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ABSTRACT
Partial tracking in sinusoidal models have been studied forover
twenty years now, and have been enhanced, making it precise and
useful to analyse noiseless harmonic sounds. However, suchtools
have always been used in a monophonic (single channel) context.

A method is thus proposed to adapt the partial tracking to the
case of binaural signals. This gives a tool to perform spectral anal-
ysis of such signals, keeping relevant information from both left
and right channels. Moreover, azimuth (position in the horizontal
plane) information for each partial is gained using interaural cues,
such as interaural time differences (ITDs) and interaural level dif-
ferences (ILDs). The azimuth information can then be used asan
attribute or as a constraint in the binaural partial tracking algo-
rithm.

Finally, some classification results using the azimuth of par-
tials are presented.

1. INTRODUCTION

Spectral models provide general representations of sound in which
many audio effects can be performed in a very natural and musi-
cally expressive way. The analysis tool called partial tracking [1]
has been widely studied and enhanced [2] over the years and can
now be considered as rather robust in the case of noiseless har-
monic sounds. To the best of our knowledge, partial trackinghas
always been applied to monophonic signals.

In this article, we present a new way to track partials in bin-
aural contexts. Instead of tracking partials in a single signal, we
perform the tracking in the left and right channels of binaural sig-
nals. This is done by tracking spectral peaks simultaneously in
both left and right observation signals, while using the same base
techniques as in the classical partial tracking algorithm.This gives
’stereo’ partials, from which we can draw relevant data fromeither
binaural channel.

In the meanwhile, techniques for binaural source localisation
have been explored for a few years, showing promising results [3,
4]. Some of these techniques are based on level differences and
phase delays between spectral peaks in the left and right channels
of binaural recording, which we can obtain thanks to our stereo
partials. It is then possible to obtain an accurate estimation of the
azimuth (position on the horizontal plane) of each partial.

The azimuth can then be considered as a simple attribute of
the partial, or can be used as a constraint for tracking the partial, in
the same way as frequency is in classical algorithms. This opens
the way to improved detection of overlapping partials, and thus to
enhancements to the separation of such partials.

The azimuth of the partial is a very important cue for the pur-
pose of Auditory Scene Analysis, since common direction of ar-

rival is a relevant cue for source separation in the human brain [5].
Hence, we present some partial classification results basedon this
cue.

The work presented in this paper has been developped using
binaural recordings, but it can be generalised to stereo recordings,
as long as the azimuth estimation techniques can be adapted to
stereophonic recordings.

In Section 2, we will present the classic partial tracking algo-
rithm, followed by the presentation of our new algorithm forthe
tracking of partials in binaural signal. Section 3 will introduce the
binaural based spacial cues, followed by the application ofthese
cues to localisation of partials in the azimuth plane. In Section 4,
we will show some classification results based on the azimuthof
the partials. We will then conclude and present our future work.

2. SINUSOIDAL MODELLING

2.1. Model and Parameters

Additive synthesis is a spectrum modelling technique. It isrooted
in Fourier’s theorem, which states that any periodic function can
be modelled as a sum of sinusoids at various amplitudes and har-
monic frequencies. For stationary pseudo-periodic sounds, these
amplitudes and frequencies continuously evolve slowly with time,
controlling a set of pseudo-sinusoidal oscillators commonly called
partials. This is the well-known McAulay-Quatieri representation
[1]. The audio signala can be calculated from the additive parame-
ters using Equations (1) and (2), whereP is the number of partials
and the functionsfp, ap, andφp are the instantaneous frequency,
amplitude, and phase of thep-th partial, respectively. TheP pairs
(fp, ap) are the parameters of the additive model and represent
points in the frequency-amplitude plane at timet. This representa-
tion is used in many analysis / synthesis programs such as Lemur
[6], SMS [7], or InSpect [8].

a(t) =
P

X

p=1

ap(t) cos(φp(t)) (1)

φp(t) = φp(0) + 2π

Z t

0

fp(u) du (2)

2.2. Mono Partial Tracking

This model requires an analysis method in order to extract the pa-
rameters of the partials from sounds which were usually recorded
in the temporal model, that is audio signal amplitude as a function
of time. The accuracy of the analysis method is extremely im-
portant since the perceived quality of the resulting spectral sounds
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Figure 1: Frequency (top) and amplitude (bottom) trajectories of
the partials of a note of alto saxophone, performed with a classical
partial tracking algorithm.

depends mainly on it. Moreover, the main interest of an accurate
analysis method, providing precise parameters for the model, is to
allow ever deeper musical transformations on sound by minimis-
ing deformations due to analysis artifacts.

