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ABSTRACT

In this paper we propose a method for reestimating the instanta-
neous parameters of time-varying sinusoids based on demodula-
tion. The method uses rough primitive parameter estimates to
construct a sinusoidal multiplier. By applying this multiplier to
the original sinusoid we get a third sinusoid with slower-varying
parameters than the latter. In this way the analysis of a fast-
varying sinusoid is reduced to that of a slow-varying one, whose
parameters can be more reliably evaluated. We also propose a
front-end reestimator using variable window sizes to provide
inputs to the demodulation-based reestimator, so that the primi-
tive estimates is reliable even for fast-varying parts. This reesti-
mation method is non-parametric, stable, easy to implement, and
do not require the use of any specific estimator. Its effectiveness
is shown by results on various test sets.

1. INTRODUCTION

This paper discusses parameter estimation of time-varying sinu-
soids for sinusoid modeling of audio [1], [2]. In particular, we
focus on the correction of estimating errors due to the variation
of parameters within the duration over which they are evaluated.
While sinusoid models generally allow arbitrary parameter varia-
tions as long as they are “slow”, most current estimators assume
stationarity in parameters [1]-[3] or parametric parameter varia-
tion models [4]-[8]. Estimators assuming stationarity have good
performance if the variations are very slow, but easily fail when
they become moderately fast. Reassignment-based methods [9]-
[10], taking advantage of the accurate localization of linear
chirps by time-frequency reassignments, are able to provide accu-
rate estimates for these chirps, but not for other signals. More
complicated parametric models have been explored in [4]-[8],
which still lack the flexibility to generalize. Large errors are
likely to occur when the signal behaviour departs from the esti-
mator assumptions.

However, most of these estimators are designed to give accu-
rate results for constant sinusoids. Accordingly, as long as the
parameter variations remain very slow, relatively high accuracy
may be expected even if the assumptions are not fully satisfied.
Therefore if we find for a fast-varying sinusoid x a slow-varying
equivalent y, so that there exists a known bijection between their
parameters, then we can improve the estimation by applying the
estimator to the slow-varying y instead of to the fast-varying x. In
the following we propose a demodulation method based on this
idea. The method requires the parameters be roughly known for
multiple frames, therefore it functions as a reestimation scheme
to refine primitive results in a post-tracking stage. We also pro-

pose a window size selection method as a front-end, which di-
rectly evaluates parameter dynamics from the primitive results,
and choose a “good” window size accordingly. These methods
do not require the use of any specific estimator, but act as
“boosters” to work with arbitrary estimators.

There are fundamental connections between these methods
and an adaptive STFT scheme proposed in [11], wherein the
authors choose a window size and multiplier that “matches the
signal” from a pre-defined library, in a similar manner as the
matching pursuit [12]. Accordingly, its use is limited by the fea-
tures of pursuits, such as the trade-off between adaptation capac-
ity and limited library size.' Our methods calculate the multiplier
and window size directly from primitive estimates.

In this paper we use the FFT-based least-square-error (LSE)
estimator [13] to work with the reestimation schemes. LSE esti-
mator gives accurate frequency estimation for linear chirps. Its
frequency estimation error for other sinusoids can be roughly
outlined by [14, §3.4.2]

f~fy=aDt*, D=xf, +a,f,, 1)

where f; is the frequency, f its estimate, f; and 2f; its 1%- and

2" order derivatives, a; the normalized amplitude derivative, 7
the window size, and a and « are positive values that depend on
the window type only. (1) clearly claims that the frequency error
increases with parameter dynamics and window size, on which
we address respectively in the next two sections.

2. PARAMETER DEMODULATION
Let x be a time-varying sinusoid,

x,=a.e’”, 2

and a, and 27;]7 (¢) be two sequences that approximates a, and
dg/dt, respectively. We construct a second time-varying sinusoid
X —j2x[ Fayd
y, = 2o 0 Ga)
a

n

Let the parameter estimates of y be f 7, a” and @’ , then the
parameters of x can be estimated using

Jr=T+f"a =a-a", ¢ =¢" +2x far . (3b)

We call the above the demodulation method, since the multiplier

! Actually in [11] linear chirps are finally chosen to match all signals, in
which case it is no more advantages than the parametric methods involv-
ing chirps.
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-j2x | Fw . ~
e’ from removes part of the frequency modulation, and 1/a,
part of the amplitude modulation, from sinusoid x. Compared to
X, y is a sinusoid with less frequency and amplitude variations,
and according to (1), can be more reliably evaluated.

a and }7 can be constructed from primitive estimates ob-
tained with an estimator. If the estimator fits in a parametric

model, such as in [4][6], the model itself can provide @ and f .
If not, we interpolate the primitive estimates between frames.
Following [13], in this paper a cubic spline interpolation is used.

