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ABSTRACT

Partial tracking in sinusoidal models have been studiedfer
twenty years now, and have been enhanced, making it preuise a
useful to analyse noiseless harmonic sounds. However,tsoth
have always been used in a monophonic (single channel)xtonte

rival is a relevant cue for source separation in the humaim fish
Hence, we present some partial classification results barséuls
cue.

The work presented in this paper has been developped using
binaural recordings, but it can be generalised to steremrdews,

A method is thus proposed to adapt the partial tracking to the @s long as the azimuth estimation techniques can be adapted t

case of binaural signals. This gives a tool to perform spéatral-
ysis of such signals, keeping relevant information fromhbleft
and right channels. Moreover, azimuth (position in the Zmntal
plane) information for each partial is gained using inteahaues,
such as interaural time differences (ITDs) and interawall dif-
ferences (ILDs). The azimuth information can then be usezhas
attribute or as a constraint in the binaural partial tragkéigo-
rithm.

Finally, some classification results using the azimuth of pa
tials are presented.

1. INTRODUCTION

Spectral models provide general representations of sauwdich
many audio effects can be performed in a very natural and-musi
cally expressive way. The analysis tool called partialkiag [1]]

stereophonic recordings.

In Sectior®, we will present the classic partial trackingpal
rithm, followed by the presentation of our new algorithm fhe
tracking of partials in binaural signal. Sect{dn 3 will intluce the
binaural based spacial cues, followed by the applicatiothe$e
cues to localisation of partials in the azimuth plane. Intise,
we will show some classification results based on the azirofith
the partials. We will then conclude and present our futurekwo

2. SINUSOIDAL MODELLING

2.1. Mode and Parameters

Additive synthesis is a spectrum modelling technique. toisted
in Fourier’s theorem, which states that any periodic funcitan
be modelled as a sum of sinusoids at various amplitudes and ha

has been widely studied and enhandgd [2] over the years and camonic frequencies. For stationary pseudo-periodic squiése
now be considered as rather robust in the case of noiseless ha amplitudes and frequencies continuously evolve slowiftiihe,

monic sounds. To the best of our knowledge, partial trackiag
always been applied to monophonic signals.

In this article, we present a new way to track partials in bin-
aural contexts. Instead of tracking partials in a singleaigwe
perform the tracking in the left and right channels of birzdsig-
nals. This is done by tracking spectral peaks simultangausi
both left and right observation signals, while using the sdrase
techniques as in the classical partial tracking algoritfifiis gives
'stereo’ partials, from which we can draw relevant data feither
binaural channel.

In the meanwhile, techniques for binaural source locatisat
have been explored for a few years, showing promising re{#ilt
[4]. Some of these techniques are based on level differemzks a
phase delays between spectral peaks in the left and righhelsa
of binaural recording, which we can obtain thanks to ourester
partials. It is then possible to obtain an accurate estonaif the
azimuth (position on the horizontal plane) of each partial.

controlling a set of pseudo-sinusoidal oscillators comiyoalled
partials This is the well-known McAulay-Quatieri representation
[@]. The audio signak can be calculated from the additive parame-
ters using EquationEl(1) arid (2), wheves the number of partials
and the functions,, a,, and¢, are the instantaneous frequency,
amplitude, and phase of theth partial, respectively. Th& pairs
(fp,ap) are the parameters of the additive model and represent
points in the frequency-amplitude plane at tim& his representa-
tion is used in many analysis / synthesis programs such asit.em

[B], SMS [], or InSpect{IB].

alt) = Y ay(t) cos(¢p(t)) 1)
6u(6) = 6,00)+2r | " fo(u) du @

The azimuth can then be considered as a simple attribute of5 5 oo Partial Tracking

the partial, or can be used as a constraint for tracking thepan
the same way as frequency is in classical algorithms. Thea®p
the way to improved detection of overlapping partials, dngstto
enhancements to the separation of such partials.

