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ABSTRACT [7]. Most of these methods owe a great deal to the much earlier

i . treatment of self-sustained musical oscillators due tonjce,
There are now a number of methods available for generating g.humacher and Woodhou§e [8].

synthetic sound based on physical models of wind instruspémt
cluding digital waveguides, wave digital filters, impedefzased
methods and those involving impulse responses. Normati su
methods are used to simulate the behaviour of the resorzatdr,
the coupling to the excitation mechanism is carried out bk-ma
ing use of simple lumped finite difference schemes or didikal
ter structures. In almost all cases, a traveling wave, Eaqu-
domain, or impulse response description of the resonatoses
as a starting point—efficient structures may be arrived anthe
bore is of a particularly simple form, such as a cylinder areco

In recent years, however, due to the great computing power
available, efficiency has become less of a concern—thispis-es
cially the case for musical instruments which may be welleited
in 1D, such as wind instruments. In this paper, a fully timeee
discrete algorithm for the simulation and synthesis of weiod
instrument sounds is presented; such a method, though smahew

more computationally intensive than an efficient wavegsitec- loses the powerful analysis perspective mentioned abbgdreat-

ture, is still well within the realm of real-time performancThe ment of the resonator becomes independent of any particater
main benefits of such a method are its generality (it is no@ong  rofile and the system as a whole is now much more amenable to
necessary to make any assumptions about bore profile, wiigh m jyieresting extensions involving, e.g., time-varying alinear

be handled in an almost trivial manner), extensibility.(i.the effects which do indeed play a role in wind instruments, ahéttv
model may be generalized to handle nonlinear phenomerlglire 5. ot easily approached using impedance or scatterirgpts
ease of programming, and the possibility of direct proofsuwher- In the present case, concerned with audio synthesis (asdefhu

ical stability without invoking frequency domain concepts ficiency), the model remains 1D; for more on the use of stahdar

Simulation results, sound examples and a graphical usaFint  \,merical techniques in multi-D, in the setting of acowstanal-
face, in the Matlab programming language are also presented ysis of musical instruments, see. e.f, [9].

A standard model of a reed wind instrument is presented in
1. INTRODUCTION Sectior[®, followed by a development of a finite differencaeti
domain algorithm in Sectidf 3, including some discussioimef

The synthesis of sound based on physical models of winduinstr plemntation details, such as the operation count, and ctahylity
ments has traditionally been carried out in a variety of wiig- issues. In Sectio 4, simulation results are presentedinaBelc-
ital waveguides[Ii1[12] have been extensively explored, @ajiy tion[H, a graphical user interface, in the Matlab environtéen
in the special cases of cylindrical and conical tubes, ircivitiase ~ exhibited.
they yield an extreme efficiency advantage. A related siadfe
method, wave digital filterind ]3], is also used in order tmaoect 2. A STANDARD WIND INSTRUMENT MODEL
waveguide tube models with lumped elements such as an excita
tion mechanisrrﬂ41 or toneholdﬂ [5]. Another body of te;lueis, 2.1. Instrument Body
closely related to digital waveguides, and based arounédiapce ) ) ) »
descriptions, has been developed by Guillemain and hisises A standard model of one-dimensional linear wave propagatio

All of these methods rely, to some degree, on simplified de-
scriptions of the resonator (tube)—for example, digitaveg:
uides make use of a traveling wave decomposition, accoragani
by frequency-domain (impedance or reflectance) charaeténs
of lumped elements or phenomena such as bell radiation aed to
holes. Other methods make use of impedance descriptioiie of t
resonator itself[[6], or, its time-domain counterpart, Geeen’s
function [8]. Such points of view follow directly from invéga-
tions in pure musical acoustics, and are of course indisiplenas
analysis tools. When it comes to sound synthesis, howevenat
clear that they are necessary—once one has arrived at fasatis
tory model of a musical instrument, written as a time-spab& P
system (for the resonator) coupled to ODEs (the excitatiement
and a radiation boundary condition), one may proceed djrémt
a synthesis algorithm without invoking any notion of freqog
impedance, wave variables, or reflectance. Though one a§eou

