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ABSTRACT

There are now a number of methods available for generating
synthetic sound based on physical models of wind instruments, in-
cluding digital waveguides, wave digital filters, impedance-based
methods and those involving impulse responses. Normally such
methods are used to simulate the behaviour of the resonator,and
the coupling to the excitation mechanism is carried out by mak-
ing use of simple lumped finite difference schemes or digitalfil-
ter structures. In almost all cases, a traveling wave, frequency-
domain, or impulse response description of the resonator isused
as a starting point—efficient structures may be arrived at when the
bore is of a particularly simple form, such as a cylinder or cone.

In recent years, however, due to the great computing power
available, efficiency has become less of a concern—this is espe-
cially the case for musical instruments which may be well-modelled
in 1D, such as wind instruments. In this paper, a fully time-space
discrete algorithm for the simulation and synthesis of woodwind
instrument sounds is presented; such a method, though somewhat
more computationally intensive than an efficient waveguidestruc-
ture, is still well within the realm of real-time performance. The
main benefits of such a method are its generality (it is no longer
necessary to make any assumptions about bore profile, which may
be handled in an almost trivial manner), extensibility (i.e., the
model may be generalized to handle nonlinear phenomena directly),
ease of programming, and the possibility of direct proofs ofnumer-
ical stability without invoking frequency domain concepts.

Simulation results, sound examples and a graphical user inter-
face, in the Matlab programming language are also presented.

1. INTRODUCTION

The synthesis of sound based on physical models of wind instru-
ments has traditionally been carried out in a variety of ways. Dig-
ital waveguides [1, 2] have been extensively explored, especially
in the special cases of cylindrical and conical tubes, in which case
they yield an extreme efficiency advantage. A related scattering
method, wave digital filtering [3], is also used in order to connect
waveguide tube models with lumped elements such as an excita-
tion mechanism [4] or toneholes [5]. Another body of techniques,
closely related to digital waveguides, and based around impedance
descriptions, has been developed by Guillemain and his associates
[6]. Other techniques, based on the so-called "K"-method (in op-
position to wave- and scattering-based methods) bear a closer re-
semblance to the direct simulation methods to be discusssedhere
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[7]. Most of these methods owe a great deal to the much earlier
treatment of self-sustained musical oscillators due to McIntyre,
Schumacher and Woodhouse [8].

All of these methods rely, to some degree, on simplified de-
scriptions of the resonator (tube)—for example, digital waveg-
uides make use of a traveling wave decomposition, accompanied
by frequency-domain (impedance or reflectance) characterizations
of lumped elements or phenomena such as bell radiation and tone
holes. Other methods make use of impedance descriptions of the
resonator itself [6], or, its time-domain counterpart, theGreen’s
function [8]. Such points of view follow directly from investiga-
tions in pure musical acoustics, and are of course indispensible as
analysis tools. When it comes to sound synthesis, however, it is not
clear that they are necessary—once one has arrived at a satisfac-
tory model of a musical instrument, written as a time-space PDE
system (for the resonator) coupled to ODEs (the excitation element
and a radiation boundary condition), one may proceed directly to
a synthesis algorithm without invoking any notion of frequency,
impedance, wave variables, or reflectance. Though one of course
loses the powerful analysis perspective mentioned above, the treat-
ment of the resonator becomes independent of any particularbore
profile, and the system as a whole is now much more amenable to
interesting extensions involving, e.g., time-varying andnonlinear
effects which do indeed play a role in wind instruments, and which
are not easily approached using impedance or scattering concepts.
In the present case, concerned with audio synthesis (and thus ef-
ficiency), the model remains 1D; for more on the use of standard
numerical techniques in multi-D, in the setting of acoustical anal-
ysis of musical instruments, see. e.g., [9].

A standard model of a reed wind instrument is presented in
Section 2, followed by a development of a finite difference time
domain algorithm in Section 3, including some discussion ofim-
plemntation details, such as the operation count, and computability
issues. In Section 4, simulation results are presented, andin Sec-
tion 5, a graphical user interface, in the Matlab environment, is
exhibited.