The analysis method we use consists of two steps: spectral
peaks are first extracted from the sound using a short-time spectral
analysis, then these peaks are tracked from frame to frame inorder
to reconstruct the partials.

2.2.1. Extraction of Spectral Peaks

First, a short-time Fourier analysis produces a series of short-term
spectra taken on successive temporal windows on the original sig-
nal. Information about the local maxima in magnitude (so-called
peaks) is then extracted from these short-term spectra using the
derivative algorithm proposed in [9], in order to provide the model
with accurate spectral parameters (frequency, amplitude,and phase).

As for the practical side of this analysis, we used an analysis
window of 2048 samples, moving by steps ofH = 512 samples.
These settings were chosen as a good compromise between time
and frequency resolutions for our sound source separation objec-
tive. The test sound used for Figures 1(a) and 1(b) was a 16-bit,
44100-Hz mono recording of an alto saxophone playing at a fun-
damental frequency around 165 Hz with vibrato and tremolo. The
length of each analysis window is thus about 50 ms and the reso-
lution of the resulting Fourier spectrum is approximately 20 Hz.

2.2.2. Tracking of Partials

Since the short-time Fourier analysis delivers a short-time spectral
representation of the analysed sound, we consider local maxima in
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Figure 2:Partials (frequency (top) and amplitude (bottom) trajec-
tories) of a mix of a piano note on the right and a clarinet noteon
the left (starting first), left channel. Here the clarinet partials are
clearly seen, while the piano partials are barely present.

the magnitude spectrum (so-called peaks, see above) to be the in-
stantaneous representation of partials. We have then to link peaks
of successive frames to recover the continuous evolution ofthe
partials. For this purpose, we use the enhanced partial-tracking al-
gorithm proposed in [2, 10]. This algorithm improves the classic
McAulay-Quatieri algorithm [1] by using linear predictionin order
to forecast, from their past, the future evolutions of the trajectories
of the partials.

As for the practical side of this analysis, the maximal fre-
quency difference between two successive frames for each partial
was set to∆ = 1% of the current frequency. Partials whose am-
plitude are always below -60 dBFs or whose length is smaller than
0.2 s are considered as noise, since we are interested only inreli-
able – long and strong – partials.

An example of the result of mono partial tracking is shown in
Figures 1(a) (frequency trajectories of the partials) and 1(b) (am-
plitude trajectories of the partials).

2.3. Binaural Partial Tracking

In the context of binaural recordings, a recording providestwo ob-
servation signals of the same sonic environment. In the caseof
a mix of several instruments playing together, these two observa-
tions might give different information about the same instrument.
For example, Figures 2(a), 2(b), 3(a), and 3(b) show the frequen-
cies and amplitudes of the partials found in the left and right chan-
nels of a binaural mix of a clarinet note (placed 40◦on the left,
starting first) and a piano note (placed 40◦on the right). As we
can see, the partials of the piano are logically stronger on the right
channel, while the clarinet partials are stronger on the left channel.
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Figure 3:Partials (frequency (top) and amplitude (bottom) trajec-
tories) of a mix of a piano note on the right and a clarinet note
on the left (starting first), right channel. Here the piano partials
are clearly seen and strong, while the clarinet partials areonly
available up to about 5500 Hz.

The objective then is to gather the most interesting information
that each channel has to offer. In our previous example, thatwould
be to keep the clarinet partials from the left channel and thepiano
partials from the right channel, while estimating the direction of
arrival of each partial using the previously presented spacial cues.

2.4. Tracking Partials in Two Observation Signals

In order to realize meaningful partial tracking for binaural record-
ings, partial tracking has to be performed in parallel in thetwo
observation signals, so what we obtain is a set of ’stereo’ partials,
containing information of amplitude, frequency, and phasefrom
both left and right channels.

This can be done by enhancing the classical partial tracking
algorithm to handle stereo. The first step is to use stereo spectral
peaks, which contain for each spectral peak the frequency, ampli-
tude and phase information of both channels. Next, matchingof
the spectral peaks to stereo tracks is done using the frequency, am-
plitude and phase from the loudest channel of the peak. Hence, a
peak having a higher amplitude from the left channel information
will use this information in the partial-to-peak matching phase. Fi-
nally, the matched peaks are added to the corresponding partials.
These ’stereo’ partials hold the information of both channels, but
it is only the information from the channel with highest meanam-
plitude that is used when needed.