[B]. Other techniques, based on the so-called "K"-methoa- ~ @n acoustic tube[10] is given by the following set of equasio
position to wave- and scattering-based methods) bear ardles g
semblance to the direct simulation methods to be discusssed %ut = —pz —5 Dt = —Ug t>0,z€0,L] (1)
pc
* This work was supported by the Engineering and PhysicalnSe® )
Council UK, under grant number C007328/1, the Leverhulmesfrand Here,u(z,t) andp(z,t) are the volume velocity and pressure, re-

the CONSONNES project. spectively, at position;, and at timet, and subscripts andx refer
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to time and space differentiation, respectivelandc are the den-
sity and wave speed, respectiveifx) is the tube cross-sectional
area at positionz, and L is the length of the tube. See Figure

. The system above is sometimes condensed into a singledseco

order system, known as Webster’s equation [11]; it is alswsthrt-
ing point for various speech synthesis algorithind [12]luding
the Kelly-Lochbaum mode[T13].

This model results from many simplifying assumptions, the
most important of which are linearity, relatively slow \ation in
S(z) and the size of(z) relative to audio wavelengths, and loss-

wherep, (t) is the mouth pressure, apg, (t) the pressure at the
entrance to the acoustic tube. The pressure differencéatedeo
the flow in the mouthpiece,, through Bernoulli’s law,

2| A
wut |Ap]

Tsign(Ap) (4)

where herew is the width of the reed channel. The flow is non-
zero only when the reed is not in contact with the mouthpiece,
or wheny > 0. As such, the quantity™ is given byyt =

lessness. For more comments on these assumptions (some morg,; 1 |y|)/2. Neglected here is an inertia term—see, elg] [11].

justifiable than others), see Sectdn 6.

S(x)

So

0 L
Figure 1:Acoustic tube of variable cross-sectional agar)

It is useful to dimensionally reduce the problem, by introdu
ing the variables:’ = z/L, p’ = p/pc?, andu’ = u/cSo, as
well as a dimensionless area functish = S/S,, whereS; is a
reference surface area, suchSs= S(x = 0). This leads, after
substitution in[(IL) and removal of primes, to

Ut = Sps = —Yue t>0,z€[0,1 (2
wherey = ¢/L. The lowest resonant frequency of the tube will
be on the order ofy. Initial conditions for the system may be set
to zero, and proper boundary conditions (one required 4t ead
of the domain) follow from the consideration of the reed &tbn
and bell radiation, to be discussed shortly.

—YP=z

2.2. Reed Mechanism

A slightly non-standard model of reed vibration may be giasn
follows (see Figur&l2). For a one-mass model, the reed displa
ment behaves according to

wi

a—2
0

B SrAp
M,

Iy "=

Here,y(t) is the displacement of the reed relative to an equilibrium
positionyo, M, is the reed massS, an effective surface area of
the reedwy the resonant frequency, agda damping parameter.
Dots above variables signify total time differentiationheTterm
involving the coefficientv; models the collision of the reed with
the mouthpiece. It becomes active when< 0, and acts as a
one-sided repelling force, modelled as a power-law noaliitg

of exponentw. Here,y~ = (y — |y|)/2. The reed displacement

J+ 99 +wo(y — yo) — ®)

The square root dependence of flow on velocity could be genera
ized to a power law[[18] with few resulting complications het
discretization procedure to be outlined below.

The flow variables themselves are related by a conservation
law

Uin = Um — Ur

whereu;,, is the flow entering the acoustic tube, and wherds
related to reed displacemenby

Upr = Sy

It is useful to introduce scaled variables as follows:

i_ i P
yf pC2

;U
’ CSO

Yo

for any pressure variablg or velocity variableu., which, when
inserted in the above equations (and primes subsequenttyel)
lead to the system:

.. . a —_ha—1
j+gi+wiy—of (I+1)7))" =-0Ap  (5a)
Ap = pm — pin (5b)
Um = R(y + 1)+\/ |Apl|sign(Ap) (5¢)
Uin = Um — Ur (5d)
ur = SY (5e)
where
2

pc Sy wYo Sryjo

= £ or — /92X _ 2r¥o

M,yo R=V2 So s cSo

Note that higher-order effects of the time variationyef(which is
possible during play), which is generally quite slow, arglaeted
here, as in previous treatments of the reed sysfei [15].