2. A STANDARD WIND INSTRUMENT MODEL

2.1. Instrument Body

A standard model of one-dimensional linear wave propagation in
an acoustic tube [10] is given by the following set of equations:

ρ

S
ut = −px

S

ρc2
pt = −ux t ≥ 0, x ∈ [0, L] (1)

Here,u(x, t) andp(x, t) are the volume velocity and pressure, re-
spectively, at positionx, and at timet, and subscriptst andx refer
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to time and space differentiation, respectively.ρ andc are the den-
sity and wave speed, respectively,S(x) is the tube cross-sectional
area at positionx, andL is the length of the tube. See Figure
1. The system above is sometimes condensed into a single second
order system, known as Webster’s equation [11]; it is also the start-
ing point for various speech synthesis algorithms [12], including
the Kelly-Lochbaum model [13].

This model results from many simplifying assumptions, the
most important of which are linearity, relatively slow variation in
S(x) and the size ofS(x) relative to audio wavelengths, and loss-
lessness. For more comments on these assumptions (some more
justifiable than others), see Section 6.

x

0 L

S0
S(x)

Figure 1:Acoustic tube of variable cross-sectional areaS(x)

It is useful to dimensionally reduce the problem, by introduc-
ing the variablesx′ = x/L, p′ = p/ρc2, andu′ = u/cS0, as
well as a dimensionless area functionS′ = S/S0, whereS0 is a
reference surface area, such asS0 = S(x = 0). This leads, after
substitution in (1) and removal of primes, to

1

S
ut = −γpx Spt = −γux t ≥ 0, x ∈ [0, 1] (2)

whereγ = c/L. The lowest resonant frequency of the tube will
be on the order ofγ. Initial conditions for the system may be set
to zero, and proper boundary conditions (one required at each end
of the domain) follow from the consideration of the reed excitation
and bell radiation, to be discussed shortly.

2.2. Reed Mechanism

A slightly non-standard model of reed vibration may be givenas
follows (see Figure 2). For a one-mass model, the reed displace-
ment behaves according to

ÿ + gẏ + ω2
0(y − y0) −

ωα
1

yα−2

0

(

|y−|
)α−1

= −Sr∆p

Mr
(3)

Here,y(t) is the displacement of the reed relative to an equilibrium
positiony0, Mr is the reed mass,Sr an effective surface area of
the reed,ω0 the resonant frequency, andg a damping parameter.
Dots above variables signify total time differentiation. The term
involving the coefficientω1 models the collision of the reed with
the mouthpiece. It becomes active wheny < 0, and acts as a
one-sided repelling force, modelled as a power-law nonlinearity,
of exponentα. Here,y− = (y − |y|)/2. The reed displacement
y is thus here permitted to be negative. This term, inspired by
collision models used in hammer-string dynamics [14], is the sole
distinguishing feature of the model, which is otherwise identical
to that which appears in the literature [15, 16, 17].

The oscillator above is driven by the pressure difference∆p,
given by

∆p = pm − pin

wherepm(t) is the mouth pressure, andpin(t) the pressure at the
entrance to the acoustic tube. The pressure difference is related to
the flow in the mouthpieceum through Bernoulli’s law,

um = wy+

√

2|∆p|
ρ

sign(∆p) (4)

where here,w is the width of the reed channel. The flow is non-
zero only when the reed is not in contact with the mouthpiece,
or wheny > 0. As such, the quantityy+ is given byy+ =
(y + |y|)/2. Neglected here is an inertia term—see, e.g., [11].
The square root dependence of flow on velocity could be general-
ized to a power law [18] with few resulting complications in the
discretization procedure to be outlined below.

The flow variables themselves are related by a conservation
law

uin = um − ur

whereuin is the flow entering the acoustic tube, and whereur is
related to reed displacementy by

ur = Sr ẏ

It is useful to introduce scaled variables as follows:

y′ =
y

y0

− 1 p′

· =
p·

ρc2
u′

· =
u·

cS0

for any pressure variablep· or velocity variableu·, which, when
inserted in the above equations (and primes subsequently removed)
lead to the system:

ÿ + gẏ + ω2
0y − ωα

1

(

|(y + 1)−|
)α−1

= −Q∆p (5a)

∆p = pm − pin (5b)

um = R(y + 1)+
√

|∆p|sign(∆p) (5c)

uin = um − ur (5d)

ur = S ẏ (5e)

where

Q =
ρc2Sr

Mry0

R =
√

2
wy0

S0

S =
Sry0

cS0

Note that higher-order effects of the time variation ofy0 (which is
possible during play), which is generally quite slow, are neglected
here, as in previous treatments of the reed system [15].