Using these enhancements, we then obtain the most relevant
information from each channel. Figures 4(a) and 4(b) show the fre-
quency and amplitude information gathered this way. Comparing
these to the Figures 2(a), 2(b), 3(a), and 3(b), we can see that both

0
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Figure 4: Frequency (top) and amplitude (bottom) trajectories of
the piano-clarinet mix, using the stereo partial tracking.Both
notes have been tracked and relevant information from both chan-
nels have been retained.

the clarinet and the piano partials are shown to their full length and
strength using the stereo partial tracking.

Next we will show how we can make use of the second part of
the stereo information to track the position of the partial in space.

3. BINAURAL SOURCE LOCALISATION

3.1. Spatial Cues

Binaural recordings of sound provide two different observations
of the sonic environment1. As presented for example by Viste and
Evangelista [3], we can define binaural cues that will give ussome
indication of the location of the content of the environment. We
will use two such cues here, namely the ILD and ITD. These two
cues are based on the sliding short-time Fourier transform (STFT)
of the two observations.

The ILD (in dB) at then-th frame is defined as follows:

∆Ln(ω) = 20 log
10

˛

˛

˛

˛

Sr
n(ω)

Sl
n(ω)

˛

˛

˛

˛

(3)

whereω is the frequency andSr
n andSl

n respectively are the STFTs
of the right and left channel of the binaural signals. ∆Ln is thus
simply the ratio in dB of the amplitudes of the right and left STFTs,
i.e. the difference of the amplitudes in dB of the right and left
STFTs.

1We make the assumption that the signal of a given source is present in
both observations of the sonic environment. Without this assumption, the
spacial cues cannot be computed correctly.
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Also based on the right and left spectra of then-th frame, we
define the ITD (in seconds) as:

∆Tn,p(ω) =
1

ω

„

∠
Sr

n(ω)

Sl
n(ω)

+ 2πp

«

(4)

with p as the phase unwrapping factor. The use of this factor is
made necessary by the fact that the angle of the spectra ratiois
computed modulo2π. This thus makes the phase become ambigu-
ous above a certain frequency, which is dependent on the sizeand
shape of the head mainly, and is averaged to 1500 Hz.

3.2. Estimation of Azimuth

In order to estimate the azimuths, two methods were proposedin
[3] : looking up in a reference table, or using a model. In or-
der to be as generic as possible, in this paper we will take the
model based approach, since the lookup table implies knowledge
of the subject’s head-related transfer function (HRTF). This model
allows for a simpler computation of azimuths, but at the costof
decreased accuracy.

As a basis for the estimation of the parameters of this model,
we use the CIPIC HRTF Database [11].

3.2.1. Interaural Time Differences

The model we use is the following:

∆Ts(θ, ω) = βs(ω)r
sin θ + θ

c
(5)

wherer is the “head radius”, andc is the wave propagation speed
(344 m/s). We make use of the frequency-dependent scaling factor
βs(ω). This scaling factor is first estimated individually for each
subject, and then is averaged to be used in this generic model.

3.2.2. Interaural Level Differences

Based on a study of the HRTFs in the CIPIC database [11], Viste
and Evangelista [3] propose the following model:

∆Ls(θ, ω) = αs(ω) sin θ (6)

with frequency dependent scaling factorαs(ω). Here again, the
scaling factor used is an average over all the subjects.

3.2.3. Computation of the Azimuth

In order to retrieve the azimuth from the spectra using this method,
we have to inverse equations 6 and 5 such that:

θL,n(ω) = arcsin
∆Ln(ω)

α(ω)
(7)

θT,n,p(ω) = g
−1

„

c

rβ(ω)
∆Tn,p(ω)

«

(8)

where∆Ln(ω) and∆Tn,p(ω) are defined respectively in equa-
tions 3 and 4, andg−1 is the inverse function ofg(θ) = sin θ + θ.
This function cannot be inverted algebraically. However, using a
Chebyshev series, we can compute a polynomial approximation g̃

of g over the interval of interest, then inverse it:

g̃
−1(x) =

x

2
+

x3

96
+

x5

1280
(9)
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Figure 5:Azimuth trajectories of the partials based on level differ-
ences. Mix of a clarinet, 40◦on the left, starting first, and a piano
note, 40◦on the right.
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Figure 6:Azimuth trajectories of the partials based on phase de-
lays. Mix of a clarinet, 40◦on the left, starting first, and a piano
note, 40◦on the right. The azimuth trajectories are less dispersed
thanks to the enhanced precision of the joint azimuth estimation
method.

In practice we use this approximation in Equation (8).
Using this model, the estimation thus becomes continuous along

the azimuth axis.