This model requires an analysis method in order to extracpth
rameters of the partials from sounds which were usuallyroeEzb
in the temporal model, that is audio signal amplitude as atfon

The azimuth of the partial is a very important cue for the pur- of time. The accuracy of the analysis method is extremely im-
pose of Auditory Scene Analysis, since common directionref a portant since the perceived quality of the resulting spgsounds
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Figure 1: Frequency (top) and amplitude (bottom) trajectories of Figure 2:Partials (frequency (top) and amplitude (bottom) trajec-

the partials of a note of alto saxophone, performed with asileal
partial tracking algorithm.

depends mainly on it. Moreover, the main interest of an aeur
analysis method, providing precise parameters for the mistt®
allow ever deeper musical transformations on sound by nigaim
ing deformations due to analysis artifacts.

tories) of a mix of a piano note on the right and a clarinet note
the left (starting first), left channel. Here the clarinetrpals are
clearly seen, while the piano partials are barely present.

the magnitude spectrum (so-called peaks, see above) te@be-th
stantaneous representation of partials. We have thenk@éaks
of successive frames to recover the continuous evolutiothef

The analysis method we use consists of two steps: spectralpartials. For this purpose, we use the enhanced partigkitrg al-

peaks are first extracted from the sound using a short-timetisp
analysis, then these peaks are tracked from frame to fraorelén
to reconstruct the partials.

2.2.1. Extraction of Spectral Peaks

First, a short-time Fourier analysis produces a seriesat-garm
spectra taken on successive temporal windows on the orgjgra
nal. Information about the local maxima in magnitude (steda
peaks) is then extracted from these short-term spectra ik
derivative algorithm proposed ifl[9], in order to provide thodel
with accurate spectral parameters (frequency, amplia®phase).

gorithm proposed ifJZ._10]. This algorithm improves thessla
McAulay-Quatieri algorithml[iL] by using linear predictiamorder
to forecast, from their past, the future evolutions of tlagetctories
of the partials.

As for the practical side of this analysis, the maximal fre-
quency difference between two successive frames for eatialpa
was set toA = 1% of the current frequency. Partials whose am-
plitude are always below -60 dBFs or whose length is smaiken t
0.2 s are considered as noise, since we are interested or@l-in
able — long and strong — partials.

An example of the result of mono partial tracking is shown in
Figuredl (a) (frequency trajectories of the partials) Bl (am-

As for the practical side of this analysis, we used an amalysi plitude trajectories of the partials).

window of 2048 samples, moving by stepsif= 512 samples.

These settings were chosen as a good compromise between timg 3 ginaural Partial Tracking

and frequency resolutions for our sound source separakhi@t-o

tive. The test sound used for Figufds 1(a) Bhd 1(b) was at16-bi In the context of binaural recordings, a recording provigesob-
44100-Hz mono recording of an alto saxophone playing at a fun servation signals of the same sonic environment. In the ohse

damental frequency around 165 Hz with vibrato and tremole T

a mix of several instruments playing together, these twels

length of each analysis window is thus about 50 ms and the reso tions might give different information about the same instent.

lution of the resulting Fourier spectrum is approximatedyt2z.

2.2.2. Tracking of Partials

Since the short-time Fourier analysis delivers a shoréspectral
representation of the analysed sound, we consider locahmadr

For example, Figurdd 2(d)l 2(k), 3(a), &d 3(b) show theufraq
cies and amplitudes of the partials found in the left andtragffan-
nels of a binaural mix of a clarinet note (placed’df the left,
starting first) and a piano note (placed®4@ the right). As we
can see, the partials of the piano are logically strongehemight
channel, while the clarinet partials are stronger on thecteinnel.
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Figure 3:Partials (frequency (top) and amplitude (bottom) trajec- Figure 4: Frequency (top) and amplitude (bottom) trajectories of
tories) of a mix of a piano note on the right and a clarinet note the piano-clarinet mix, using the stereo partial trackin@oth

on the left (starting first), right channel. Here the pianoris notes have been tracked and relevant information from blo#im¢
are clearly seen and strong, while the clarinet partials amly nels have been retained.

available up to about 5500 Hz.

the clarinet and the piano partials are shown to their faigte and
The objective then is to gather the most interesting infdiona strength using the stereo partial tracking.
that each channel has to offer. In our previous exampleytbald Next we will show how we can make use of the second part of
be to keep the clarinet partials from the left channel ancthro the stereo information to track the position of the partiedpace.
partials from the right channel, while estimating the dii@t of

arrival of each partial using the previously presented ispaoes.
3. BINAURAL SOURCE LOCALISATION

2.4. Tracking Partialsin Two Observation Signals 3.1 Spatial Cues
In order to realize meaningful partial tracking for bindwecord-
ings, partial tracking has to be performed in parallel in tive
observation signals, so what we obtain is a set of 'sterexigis,
containing information of amplitude, frequency, and phaeen
both left and right channels.

