, with at
least 1.1 bits of information shared between any pair: centroid,
spread, flatness, 95-percentile and first MFCC. This overlap is in-
teresting because the features represent three alternative approaches
to spectral analysis: parametric statistics (centroid, spread), non-
parametric statistics (percentiles, flatness) and perceptually-inspired
calculations (MFCC). The interaction of the first MFCC is notable
since all the other MFCCs show extremely low amounts of mu-
tual information with any other features. The first MFCC essen-
tially encodes the low-versus-high balance of energy in the Mel-
scaled spectrum; and so it seems likely that the interaction of these
five features is because each of them has a connection to the low-
versus-high balance of spectral energy when analysing voice sig-
nals.

Some other pairs of features share information, though to a
lesser extent: all pairs of percentile features share some informa-
tion, and both HFC and flux indicate a degree of interaction with
the signal power. The HFC and flux calculations have similari-
ties to the power calculation (HFC is essentially a weighted power
calculation) so their interaction is understandable.

MFCCs 2–8 and the SCF measures are generally quite inde-
pendent, not showing large interaction with any other features.
(The full-band crest measure exhibits some interaction with crst1,
suggesting that the full-band crest measure is most influenced by
the content of that lowest band.)
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mfcc2 2.4 9.1 12 10 6.6 9.8 4.2 4.4 4.6 7 3 3.7 3.8
mfcc1 5.2 16 20 35 37 35 35 31 11 17 5.9 10

crest 5.7 16 17 9.6 8.6 12 7.6 9.3 10 11 6.3
flux 19 7.8 9 6.6 6.4 7.9 5.4 6.9 4.7 15

HFC 14 18 24 20 18 25 15 16 11
ZCR 3.4 16 19 12 9.8 14 7.9 8.9

flatness 6.8 12 16 30 36 31 48
spread 5.1 9.8 13 31 42 27

centroid 6.6 19 30 48 36
95%ile 5.3 12 17 44
90%ile 5.6 14 21
50%ile 7.2 32
25%ile 6.7

Table 7: Mutual Information between features, for the speech dataset. Values are expressed as a percentage of the maximum possible value
of 4 bits. Values greater than 25% (i.e. 1 bit) are given in bold.

4.1.2. Feature selection

Results of the entropy-based feature-selection are given in Tables
8 (for singing), 9 (for speech) and 10 (for beatboxing).

The three tables show some common trends. The most-favoured
features are spectral crest measurements (full-band or subband),
MFCCs, and the 95-percentile.

The ZCR is the only time-domain feature included here, and so
one might have expected it to provide information in some sense
different from the spectral features. However it is rejected quite
early in all three trials, indicating this is not the case. We suggest
that this may be because the fluctuations in ZCR are affected by
vowel/consonant distinctions in almost the same way as measures
like spectral rolloff or centroid: vowels tend to have a low value
while consonants (especially fricatives) push it to a high value.

The low percentiles were rejected very quickly in our exper-
iments, suggesting that they do not carry much information at all
that cannot be derived from others of our features used. This pro-
vides an interesting contrast against the 95-percentile, which per-
forms quite well (in the speech dataset, very well).

The poor performance of the spectral centroid measure is no-
table given its relatively common usage in topics such as tim-
bre analysis and music retrieval. Compare it against those fea-
tures with which it has a high mutual information (as discussed
above): our feature selection consistently ranks it below the spec-
tral spread, 95-percentile and first MFCC.

Across the three datasets very little difference is evident. The
feature with the largest change in ranking is the 95-percentile –
ranked much higher for the speech dataset than the others – but all
other features exhibit quite a consistent performance in terms of
this feature-selection experiment.

As discussed, we were unable to run the feature selection on
the full 24 features, and excluded the least noise-robust from the

main feature selection test reported here. In order to check whether
or not we had unjustly excluded features which may have carried
much information, we ran a second feature selection test, return-
ing the excluded features and instead excluding a different subset
– namely, the poorly-ranking features as shown in Tables 8, 9 and
10. In this test (data not shown) we found that most of the excluded
features (power, flatness, HFC, flux) ranked very badly, consis-
tently among the first to be rejected. The 2nd MFCC achieved a
middling rank, alongside other MFCCs.

5. DISCUSSION

Our two experiments each compare timbre features but using very
different criteria. Some features perform well according to both
sets of criteria: in particular the (full-band or subband) spectral
crest features, which we find to be quite noise-robust as well as
information-bearing. This suggests that they can be recommended
generally for analysis of voice signals. Odd-numbered MFCC co-
efficients also performed strongly in both tests.

The strong performance of the spectral crest features is in con-
cordance with experiments in music similarity [13], audio retrieval
[14], and speaker recognition [15], which have found them to be
useful when included alongside other features such as MFCCs.
Our feature-selection experiment confirms this for the case of the
performing voice, and also reinforces the notion that spectral crest
features may specifically be complementary to MFCCs, because
in our feature-selection experiment both the MFCC and the SCF
feature-sets performed strongly – implying that neither is strongly
predictable from the other.