It should be clear that in a connection with the acoustic tube
described by[{2), it must be true that

u(0,t) = win(t) (6)

2.3. Bell Radiation

One boundary condition is required at the bell terminatibior-
mally, in the musical acoustics literature (see, elgl, [[El), one

y is thus here permitted to be negative. This term, inspired by employs the standard radiation impedance result for anngeti

collision models used in hammer-string dynamicd [14], esghle
distinguishing feature of the model, which is otherwisentitzal
to that which appears in the literatufe 5] 16, 17].
The oscillator above is driven by the pressure differef\ge
given by
Ap = pm — pin

tube. Often, this is given, in the low-frequency limit, in alyno-
mial form obtained through a series approximation. While if
fine for analysis purposes, positive realnés$ [20] (and passiv-
ity) is lost, and numerical instabilities can arise in siatidn. It
is thus better, in this context, to make use of a rational argi-p
tive real approximation to the radiation impedance (seg, &e
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Figure 2:Pressure and flow variables in a reed instrument mouth-
piece.

form given in [12]), leading to the following relationshigtwveen
scaled pressure and velocityaat= 1:
u(l,t) =m+Bp(1l,t)  m=oap(lt) )
wherem(t) is an auxiliary variable, and where the constanend
(3 are given by
o 3L [w35(1)
-8 So

925(1)

B="1x

The term with coefficientx corresponds to the reactive part of the
radiation impedance, and that with coefficighto the resistive
part. The extra variablen is necessary, in the discrete setting,
in order to accommodate the extra energy storage requirea by
reactive termination. One could go much further here, and de
velop boundary conditions which model radiation to highasua
racy (thus requiring more state), but the positive realeessrion
must continue to be enforced (i.e., a higher order polynbsga
ries approximation to the radiation impedance will not seffi
Positive realness of an impedance corresponds directigunded
realness for the associate reflectance, a quantity whiatoi=aply
better known to musical acousticians.

3. ASIMPLE FINITE DIFFERENCE SCHEME

A finite difference time domain scheme for systdih (1) is samil
to that which appears in 1D electromagnetics simulafiohZZ1,
with the slight added complication of spatial variation live tpa-
rameters (i.e., the surface ar8éx)). Introduce staggered grid
functionsp; /2, anduy,, ,, for integerl andn; these are ap-
proximations top(z,t) and u(x,t) at locations(z lh,t

(n+ 3)k) and(z = (I + %)h,t = nk), respectively, wheré,

S(z) at locationst = (I + 1)h andz = Ik, respectively. Under
the special choices

1 2
{ghg T SR + S+ 1)h) ©)

1

4
a necessary condition for numerical stability becomes

[9], (S((I—1)h) +2S(lh) + S((I + 1)h)(10)

A< (11)

This is the familiar Courant-Friedrichs-Lewy conditidi3[224],
arrived at through energy techniques (and not frequencyoar v
Neumann analysis, which is not generally applicable to lerob
with spatial variation[[25])—note that the condition is @mbndent
of the variation inS itself, simplifying implementation somewhat.

In particular, for a given time stejp, the grid spacing: must
be chosen so as to divide the unit interval into an integerb@arm
of parts, and it is also important th&fJ11) be satisfied as fea
equality as possibility. This leads to the choice

N = floor (1/~k) h=1/N

The schemd]8) is a one-step scheme in the two grid functions

p andwu, and is formally second-order accurate. As illustrated in
1

Figurel3, the grid functioqa;?+2 is defined forl = 0,..., N, and
uy',, forl = —1,...,N. Thus updating op, according to[[8b)

2
may be performed directly, but updatingwfaccording to[[da), at
grid locations—h /2 and N + h/2 necessarily requires a boundary
condition—this will be discussed shortly.
3.1. Scheme for Reed System

For the reed system, given [d (5), consider the followingesaé:

1 n n n— n n—
E(yH_Qy Ty 1)—&-%(1}“—1/ 1)
2
+ %(yn+1+yn—1) (12a)
u}a n —a— n n— n
+ DT ") = —QAp
Ap" = pm —Pin (12b)
um = RY"+1)7V/|Ap»[sign(Ap"™) (12c)
Uiy = Uy — Up (12d)
S n+1 n—1
uio= W =y) (12e)