This can be done by enhancing the classical partial tracking
algorithm to handle stereo. The first step is to use steredrspe
peaks, which contain for each spectral peak the frequentplia
tude and phase information of both channels. Next, matcbing
the spectral peaks to stereo tracks is done using the fregusam-
plitude and phase from the loudest channel of the peak. Heance AL, (w) = 20log;,
peak having a higher amplitude from the left channel infarama
will use this information in the partial-to-peak matchingge. Fi-
nally, the matched peaks are added to the correspondiniglpart
These ’stereo’ partials hold the information of both chasnleut
itis only the information from the channel with highest meen-

Binaural recordings of sound provide two different obstores
of the sonic environmdflit As presented for example by Viste and
Evangelistal[B], we can define binaural cues that will givearse
indication of the location of the content of the environmewe
will use two such cues here, namely the ILD and ITD. These two
cues are based on the sliding short-time Fourier transf&TfT)
of the two observations.

The ILD (in dB) at then-th frame is defined as follows:

3
5h(@) ©
wherew is the frequency and’, andS!, respectively are the STFTs
of the right and left channel of the binaural sigralA L,, is thus
simply the ratio in dB of the amplitudes of the right and I€TFT’s,
i.e. the difference of the amplitudes in dB of the right anfi le

SZ(W)‘

plitude that is used when needed. STFTs
Using these enhancements, we then obtain the most relevant '
information from each channel. Figuids 4(a) Bhd 4(b) shevirt: 1We make the assumption that the signal of a given source seprén

quency and amplitude information gathered this way. Coimgar  both observations of the sonic environment. Without thiuasption, the
these to the Figurds 2(&), 2(B), 3(a), &hd 3(b), we can sebdtia spacial cues cannot be computed correctly.
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Also based on the right and left spectra of thh frame, we
define the ITD (in seconds) as:

Sh(w)

S (@) + 27rp) (4)
with p as the phase unwrapping factor. The use of this factor is
made necessary by the fact that the angle of the spectraisatio
computed modul@r. This thus makes the phase become ambigu-
ous above a certain frequency, which is dependent on thesie
shape of the head mainly, and is averaged to 1500 Hz.

AT.pw) = (2

w

3.2. Estimation of Azimuth

In order to estimate the azimuths, two methods were propiosed
[3] : looking up in a reference table, or using a model. In or-
der to be as generic as possible, in this paper we will take the
model based approach, since the lookup table implies krigele
of the subject’s head-related transfer function (HRTF)sThodel
allows for a simpler computation of azimuths, but at the adst
decreased accuracy.

As a basis for the estimation of the parameters of this model,
we use the CIPIC HRTF Databagel[11].

3.2.1. Interaural Time Differences
The model we use is the following:

sin 6 + 60
c

ATs(0,w) = Bs(w)r Q)

wherer is the “head radius”, andis the wave propagation speed
(344 m/s). We make use of the frequency-dependent scalihgy fa
Bs(w). This scaling factor is first estimated individually for éac

subject, and then is averaged to be used in this generic model

3.2.2.

Based on a study of the HRTFs in the CIPIC databask [11], Viste
and Evangelistd ]3] propose the following model:

Interaural Level Differences

ALs(0,w) = as(w)sin @ (6)

with frequency dependent scaling facter(w). Here again, the
scaling factor used is an average over all the subjects.