It should be clear that in a connection with the acoustic tube
described by (2), it must be true that

p(0, t) = pin(t) u(0, t) = uin(t) (6)

2.3. Bell Radiation

One boundary condition is required at the bell termination.Nor-
mally, in the musical acoustics literature (see, e.g., [11,19]), one
employs the standard radiation impedance result for an unflanged
tube. Often, this is given, in the low-frequency limit, in a polyno-
mial form obtained through a series approximation. While this is
fine for analysis purposes, positive realness [20] (and thuspassiv-
ity) is lost, and numerical instabilities can arise in simulation. It
is thus better, in this context, to make use of a rational and posi-
tive real approximation to the radiation impedance (see, e.g., the
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Figure 2:Pressure and flow variables in a reed instrument mouth-
piece.

form given in [12]), leading to the following relationship between
scaled pressure and velocity atx = 1:

u(1, t) = m + βp(1, t) ṁ = αp(1, t) (7)

wherem(t) is an auxiliary variable, and where the constantsα and
β are given by

α =
3γL

8

√

π3S(1)

S0

β =
9π2S(1)

128

The term with coefficientα corresponds to the reactive part of the
radiation impedance, and that with coefficientβ to the resistive
part. The extra variablem is necessary, in the discrete setting,
in order to accommodate the extra energy storage required bya
reactive termination. One could go much further here, and de-
velop boundary conditions which model radiation to higher accu-
racy (thus requiring more state), but the positive realnesscriterion
must continue to be enforced (i.e., a higher order polynomial se-
ries approximation to the radiation impedance will not suffice).
Positive realness of an impedance corresponds directly to bounded
realness for the associate reflectance, a quantity which is probably
better known to musical acousticians.

3. A SIMPLE FINITE DIFFERENCE SCHEME

A finite difference time domain scheme for system (1) is similar
to that which appears in 1D electromagnetics simulation [21, 22],
with the slight added complication of spatial variation in the pa-
rameters (i.e., the surface areaS(x)). Introduce staggered grid
functionsp

n+1/2

l , andun
l+1/2, for integerl andn; these are ap-

proximations top(x, t) and u(x, t) at locations(x = lh, t =
(n + 1

2
)k) and(x = (l + 1

2
)h, t = nk), respectively, whereh

andk are the spacing between adjacent grid points and time step,
respectively. See Figure 3.k is related to the sample ratefs by
k = 1/fs—in audio synthesis applications,k is thus normally
chosen a priori. The resulting scheme is of the following form:

[

1

S

]

l+ 1
2

(

un+1

l+ 1
2
− un

l+ 1
2

)

= −λ

(

p
n+ 1

2
l+1

− p
n+ 1

2
l

)

(8a)

[S]l

(

p
n+ 1

2
l − p

n−
1
2

l

)

= −λ
(

un
l+ 1

2
− un

l− 1
2

)

(8b)

where the Courant numberλ is defined asλ = kγ/h, and where
[

1

S

]

l+ 1
2

and [S]l are approximations to the continuous function

S(x) at locationsx = (l + 1

2
)h andx = lh, respectively. Under

the special choices
[

1

S

]

l+ 1
2

=
2

S(lh) + S((l + 1)h)
(9)

[S]l =
1

4
(S((l − 1)h) + 2S(lh) + S((l + 1)h))(10)

a necessary condition for numerical stability becomes

λ ≤ 1 (11)

This is the familiar Courant-Friedrichs-Lewy condition [23, 24],
arrived at through energy techniques (and not frequency or von
Neumann analysis, which is not generally applicable to problems
with spatial variation [25])—note that the condition is independent
of the variation inS itself, simplifying implementation somewhat.

In particular, for a given time stepk, the grid spacingh must
be chosen so as to divide the unit interval into an integer number
of parts, and it is also important that (11) be satisfied as near to
equality as possibility. This leads to the choice

N = floor (1/γk) h = 1/N

The scheme (8) is a one-step scheme in the two grid functions
p andu, and is formally second-order accurate. As illustrated in

Figure 3, the grid functionp
n+ 1

2
l is defined forl = 0, . . . , N , and

un
l+ 1

2
for l = −1, . . . , N . Thus updating ofp, according to (8b)

may be performed directly, but updating ofu, according to (8a), at
grid locations−h/2 andN +h/2 necessarily requires a boundary
condition—this will be discussed shortly.