Here, the functions, wm, ur, Win, Pm, pin, and Ap have been

andk are the spacing between adjacent grid points and time step, 2PProximated by time series, with time stepp.,,, in particular, is

respectively. See Figufd 3 is related to the sample rafe by
k = 1/fs—in audio synthesis applications, is thus normally
chosen a priori. The resulting scheme is of the followingrfor

1 n n+%
4, o) = G
n+3 n—3 n n

[S], (pz i - D 2) =A (“H% _“17%> (8b)

where the Courant numberis defined as\ = kv/h, and where

[%]H% and [S], are approximations to the continuous function

n+1
+1

n l
o *2) (8a)

assumed to be a known input control signal, andandw;,, will

be related to values of the grid functionprandw over the prob-
lem interior. Worth noting here is the approximation to thié-s
ness term (with coefficiens?) and the collision term (with coeffi-
cientw?"), both of which make use of semi-implicit discretizations.
Such implicit approximations, when applied to lumped syste
such as the reed, significantly ease stability requiremamnis, as
long as the unknown value of the grid function appears liggas

it does here) still allows for fully explicit updating—se@&ion
B3. To this end, it is worth reducing the system above to

Ap" +al/|Ap”sign (Ap") + ay = azui, (1)
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Figure 3:Staggered grid for finite difference sche@for acoustic tube.

where the coefficienta? > 0, a3 andas > 0 will depend on
known (previously computed) values gf and the various defin-
ing parameters of the reed system. (The non-negativityadnd
a3, follows from the use of semi-implicit discretizations toet
stiffness terms.)

Again, as in the case of the reed termination, the unknom@(;;l
2

1
andp?jr2 are coupled. In this case, though, the coupling is linear.
Employing schemd(8b) at grid locatién= N leads to a unique
solution foru’;v+l in terms of previously computed values of the

. . 2 .
In order to couple the reed system to the acoustic tube, onegrid functionsp andu, as well agn, i.e.,

possible approximation tg](6) is

n 1 n-l»l n—1
Pin = = (po ? 4+ po 2) (14)

2
From the update[{8b) at grid poiht= 0, and using the above
conditions, as well a§{IPb), one may arrive at the relation

Ap" = by —byuin, (15)

where againpy andbsy > 0 depend on previously computed val-
ues of the grid functiong andw, as well as the input pressupe, .
Now, {I3) and[(Ib) may be combined into a single equationtfer t
pressure differencAp™:

|Ap"| + i /TAp] + —2

sign (Ap™) =0

(16)
for the coefficents:? > 0 andcy. One may then observe that,
in order for a solution to exist, one must hasign (Ap™) =
—sign (¢y), at which point the magnitudgAp™| may be deter-
mined uniquely. In this case, due to the form of the presfiore-
characteristid{4), this may be done using the quadratindita, a
unique solution will exist for any such characteristic whis one-
to-one, though an iterative method (necessarily convérgeay
be necessary. In this sense, finite difference updatingmplsr
than in the closely related case of the bow-string intesactin
which case the force-velocity characteristic is not neméigsone-

to-one) [25].
3.2. Scheme at Bell Termination

For the bell termination, an approximation to the boundanydi-
tion (@) is given by

o () g (et )

_1 k n—1 nt+l
n—3 +7a(pN 2 +pN+2)

n
UN+%

m"Te (17)

Il
3

“?w% =d" (18)
whered" depends on previously computed values of the grid func-
tionsp andu, as well agn.

3.3. Explicit Updating

It is important to point out that, despite the apparently plax
relationship among the stored variables at the termingio the
grid function to be updated over the interior, a purely explip-
date form may be arrived at, but the order in which operataas
performed is of great importance. Consider the entire seham
the end of an update cycle, at which point all values at tirep st
n or previously are known, except for the valué_sé andu”,

N+1-
One may then proceed as follows:

e CalculateAp™ from (I8).

e Calculatey™* usingAp™, from {IZ&).

e Calculateu] from (IZ&).

e Calculateuy, from (IZ8).

e Calculateu}, from (IZd), and sem’_l% from (I32).