Some features perform badly in both experiments. The spec-
tral flatness, spectral flux, and HFC measures are all relatively
well-known features, yet when applied to our voice datasets they
seem to be highly susceptible to acoustic degradations, as well as
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Rank Feature H(Feature|Remaining)
1 crst2 —
2 crst3 -0.871
3 crest -0.854
4 mfcc6 -0.759
5 mfcc8 -0.636
6 mfcc3 -0.391
7 crst1 -0.166
8 mfcc7 0.0196
9 95%ile 0.0425

10 mfcc4 0.0127
11 mfcc5 0.365
12 mfcc1 0.0722
13 spread 0.0962
14 90%ile 0.403
15 crst4 0.0392
16 centroid 0.13
17 ZCR -0.323
18 50%ile -0.742
19 25%ile -1.35

Table 8: Feature selection by greedy rejection using conditional
entropy, for singing dataset.

carrying a lower amount of unique information than other features
we investigated.

For some features the experimental results point in different
directions. Even-numbered MFCC coefficients were ranked rel-
atively highly in the entropy-based feature selection, but ranked
poorly in terms of robustness to degradations. Conversely, spectral
spread ranked quite highly for robustness but poorly for informa-
tion content, as did the 25-percentile and 50-percentile.

We were interested to see the relative performance of the 90-
and 95-percentile, since both have been used as “spectral rolloff”
measures (with 95-percentile the more common). The 95-percentile
consistently outranked the 90-percentile in both of our experiments,
confirming that is is preferable, for solo voice data at least.

The above discussion has focussed on findings that emerge
consistently across the three datasets. However, Experiment 1 re-
vealed differences across datasets, in terms of the robustness of
some features. For the singing dataset the 25- and 95-percentiles
and the ZCR give good robustness performance, and the MFCCs
are less robust than many other features; while for the beatboxing
dataset the reverse is true; and for speech the results lie somewhere
between the two extremes. We suggest that vowel/consonant dif-
ferences may be the cause of this: compared against speech, singing
contains a larger proportion of vowel phonation, whereas beatbox-
ing involves a much smaller proportion [16]. Vowels and con-
sonants are acoustically very different classes of sound, produc-
ing spectral structures very different in gross and fine detail [17].
Therefore it seems likely that some features are more robust when
analysing vowels than consonants.

Our results suggest which features may be more or less use-
ful in constructing a timbre space for vocal signals. However,
there are some questions which remain unanswered. The effect of
signal degradation on separate timbre features is likely to exhibit
strong interactions, so the deviations of individual features don’t
allow us to predict directly the deviation within a multidimen-

Rank Feature H(Feature|Remaining)
1 crst2 —
2 95%ile -0.884
3 crst1 -0.814
4 crst3 -0.891
5 mfcc8 -0.773
6 mfcc3 -0.527
7 mfcc7 -0.435
8 mfcc6 -0.00864
9 mfcc4 0.0394

10 mfcc5 -0.188
11 crest 0.217
12 mfcc1 0.196
13 spread 0.175
14 90%ile 0.313
15 crst4 -0.0589
16 centroid 0.0974
17 ZCR -0.254
18 50%ile -0.845
19 25%ile -1.23

Table 9: Feature selection by greedy rejection using conditional
entropy, for speech dataset.

sional timbre space made from those features. The issue becomes
further complicated if data-reduction techniques such as Principal
Component Analysis, Independent Component Analysis or Self-
Organising Maps are applied. This is a topic for future study; as is
the question of how easily a performer can exert deliberate control
over such timbre dimensions and spaces.

6. CONCLUSIONS

We have evaluated timbre features for use with performing voice
signals, according to two criteria: their robustness to acoustic degra-
dations of the signal – such as might occur in a performance situ-
ation – and their statistical independence from other features (and
therefore the amount of “extra information” they provide). The
strongest-performing features were the (full-band or subband) spec-
tral crest factors (SCFs) and the odd-numbered MFCCs, which
generally exhibited good robustness as well as being informative in
the information-theoretic sense. The 95-percentile also performed
quite strongly, and is to be recommended as a measure of “spectral
rolloff”.

Some features performed poorly in both evaluations, includ-
ing spectral flatness, spectral flux, and HFC. In the context of our
voice datasets they showed poor robustness as well as a degree of
informational overlap with other features. Although these features
are relatively well-known in music signal analysis, we suggest that
they should be avoided for analysis of monophonic voice signals.

Similarly, the spectral centroid feature is relatively common in
music signal analysis, yet its mediocre performance on our voice
datasets suggests that it may not be especially useful for solo voice
analysis. It is generally outperformed by features such as 95-
percentile and first MFCC, with which it has quite a high infor-
mational overlap.

The performance of some features (e.g. ZCR) showed an in-
teraction with signal type, possibly due to the differing nature of
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Rank Feature H(Feature|Remaining)
1 crst1 —
2 mfcc1 -0.823
3 crst2 -0.796
4 mfcc5 -0.909
5 mfcc7 -0.787
6 mfcc3 -0.571
7 mfcc8 -0.195
8 mfcc4 0.0262
9 mfcc6 -0.101

10 crest 0.381
11 spread 0.494
12 crst3 0.264
13 95%ile 0.207
14 crst4 0.318
15 90%ile -0.398
16 centroid -0.053
17 ZCR -0.475
18 50%ile -1.1
19 25%ile -1.57

Table 10: Feature selection by greedy rejection using conditional
entropy, for beatboxing dataset.

vowel- and consonant-type sounds.
More broadly, we have shown that information-theoretic mea-

sures can be useful in answering questions about the interactions
between acoustic features, whose non-parametric distributions may
lead to problems for more traditional measures of association.
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