3.1. Scheme for Reed System

For the reed system, given in (5), consider the following scheme:

1

k2

(

yn+1 − 2yn + yn−1
)

+
g

2k

(

yn+1 − yn−1
)

+
ω2

0

2

(

yn+1 + yn−1
)

(12a)

+
ωα

1

2
|(yn + 1)−|α−2

(

yn+1 + yn−1
)

= −Q∆pn

∆pn = pn
m − pn

in (12b)

un
m = R(yn + 1)+

√

|∆pn|sign(∆pn) (12c)

un
in = un

m − un
r (12d)

un
r =

S
2k

(

yn+1 − yn−1
)

(12e)

Here, the functionsy, um, ur, uin, pm, pin, and∆p have been
approximated by time series, with time stepk. pm, in particular, is
assumed to be a known input control signal, andpin anduin will
be related to values of the grid function inp andu over the prob-
lem interior. Worth noting here is the approximation to the stiff-
ness term (with coefficientω2

0) and the collision term (with coeffi-
cientωα

1 ), both of which make use of semi-implicit discretizations.
Such implicit approximations, when applied to lumped systems
such as the reed, significantly ease stability requirements, and, as
long as the unknown value of the grid function appears linearly (as
it does here) still allows for fully explicit updating—see Section
3.3. To this end, it is worth reducing the system above to

∆pn + an
1

√

|∆pn|sign (∆pn) + an
2 = an

3 un
in (13)
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Figure 3:Staggered grid for finite difference scheme(8) for acoustic tube.

where the coefficientsan
1 ≥ 0, an

2 andan
3 ≥ 0 will depend on

known (previously computed) values ofyn and the various defin-
ing parameters of the reed system. (The non-negativity ofan

1 and
an
3 , follows from the use of semi-implicit discretizations to the

stiffness terms.)
In order to couple the reed system to the acoustic tube, one

possible approximation to (6) is

un
in = un

−
1
2

pn
in =

1

2

(

p
n+ 1

2
0 + p

n−
1
2

0

)

(14)

From the update (8b) at grid pointl = 0, and using the above
conditions, as well as (12b), one may arrive at the relation

∆pn = bn
1 − bn

2 un
in (15)

where again,bn
1 andbn

2 ≥ 0 depend on previously computed val-
ues of the grid functionsp andu, as well as the input pressurepm.
Now, (13) and (15) may be combined into a single equation for the
pressure difference∆pn:

|∆pn| + cn
1

√

|∆pn| + cn
2

sign (∆pn)
= 0 (16)

for the coefficentscn
1 ≥ 0 andcn

2 . One may then observe that,
in order for a solution to exist, one must havesign (∆pn) =
−sign (cn

2 ), at which point the magnitude|∆pn| may be deter-
mined uniquely. In this case, due to the form of the pressure-flow
characteristic (4), this may be done using the quadratic formula, a
unique solution will exist for any such characteristic which is one-
to-one, though an iterative method (necessarily convergent) may
be necessary. In this sense, finite difference updating is simpler
than in the closely related case of the bow-string interaction (in
which case the force-velocity characteristic is not necessarily one-
to-one) [25].

3.2. Scheme at Bell Termination

For the bell termination, an approximation to the boundary condi-
tion (7) is given by

un
N+ 1

2
=

β

2

(

p
n−

1
2

N + p
n+ 1

2
N

)

+
1

2

(

mn+ 1
2 + mn−

1
2

)

mn+ 1
2 = mn−

1
2 +

kα

2

(

p
n−

1
2

N + p
n+ 1

2
N

)

(17)

Again, as in the case of the reed termination, the unknowns,un
N+ 1

2

andp
n+ 1

2
N are coupled. In this case, though, the coupling is linear.

Employing scheme (8b) at grid locationl = N leads to a unique
solution forun

N+ 1
2

in terms of previously computed values of the

grid functionsp andu, as well asm, i.e.,

un
N+ 1

2
= dn (18)

wheredn depends on previously computed values of the grid func-
tionsp andu, as well asm.