3.2.3. Computation of the Azimuth

In order to retrieve the azimuth from the spectra using trethwod,
we have to inverse equatiols 6 &ihd 5 such that:

0r,.n(w) = arcsin A(XL#E)"J) )
() =0 (Fﬁw) Tn,p(w)> ®

whereA L, (w) andAT, ,(w) are defined respectively in equa-
tions[3 andl4, ang ™" is the inverse function af(6) = sin 6 + 0.
This function cannot be inverted algebraically. Howeveing a
Chebyshev series, we can compute a polynomial approximatio
of g over the interval of interest, then inverse it:

xS

+95+

x5

1280

T
: ©
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Figure 5:Azimuth trajectories of the partials based on level differ-
ences. Mix of a clarinet, 4®n the left, starting first, and a piano
note, 400n the right.
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Figure 6: Azimuth trajectories of the partials based on phase de-
lays. Mix of a clarinet, 400n the left, starting first, and a piano
note, 400n the right. The azimuth trajectories are less dispersed
thanks to the enhanced precision of the joint azimuth esitma
method.

250

In practice we use this approximation in Equatibh (8).
Using this model, the estimation thus becomes continuausyal
the azimuth axis.

3.3. Tracking the Azimuth

In this article, we consider that sound sources are placatiadly
on the horizontal plane, and that they come from the fronhef t
subject (-90to 90C°).

As shown before, spatial cues can be estimated using the in-
formation from both left and right channels. During the ster
partial tracking, we gather information from each chanmeboth
amplitude and phase, which are needed in order to compute the
interaural spatial cues, ILD and ITD.

Hence, at the same time as the partial tracking is takingeplac
at each frame we compute the ILD and ITD. These cues are then
in turn used to compute the azimuth of each stereo specta#tl pe
as shown in EquationEl(7) arid (8).

The azimuth we obtain from these cues are however not ideal.
Indeed, the azimuth computed from the ILD, based on the ampli
tude ration, is noisy. On the other hand, the ITD, based on the
phase delay, gives a more precise estimation, but it is arobig
at a wavelength smaller than the diameter of the head. Haweve
as shown in[IB], it is possible to obtain a more precise and non
ambiguous estimation of the azimuth using a joint estinmapim-
cess: the noisy azimuth based on the ILD is used to disamigigua
the more precise azimuth based on the ITD. An example ofshis i
given in Figure§lb andl 6. In the first figure, the azimuth tri@jec

4
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Figure 8:Using azimuth as a constraint for peak matching in the
binaural partial tracking algorithm. Resulting azimuthajecto-
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03 Overlap | # Cases| Correctin % Errorin %
g . 0 76 93.3 (12.9)| 0.24 (1.50)
g 1 71 92.6 (11.8)| 4.43 (10.28)
o1 2 28 94.9 (9.0) | 7.63 (10.74)
3 20 94.3 (10.4) | 14.21 (20.48)
0.08 4 9 91.5 (18.8)| 12.63 (18.31)
. more than 5 6 99.2 (1.3) | 30.20 (32.52)
O e 1.2238 210 935(120) | 5.36(13.03)

(b) Amplitude Table 1: Results of a simple classification of partials, ggheir

azimuth as classification criterion. The numbers in paesgh are
the standard deviation of the result.

Figure 7:Using azimuth as a constraint for peak matching in the
binaural partial tracking algorithm. Resulting frequenftgp) and
amplitude (bottom) trajectories.

also on azimuth during the peak matching phase. This ledds to
teresting results for overlapping partials. Figukes ), andB
show our piano and clarinet example one more time, except tha
this time from one frame to the next, each partial is not mgvin
in azimuth more than one degree. We can see on the figures that
adding this constraint degrades the partial tracking, bortetimes
in an interesting way. For example, we notice that the fopatttial
from the bottom on Figurid 7(a) (just below 2000 Hz) is missing
g Part at the onset of the piano note. This is of course not actoin
dence, since it comes from the fact that the azimuth of thegpar
if strongly modified due to the overlapping of this clarinetrimal
with one of the piano’s. Hence, this could be used as a tool for
overlapping detection and thus also for disambiguatioch(sas
presented in[[12] for example). One could also use this arimu
constraint technique to tracks moving sources.

ries of some of the partials of the mix, computed using the, lisD
shown. We can recognise there the two notes, vaguely grdaped
two sets, one on the left, starting earlier, which is theio&mote,
and a second set on the right, which is the piano note. Thajeetr
tories are noisy, and hardly usable. On the second figureveswe
using the joint azimuth estimation, we obtain much more ipeec
trajectories.