° CalculateuNJr% from (I8).

natl
e Calculatep, +2,f0rl =0,...,N, from (1).

e Calculaten™" 2 from {I2).
o Calculateu;fj forl =0,...,N — 1, from (8a).
2

At this point the updating cycle is complete, and the procede-
peats, after shifting data. Proponents of wave digitalfiigeoften
call attention to this computability issue, usually deaitthvusing
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so-called reflection-free ports|[3]. One may see here thasdme
property is available using finite difference schemes, amthér-
more, numerical solution uniqueness may be ensured (ima=int
with wave digital methods making use of nonlinear elemeants),
power-normalized waveE[26]).

3.4. Numerical Stability

The question of numerical stability of the simulation as alehs
a delicate one, but may be dealt with using energy concEbls [2
which have already been applied to variety of other nonfimea:
sical systems, such as striffg27] and plate vibration [28,
however, too large a topic to cover sufficiently in a shortlmab
tion. In fact, one may definitively prove numerical stapilit.e.,
boundedness of computed solutions under any possible sstdf
and tube parameters, and for any pressure excitation wawgfio
the absence of the collision term [ (3)—stability undedisimn
conditions is notoriously difficult to show, but the use ofears-
implicit discretization is an excellent ad hoc means of preing
such difficulties. The key point, however, is that if a schesueh
as [8) is employed over the domain interior, and the Couram ¢
dition (1) is obeyed, then a connection with semi-impbgiprox-
imations to energetically well-behaved objects such asebd or
bell termination, there is no further condition necessaryuller
sketch of numerical stability results for this system wipaar in
a forthcoming publicatior[25].

3.5. Computational Considerations

The computational cost of this algorithm is almost entidie to
the updating of the scheme for the tube, and, as such, ismgeyer
by the choice of time step and grid spacing,, which are related
by the CFL condition[[JI1). The condition should be fulfillesl a
close to equality as possible—otherwise, excessive ngaletis-
persion, leading to mode mistuning and a severe limitati@uiio
bandwidth [25] will result. Thus, for a given time stép= 1/,
the memory requirement will be almost exacly. /v = 2f.L/c
units. Updating at a single grid point requires three aréhim
operations, and thus the total operation count will6yg /vy =

6Lf2/c operations/second. For typical wind instruments, and at a

suitably high audio sample rate, suchfas= 44100 Hz, the oper-
ation count will be on the order of tens of megaoperationsise,
well within real time capability on a modest laptop comput€ior
example, on the author’s laptop, a Dell with a 2.0 GHz Pentium
and for the case of a clarinet geometry, it takes approximat®

s to generate 5 s of sound output, at 44.1 kHz, in Matlab.) @n th
other hand, it is more expensive, in terms of arithmeticygionot
memory) than a typical waveguide algorithm.

4. SIMULATION RESULTS

4.1. Bore Profiles

It is particularly simple, in the direct FD framework, toedtthe
bore profile—the functiort(x) may be set arbitrarily, and once
set, values of the function are used, without further calboihs
(as of scattering coefficients or impedances) in the sinwatt is
thus straightforward to experiment with bore profiles whichy
differ substantially from, e.g., those which lead to effitizraveg-
uide realizations. See FigUrk 4. In particular, computeti@ffort
is independent of the choice of bore profile.

03 031 032 033 034 035 036 037 038 039 04
t

Figure 5:Non-dimensional reed displacementfor a clarinetlike
configuration, of parameters as given in the caption to Feddr
and with a bore profile as shown in Figut& 4(b). The parameters
for the collision term in@@) are chosen as; = 316, and the
nonlinearity exponent ie& = 4. In (a), the input is a steady nondi-
mensional mouth pressure pf, = 0.013, and in (b),p,, = 0.02.

4.2. Reed Beating

As an example of typical phenomena generated by such a model,
consider the perceptually important reed-beating effastillus-
trated in Figur€lb. In particular, note that the nondimensioeed
displacement takes on values —1; the extent of such “penetra-
tion" may be controlled through the choice ©of and«, but the
general results are in agreement with other publishedtseée,

e.g., [29)).

4.3. Onset Times

As another example, the variation in onset times for notea as
function of mouth pressure, characteristic of wind instemts, is
shown in Figurélb.

Sound examples will be available shortly at the authors web

address{[30].