Figure la illustrates the frequency demodulation, with the
true frequency track in a solid line on top, and its estimate in
dashed line. The demodulation step subtracts the dashed track
from the solid one to give the nearly flat track at the bottom,
which has a much slower variation. Figure 1b gives the block
diagram of the demodulation-based reestimator, where the blocks
marked “I” stand for interpolators.
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Figure 1: Demodulation method

New multipliers can be constructed from the reestimates to
further remove parameter dynamics in y, leading to an iterative
procedure. Frequency and amplitude demodulation can be ap-
plied separately. We put more favour in frequency demodulation
by skipping amplitude demodulation at some iterates. The itera-
tion stops when the dynamics measure D (see (1)) fails to de-
crease, or a maximal number of iterates is met.

3. VARIABLE-WINDOW-SIZE METHOD

A pre-requisite of the demodulation method is that the primitive
estimates approximate the true parameters, which is usually satis-
fied for small and moderate parameter dynamics. In case of large
dynamics, errors in the primitive estimates are often so large that
no valid multiplier can be found, causing the demodulation
method to fail, as shown by test results in section 4.

However, (1) suggests that the error due to large dynamics,
measured by D, can be compensated by using shorter windows.
Moreover, (1) provides D* as an indicator of frequency error,
and a way to directly estimate D by parabolic fitting, so that the
window size can be chosen by limiting Dz* under a threshold T#.

In numerical computation it is convenient to let all window
sizes be powers of 2. We look for primitive estimates that are
calculated from frames with large dynamics, i.e. D*>Th, and
reestimate them using shorter window sizes chosen as 227, so
that D-22*7’<Th. Considering harmonics and noise, it is not prac-
tical to let v grow arbitrarily small. We always set a minimal al-
lowed window size for this method.

Tests show that the variable-window-size method greatly im-
proves the estimates for large parameter dynamics, but has little

effect for small ones. Since the demodulation method is effective
for small dynamics but not for large ones, it is natural to combine
the two to build a reestimator that is robust for both large and
small dynamics. This is implemented by concatenating the two
reestimators directly: the variable-window-size method being
used as a front-end to the demodulation method to provide for
the latter refined primitive estimates.

4. TESTS

We run tests on four groups of synthesized signals, including
linear chirps, amplitude modulated, frequency modulated, and
amplitude-and-frequency modulated sinusoids. All samples are
16384 points long. A fixed window size 1024 and hop size of
512 are used (except in the variable-window-size method, where
window sizes 1024, 512, 256 and 128 are allowed). This gives 31
parameter sets per sample. As this paper focuses on errors due to
parameter variations, harmonics and noise are not considered in
the test. However, since the demodulation step changes neither
the noise level nor the frequency interval between partials, its
effectiveness is unlikely to be sensitive to noise or harmonics.

Group 1 contains 160 samples, with 20 central frequencies f;
from 255.00bin to 255.95bin (1bin=1/1024), combined with 8
frequency slopes f; ay 0, 0.125, 0.25, 0.5, 1, 2, 4, 8 bins per
frame (i.e. per 512 points). Results are given as functions of f,
averaged over f;.

Group 2 contains 1800 samples, with 5 fy’s from 99.00bin to
99.80bin, 6 modulation depths 4;, from 0.15 to 0.9, 6 modulation
periods Ty from 2 to 12 frames, and 10 modulating phases ¢y
from 0 to 0.457z. Results are given as functions of Ay and Ty,
averaged over f, and gy.

Group 3 contains 1800 samples, with the same 5 fy’s, 6
modulation amplitudes 4y, from 1bin to 32bin, the same 6 Tyy’s
and 10 ¢y’s. Results are given as functions of 4y; and Ty, aver-
aged over f; and ¢y,.

Group 4 contains 1800 samples, with the frequencies ar-
ranged the same way as in Group 3, and the amplitudes taken as
quadratic functions of frequency so that the peak frequency has
twice the amplitude as f;. Results are given as functions of Ay
and Ty, averaged over fy and gy.

The test set is summarized in Table 1, where all frequency
parameters are in bins, and time parameters in frames.

Table 1: Test set

Group| OO | paameters (n=-8192, ..., 8191, N=1024)
variables
a,=1,f,=fo+2n/i/N,
L s ) !
@, =2m(f, +nf,/ N)/ N
5 | JoAm a, =1+ 4, cos(py +4m/NT,,) ,
Ty, om fo=fo» @, =2mfy/ N
a,=1, f, = f, + Aycos(p, +4m/NT,),
3 f(‘)a AMa 27[ T A
Twms o ("n:Wfo”"' MzMsin(goM+47zn/NTM)
a,=1+(f, = fi)/ 4.
4 | JoAm f. = fo+ A, cos(p, +4m/NT,),
T 6w 2 T, A
P, =W”f0n+ MM sin(g,, +4m/ NT,,)

DAFX-2



Proc. of the 11™ Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

The performance of parameter estimation is evaluated using a
synthetic approach. Two constant sinusoids are synthesized from
the true and estimated parameter sets respectively, then the
square error between the two is compared to the former to pro-
duce a noise-to-signal ratio (NSR). One NSR is calculated per
frame. The NSR of a test sample is obtained by averaging the
NSR'’s calculated from all its frames. The final results are given
as SNR’s (SNR=1/NSR), in dB, so as to make them positive.