3.3. Explicit Updating

It is important to point out that, despite the apparently complex
relationship among the stored variables at the terminations and the
grid function to be updated over the interior, a purely explicit up-
date form may be arrived at, but the order in which operationsare
performed is of great importance. Consider the entire scheme at
the end of an update cycle, at which point all values at time step
n or previously are known, except for the valuesun

−
1
2

andun
N+ 1

2
.

One may then proceed as follows:

• Calculate∆pn from (16).

• Calculateyn+1 using∆pn, from (12a).

• Calculateun
r from (12e).

• Calculateun
m from (12c).

• Calculateun
in from (12d), and setun

−
1
2

from (14).

• CalculateuN+ 1
2

from (18).

• Calculatep
n+ 1

2
l , for l = 0, . . . , N , from (8b).

• Calculatemn+ 1
2 from (17).

• Calculateun+1

l+ 1
2

for l = 0, . . . , N − 1, from (8a).

At this point the updating cycle is complete, and the procedure re-
peats, after shifting data. Proponents of wave digital filtering often
call attention to this computability issue, usually dealt with using
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so-called reflection-free ports [3]. One may see here that the same
property is available using finite difference schemes, and further-
more, numerical solution uniqueness may be ensured (in contrast
with wave digital methods making use of nonlinear elements,and
power-normalized waves [26]).

3.4. Numerical Stability

The question of numerical stability of the simulation as a whole is
a delicate one, but may be dealt with using energy concepts [25],
which have already been applied to variety of other nonlinear mu-
sical systems, such as string [27] and plate vibration [28];it is,
however, too large a topic to cover sufficiently in a short publica-
tion. In fact, one may definitively prove numerical stability (i.e.,
boundedness of computed solutions under any possible set ofreed
and tube parameters, and for any pressure excitation waveform) in
the absence of the collision term in (3)—stability under collision
conditions is notoriously difficult to show, but the use of a semi-
implicit discretization is an excellent ad hoc means of preventing
such difficulties. The key point, however, is that if a schemesuch
as (8) is employed over the domain interior, and the Courant con-
dition (11) is obeyed, then a connection with semi-implicitapprox-
imations to energetically well-behaved objects such as thereed or
bell termination, there is no further condition necessary.A fuller
sketch of numerical stability results for this system will appear in
a forthcoming publication [25].

3.5. Computational Considerations

The computational cost of this algorithm is almost entirelydue to
the updating of the scheme for the tube, and, as such, is governed
by the choice of time stepk and grid spacingh, which are related
by the CFL condition (11). The condition should be fulfilled as
close to equality as possible—otherwise, excessive numerical dis-
persion, leading to mode mistuning and a severe limitation in audio
bandwidth [25] will result. Thus, for a given time stepk = 1/fs,
the memory requirement will be almost exactly2fs/γ = 2fsL/c
units. Updating at a single grid point requires three arithmetic
operations, and thus the total operation count will be6f2

s /γ =
6Lf2

s /c operations/second. For typical wind instruments, and at a
suitably high audio sample rate, such asfs = 44100 Hz, the oper-
ation count will be on the order of tens of megaoperations/second,
well within real time capability on a modest laptop computer. (For
example, on the author’s laptop, a Dell with a 2.0 GHz Pentium,
and for the case of a clarinet geometry, it takes approximately 3.9
s to generate 5 s of sound output, at 44.1 kHz, in Matlab.) On the
other hand, it is more expensive, in terms of arithmetic (though not
memory) than a typical waveguide algorithm.

4. SIMULATION RESULTS

4.1. Bore Profiles

It is particularly simple, in the direct FD framework, to alter the
bore profile—the functionS(x) may be set arbitrarily, and once
set, values of the function are used, without further calculations
(as of scattering coefficients or impedances) in the simulation. It is
thus straightforward to experiment with bore profiles whichmay
differ substantially from, e.g., those which lead to efficient waveg-
uide realizations. See Figure 4. In particular, computational effort
is independent of the choice of bore profile.
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0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4

−1

−0.5

0

t

t

y

y

Figure 5:Non-dimensional reed displacementy, for a clarinetlike
configuration, of parameters as given in the caption to Figure 4,
and with a bore profile as shown in Figure 4(b). The parameters
for the collision term in(3) are chosen asω1 = 316, and the
nonlinearity exponent isα = 4. In (a), the input is a steady nondi-
mensional mouth pressure ofpm = 0.013, and in (b),pm = 0.02.