It has to be noted however that we show in Figlides 5[@nd
only the partials with a mean frequency lower than 6000 HZs Th
is due to the constraints of the ILD model. Indeed, above that
frequency thex(w) parameter is varying greatly from subject to
subject, making the averagdw) parameter inaccurate, and thus
creating very noisy azimuth trajectories. Hence, only tagials
with a frequency lower than 6000 Hz are considered reliabfaa
as the azimuths are concerned.

4, CLASSIFICATION
34. Azimuth asa Tracking Constraint A logical application of binaural partial tracking is theassifica-
tion of the partials using the spatial cues. In order to testésults
of such a classification, we have set an experiment to cjesisdut
200 mixed pairs of sounds (results given in Tdble 1).

For each case of the experiment, we take two mono sounds
and analyse each of them using the regular mono partialitrgick
algorithm. This gives us the reference partial set of eadhdo

Then, we perform binaural mixing of the two sounds at angles
-30°and 30. We analyse the mix, and gather the stereo partials
in two sets according to their azimuth: one set that is cléser

Until now, we have only considered the azimuth of the pastée
an attribute of the stereo partials that help locate theigiarin
space. However, let us consider the case of overlappingdracs
of notes from two distinct sources (in space). In this cas¢hé
binaural partial tracking system we proposed, only theioaity
in frequency is the criterion for the tracking of a partiabectral
peak is considered to be matching a partial only if it is withi
10 Hz range of the predicted spectral peak. Hence, a pasdizk-t
ing will not be discontinued when an overlap occurs. This @sak
it at least difficult to detect overlapping at least, and ewsore -30°and the other set that is closer t0°30
difficult to separate overlapping partial. We then compare the new found sets to the reference sets. A
However, in the light of the azimuth estimation we presented partial of an experimental set is consider to match a pditah
above, we can now put on constraints not only on frequendy, bu a reference set if the frequencies are within a 10 Hz range ove
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the length of the common partials length. If there is a matoh,

common length is then added to the score of the matching of the

experimental set to the reference set. Eventually, theescare
divided by the total length of all the partials of the expezital

set, so that the results are given in percentage. Anotherofvay

putting it is that we measure the pourcentage of the paiidila
given test set) corresponding respectively to the cornedteara-
neous reference partial sets in order to get the correcamessrror
percentage.

The sounds used for this experiment are sounds from the lowa
databas€[13]. These are harmonic sounds recorded in adis&-n
environment. We have used sounds of Bassoon, Cello, Clarine
Flute, Oboe, Piano, Saxophone, Trombone and Trumpetingtart
at the same time in order to have a maximum time overlap. Notes
range from E3 to C6. The considered partials are below 6000 Hz

in order to avoid errors due to the ITD and ILD unreliabilitythe
model.

Table[d gives the results of our experiment. The first column
shows the number of overlapping partials between the twer+ef
ence sets, and the second column shows the number of cases it

occurred in. The third column gives the percentage of comess,

that is the amount of partials that are matched from the éxper

mental set to the correct reference set. In the fourth cojuhen
error in percentage is given, that is the amount of partizds are

matched from the experimental set to the wrong referencerset

both the third and fourth column, the standard deviatiorhefre-
sult is shown in parentheses. The final line shows the resuis
all the tests.

Tabled shows that this simple classification proceduresléad
very good results. The correctness is above 90% in all it
while the error stays quite low until four partials are oe@ping.
We can see that, logically, the error raises as the numbevesf o
lapping partials increases. Indeed, the number of pattialscan

be matched in both sets increases with the number of ovénigpp

partials, resulting in erroneous matches. In the case oé tivan 5
partials overlapping, we can see that the result is hardigning-
ful since the error reaches more than 30%.

The classification experiments we show here are quite simple [11]

However, the obtained results are sufficiently promisingda-
clude that spatial cues have a positive impact over claasiit
and separation of sounds.

5. CONCLUSION

We have presented a method for coherent tracking of paitias
binaural context, along with a method to estimate the lsaéibn
of the partial in the horizontal plane. The method allowsdbtec-
tion of overlapping partials, and the classification of jdst The

next steps will be towards the use of these techniques asha gal

ering tool for partials, while enhancing the estimation ohauths
for higher frequency partials.
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