The LSE method is used as the estimator module to work
with the reestimation schemes (i.e. estimators I and II in Figure
2). The plain LSE estimator (LSE), reassignment estimator (RA)
[10] and an enhanced Abe-Smith (AS) estimator [6] are tested
along with the proposed reestimators, i.e. LSE with demodula-
tion (DV), with variable window size (VW) and their direct con-
catenation (VWDV). The plain LSE estimator calculates the
parameters as in [13] without considering parameter dynamics. It
is tested as the baseline estimator to demonstrate the improve-
ments brought by the reestimation schemes.

The reassignment estimator calculates a pair of time and fre-
quency estimates as

A 0X,/o A~k oX, /ot
t:—lmﬂ,f:—-i—lmk—/ (4a)
X, N 27X,
where X; is the spectral peak at the sinusoid and
oX, , A X, -
—k = nxw,e Vo, —L=>xw e V. 4b
PR YLAS o L @)

w' is the derivative of the window function w. The reassignment
method does not provide a straightforward way for evaluating the
amplitude. However, it is possible to estimate the frequency de-
rivative of a linear chirp by

2 2 2
0 X, /ot m (an/?z)

N I

~ 0 1 X X

/i :a_J;: 20X /arakw (ax /a;)(ax ) ©Y
—Im k +Im~—+* —
X, X,
where the second-order derivatives are calculated with
’X, 9 X -2

=>xwe ¥, —E=——iNpmxwe V. 5b
at2 ; n-n ataa) J; n'—n ( )

”no-

w" is the derivative of W' . Using f and ]A‘l , the amplitude and
phase angle can be estimated with

2 —j2z(nf+n’ )
- 2WX,e
ae’ ==—c—-,
2,

which involves a demodulation step removing the chirp.

(6)

The Abe-Smith estimator is implemented following [6]. This
method requires the use of a quadratic interpolation estimator.

Given a set of primitive estimates f , loga and ¢, as well as

two functions A(f) and ®(f) derived by interpolating the log-
amplitude spectrum and unwrapped phase spectrum respectively,
the Abe-Smith estimator calculates
M" 7 , @U 7
P=—”A—(f)”2A, a==2p®'(f), ﬂ=P+{), (7a)
A" (f)+@"(f) A"(f)
where a is interpreted as the exponential amplitude decay rate
and 24 the linear frequency chirp rate. After estimating these
rates the frequency is reestimated using

S=f-af2mp. (7b)
[6] also proposes reestimation methods for amplitude and phase
angle. However, instead of using the original Abe-Smith methods
for all parameters, we only use the frequency and frequency slope
estimates, then evaluate the amplitude and phase angle using (6).
This modification has also been suggested in [8], and shows
consistent improvement over the original Abe-Smith method in
our tests. We call it an enhanced Abe-Smith method.

SR (B
200 \
150) RA
00|
oV
50
4S
0 LSE

0 0125025 05 1 2

fi

ES
@

Figure 2: Result for linear chirps

Figure 2 compares test results of LSE, RA, AS and DV meth-
ods on linear chirps. For these signals RA works perfectly, with
SNR between 140dB and 220dB. DV is not as accurate as the
former, but also gains significant improvements, with SNR be-
tween 70dB and 80dB. AS only moderately outperforms the
plain LSE. For linear chirps VW has the same results as LSE, as
the LSE estimates from linear chirps have D, defined in (1), close
to zero, therefore no shorter window size will be chosen. Like-
wise VWDV has the same results as DV.
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Figure 3: Result for pure tremolos

Results of LSE, AS, RA and DV methods are given in Figure
3 for amplitude modulated sinusoids. For these signals RA gains
little or no improvement over LSE. AS works slightly better than
RA, yet the improvement is less than 5dB. DV works better than
both of them. Again, VW and VWDV have the same results as
LSE and DV respectively, since D is close to zero.