4.2. Reed Beating

As an example of typical phenomena generated by such a model,
consider the perceptually important reed-beating effect,as illus-
trated in Figure 5. In particular, note that the nondimensional reed
displacement takes on values< −1; the extent of such “penetra-
tion" may be controlled through the choice ofω1 andα, but the
general results are in agreement with other published results (see,
e.g., [29]).

4.3. Onset Times

As another example, the variation in onset times for notes asa
function of mouth pressure, characteristic of wind instruments, is
shown in Figure 6.

Sound examples will be available shortly at the authors web
address [30].

5. GRAPHICAL USER INTERFACE

A graphical user interface has been developed for this synthesis al-
gorithm, using the development tool (GUIDE) in the Matlab pro-
gramming environment. The user is able to set all reed parame-
ters, the form of the pressure ecitation, and a variety of reasonable
choices are available for the tube itself, including the usual cylin-
der and cone profiles, as well as additional bell geometry specifica-
tions. It is also possible to toggle between reed and brass models,
and, in the case of brass instruments, to specify a time-varying lip
stiffness. See Figure 7. The user interface will be made publicly
available in the near future.

6. CONCLUSION

Perhaps the greatest advantage of a fully discrete formulation is fi-
delity to the physics of the continuous time/space model itself; as a
result, many issues which appear in more efficient designs, such as
“lumping" of impedances, fractional delay interpolation,etc., may
be sidestepped. Another advantage is extensibility—see below for
some examples. The greatest disadvantage is computationalcost,
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Figure 4:Typical output spectra, for various bore types: (a) a cylinder, (b) a cylinder with a clarinet-like bell, and (c) a cylinder with a
bell of extreme flare. In each case, the other model parameters correspond, roughly, to those of a clarinet:γ = 512, Q = 1.6 × 1010,
R = 0.032, S = 10−6, ω0 = 23250, g = 3000.
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Figure 6:Non-dimensional output pressure, for the wind model of
parameters given in the caption to Figure 4, and using the clarinet-
like bore profile shown in Figure 4(b). Top, with a nondimensional
mouth pressure ofpm = 0.01, center, withpm = 0.015, and
bottom, withpm = 0.02.

Figure 7: Graphical user interface for the wind synthesis algo-
rithm.

which is, in fact, not extremely high, though certainly higher than
that of, e.g., a waveguide model.

There are many ways in which the FD wind model here should
be extended. Several are in progress, and have not been discussed
in this short paper—in particular, there is a simple extension to
“blown open" brass-like instruments which is nearly trivial, in-
volving only a single change in polarity of the pressure difference
∆p in the model. Such a feature is already included in the GUI
mentioned in Section 5. In addition, it is rather straightforward to
implement models of woodwind toneholes [31, 32], without the
usual concern of commuting or lumping of impedances in instru-
ments of more complex bore profile. Another obvious step is the
porting of such an algorithm to a real time environment such as
Max/MSP [33] or csound [34]—as noted earlier, a real time im-
plementation is easily possible, and such developments areunder
way.

Other extensions are also possible. The fully discrete FD ap-
proach is very well suited to an extension to nonlinear 1D wave
propagation—the linearity hypothesis is probably sufficient for reed
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instruments, and brass instruments under moderate amplitude ex-
citation, though nonlinear effects do appear at high amplitudes in
instruments such as the trombone [35]. Fully discrete methods in
computing shock wave solutions have a very long history in main-
stream fluid dynamics applications—see, e.g., the text by Hirsch
[36], or the classic article by Sod [37]. The introduction ofloss
in the acoustic tube, however, is in some ways more problematic.
Often, loss in the boundary layer of a tube is modelled in the fre-
quency domain, leading to a square root frequency dependence—
when transformed back to the time domain, one arrives at a PDE
involving fractional derivatives, which cause immense difficulty
numerically, though discrete models of loss have been examined
in great detail, in the scattering context, by Matignon [38]. Fi-
nally, the model described here is generally valid when borera-
dius is small compared to audio wavelengths, and when its spatial
variation is not too great. In such cases, one may need to resort to
models of wave propagation incorporating higher modes, andpos-
sibly mode conversion. In the fully discrete case, one couldem-
ploy a three-dimensional model of the tube, with a very coarse grid
approximation in the transverse direction, and another approach
might involve multimodal propagation models.
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