5. GRAPHICAL USER INTERFACE

A graphical user interface has been developed for this sgiglal-
gorithm, using the development tool (GUIDE) in the Matlabr
gramming environment. The user is able to set all reed parame
ters, the form of the pressure ecitation, and a variety cfaeable
choices are available for the tube itself, including thealisylin-

der and cone profiles, as well as additional bell geometrygipa-
tions. Itis also possible to toggle between reed and brasisio
and, in the case of brass instruments, to specify a timengiip
stiffness. See Figuld 7. The user interface will be madeigybl
available in the near future.

6. CONCLUSION

Perhaps the greatest advantage of a fully discrete forionlest fi-
delity to the physics of the continuous time/space modelfitas a
result, many issues which appear in more efficient desigieé, as
“lumping" of impedances, fractional delay interpolatiet;., may
be sidestepped. Another advantage is extensibility—slesvifor
some examples. The greatest disadvantage is computatiostal
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Figure 4: Typical output spectra, for various bore types: (a) a cyéindb) a cylinder with a clarinet-like bell, and (c) a cyliadwith a
bell of extreme flare. In each case, the other model parametmrespond, roughly, to those of a clarinet:= 512, Q = 1.6 x 1010,

R =0.032,S = 1075, wy = 23250, g = 3000.
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x 10
5 T T T T T T T T T
p
0
5 L L L L L L L L L
0 005 01 015 02 025 03 035 04 045 05
-5 t
x 10
1
p
0 |
-1 L L L L L L L L L
0 005 01 015 02 025 03 035 04 045 05
-5 t
x 10
1
p
0
-1 L L L L L L L L L
0 005 01 015 02 025 03 035 04 045 05

Figure 6:Non-dimensional output pressure, for the wind model of
parameters given in the caption to Figlile 4, and using theotd-

like bore profile shown in Figuild 4(b). Top, with a nondimensil
mouth pressure of,, = 0.01, center, withp,, = 0.015, and
bottom, withp,,, = 0.02.
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Figure 7: Graphical user interface for the wind synthesis algo-
rithm.

which is, in fact, not extremely high, though certainly heglthan
that of, e.g., a waveguide model.

There are many ways in which the FD wind model here should
be extended. Several are in progress, and have not beesshsicu
in this short paper—in particular, there is a simple ext@msd
“blown open" brass-like instruments which is nearly triyian-
volving only a single change in polarity of the pressureedéhce
Ap in the model. Such a feature is already included in the GUI
mentioned in Sectiofd 5. In addition, it is rather straightfard to
implement models of woodwind toneholés][81] 32], withou th
usual concern of commuting or lumping of impedances in instr
ments of more complex bore profile. Another obvious stepaés th
porting of such an algorithm to a real time environment sugh a
Max/MSP [33] or csound[3d4]—as noted earlier, a real time im-
plementation is easily possible, and such developmentsrater
way.

Other extensions are also possible. The fully discrete FD ap
proach is very well suited to an extension to nonlinear 1Devav
propagation—the linearity hypothesis is probably suffitfer reed
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instruments, and brass instruments under moderate anfgpkt-
citation, though nonlinear effects do appear at high annidis in
instruments such as the tromboRegl[35]. Fully discrete nuktho

computing shock wave solutions have a very long history imma

stream fluid dynamics applications—see, e.g., the text lgdHi
[B8], or the classic article by Sofl 1837]. The introductionla$s

in the acoustic tube, however, is in some ways more probiemat

Often, loss in the boundary layer of a tube is modelled in the f

quency domain, leading to a square root frequency depeadenc

(11]

(12]

(13]

when transformed back to the time domain, one arrives at a PDE[14]

involving fractional derivatives, which cause immensdiclifity
numerically, though discrete models of loss have been exeuni
in great detail, in the scattering context, by Matignbnl [38]-
nally, the model described here is generally valid when bare

dius is small compared to audio wavelengths, and when itsa$pa
variation is not too great. In such cases, one may need tat teso

models of wave propagation incorporating higher modes paxsel
sibly mode conversion. In the fully discrete case, one ceud
ploy a three-dimensional model of the tube, with a very cograd
approximation in the transverse direction, and anothercgmh
might involve multimodal propagation models.
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