Results of all 6 methods are given in Figure 4 for frequency
modulated sinusoids. All other methods consistently outperform
LSE. Again RA and AS methods give similar results, this time
the former being slightly better. DV outperforms the two, unless
for very fast or very large modulation, in which case all three
work poorly. VW appears to be highly effective for fast modula-
tions, but not for slow ones. The nonmonotonicity of the VW
results is due to the discontinuous jumps of the window size
between powers of 2. The VWDV method, combining DV and
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VW schemes, consistently outperforms all other methods, even
when DV or VW work poorly by themselves.
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Figure 4: Result for pure vibratos

Results of all 6 methods are given in Figure 5 for frequency-
and-amplitude modulated sinusoids. They bear much similarity
to those in Figure 4.
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Figure 5: Result for vibrato and accompanying tremolo

S. CONCLUSION

In this paper we have proposed a demodulation method for re-
estimating parameters of time-varying sinusoids. It captures the
dynamics information embedded in primitive inaccurate esti-
mates, and uses this information to cancel the dynamics of the
original sinusoid. The idea of using rough estimates to refine
sinusoid analysis was previously explored by us in [13]. How-
ever, like many other methods for analyzing time-varying sinu-
soids, [13] is based on fitting the sinusoid onto a presumed pa-
rametric model (cubic spline), and works only with a specific
parameter estimator (LSE). The method here, on the other hand,
relies only on two loose assumptions: that we are able to find
approximate parameters, and that the estimator we use has better
accuracy for slower-varying sinusoids. Reestimation using the
demodulation scheme not only bypasses potential overfitting
problem in model-based approaches, but also allows the use of
arbitrary estimators. The cost is a moderately higher computation
load than some quick fitting methods such as [6] and [10].

The demodulation method is robust and numerically stable
for small parameter dynamics, but works poorly for large ones.
We attribute this to the large error in the primitive estimates,
which breaches the first assumption above. To deal with this we

have proposed a variable-window-size method, also making use
of the primitive estimates, that effectively improves the estima-
tion of fast-varying sinusoids. We have also shown that these two
independent methods can be easily connected together to make
up for the demodulation method’s incapability of handling very
fast frequency variations, and the variable-window-size method’s
limited accuracy.

6. ACKNOWLEDGMENTS

This work was supported by the EPSRC EP/E017614/1 project
OMRAS?2 (Online Music Recognition and Searching).

7. REFERENCES

[1] R. J. McAulay and T. F. Quatieri, “Speech analy-
sis/synthesis based on a sinusoidal representation,” IEEE
Tran. Acous. Sp. Sig. Proc., vol.34(4), 1986, pp. 744-754.

[2] X. Serra, “Musical sound modeling with sinusoids plus
noise,” G. D. Poli, A Picialli, S. T. Pope, and C. Roads ed.,
Musical signal processing, Swets & Zeitlinger Publishers.
1997.

[3] F. Keiler and S. Marchand, “Survey on extraction of sinu-
soids in stationary sounds,” in Proc. DAFx’02, Hamburg,
2002, pp. 51-58.

[4] P. Masri and N. Canagarajah, “Extracting more detail from
the spectrum with phase distortion analysis,” in Proc.
DAFx’98, Barcelona, 1998.

[5] G. Peeters and X. Rodet, “SINOLA: a new analy-
sis/synthesis method using spectrum peak shape distortion,
phase and reassigned spectrum,” in Proc. ICMC’99, Bei-
jing, 1999, pp. 153-156.

[6] M. Abe and J. O. Smith III, “AM/FM rate estimation for
time-varying sinusoidal modeling,” in Proc. ICASSP’05,
vol.3, Philadelphia, 2005, pp. 201-204.

[7] R.Badeau, B. David and G. Richard, “High-resolution spec-
tral analysis of mixtures of complex exponentials modulated
by polynomials,” [EEE Tran. Sig. Proc., vol.54(4), 2006,
pp.1341-1350.

[8] A. Robel, “Estimation of partial parameters for non station-
ary sinusoids,” in Proc. ICMC’06, New Orleans, 2006.

[91 F. Auger and P. Flandrin, “Improving the readibility of
time-frequency and time-scale representations by the reas-
signment method,” IEEE Tran. Sig. Proc., vol.43(5), 1995,
pp.1068-1089.

[10] A. Rdbel, “Estimating partial frequency and frequency slope
using reassignment operators,” in Proc. ICMC'02, Gote-
borg, 2002, pp. 122-125.

[11] H. K. Kwok and D. L. Jones, “Improved instantaneous fre-
quency estimation using an adaptive short-time Fourier
transform,” IEEE Tran. Sig. Proc., vol.48(10), 2000, pp.
2964-2972.

[12] R. Gribonval and E. Bacry, “Harmonic decomposition of
audio signals with matching pursuit,” IEEE Tran. Sig.
Proc., vol.51(1), 2003, pp. 101-111.

[13] Wen X. and M. Sandler, “Error compensation in modeling
time-varying sinusoids,” in Proc. DAFx 06, Montreal, 2006,
pp- 173-176.

[14] Wen X., Harmonic Sinusoid Modeling of Tonal Music
Events, PhD Thesis, University of London, 2007.

DAFX-4