3.3. Tracking the Azimuth

In this article, we consider that sound sources are placed spatially
on the horizontal plane, and that they come from the front of the
subject (-90◦to 90◦).

As shown before, spatial cues can be estimated using the in-
formation from both left and right channels. During the stereo
partial tracking, we gather information from each channel on both
amplitude and phase, which are needed in order to compute the
interaural spatial cues, ILD and ITD.

Hence, at the same time as the partial tracking is taking place,
at each frame we compute the ILD and ITD. These cues are then
in turn used to compute the azimuth of each stereo spectral peak,
as shown in Equations (7) and (8).

The azimuth we obtain from these cues are however not ideal.
Indeed, the azimuth computed from the ILD, based on the ampli-
tude ration, is noisy. On the other hand, the ITD, based on the
phase delay, gives a more precise estimation, but it is ambiguous
at a wavelength smaller than the diameter of the head. However,
as shown in [3], it is possible to obtain a more precise and non-
ambiguous estimation of the azimuth using a joint estimation pro-
cess: the noisy azimuth based on the ILD is used to disambiguate
the more precise azimuth based on the ITD. An example of this is
given in Figures 5 and 6. In the first figure, the azimuth trajecto-
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Figure 7:Using azimuth as a constraint for peak matching in the
binaural partial tracking algorithm. Resulting frequency(top) and
amplitude (bottom) trajectories.

ries of some of the partials of the mix, computed using the ILD, is
shown. We can recognise there the two notes, vaguely groupedin
two sets, one on the left, starting earlier, which is the clarinet note,
and a second set on the right, which is the piano note. These trajec-
tories are noisy, and hardly usable. On the second figure however,
using the joint azimuth estimation, we obtain much more precise
trajectories.

It has to be noted however that we show in Figures 5 and 6
only the partials with a mean frequency lower than 6000 Hz. This
is due to the constraints of the ILD model. Indeed, above that
frequency theα(ω) parameter is varying greatly from subject to
subject, making the averageα(ω) parameter inaccurate, and thus
creating very noisy azimuth trajectories. Hence, only the partials
with a frequency lower than 6000 Hz are considered reliable as far
as the azimuths are concerned.

3.4. Azimuth as a Tracking Constraint

Until now, we have only considered the azimuth of the partials as
an attribute of the stereo partials that help locate the partials in
space. However, let us consider the case of overlapping harmonics
of notes from two distinct sources (in space). In this case, in the
binaural partial tracking system we proposed, only the continuity
in frequency is the criterion for the tracking of a partial: aspectral
peak is considered to be matching a partial only if it is within a
10 Hz range of the predicted spectral peak. Hence, a partial track-
ing will not be discontinued when an overlap occurs. This makes
it at least difficult to detect overlapping at least, and evenmore
difficult to separate overlapping partial.

However, in the light of the azimuth estimation we presented
above, we can now put on constraints not only on frequency, but
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Figure 8:Using azimuth as a constraint for peak matching in the
binaural partial tracking algorithm. Resulting azimuth trajecto-
ries.

Overlap # Cases Correct in % Error in %
0 76 93.3 (12.9) 0.24 ( 1.50)
1 71 92.6 (11.8) 4.43 (10.28)
2 28 94.9 ( 9.0) 7.63 (10.74)
3 20 94.3 (10.4) 14.21 (20.48)
4 9 91.5 (18.8) 12.63 (18.31)

more than 5 6 99.2 ( 1.3) 30.20 (32.52)
1.2238 210 93.5 (12.0) 5.36 (13.03)

Table 1: Results of a simple classification of partials, using their
azimuth as classification criterion. The numbers in parentheses are
the standard deviation of the result.

also on azimuth during the peak matching phase. This leads toin-
teresting results for overlapping partials. Figures 7(a),7(b), and 8
show our piano and clarinet example one more time, except that
this time from one frame to the next, each partial is not moving
in azimuth more than one degree. We can see on the figures that
adding this constraint degrades the partial tracking, but sometimes
in an interesting way. For example, we notice that the fourthpartial
from the bottom on Figure 7(a) (just below 2000 Hz) is missinga
part at the onset of the piano note. This is of course not a coinci-
dence, since it comes from the fact that the azimuth of the partial
if strongly modified due to the overlapping of this clarinet partial
with one of the piano’s. Hence, this could be used as a tool for
overlapping detection and thus also for disambiguation (such as
presented in [12] for example). One could also use this azimuth
constraint technique to tracks moving sources.

4. CLASSIFICATION

A logical application of binaural partial tracking is the classifica-
tion of the partials using the spatial cues. In order to test the results
of such a classification, we have set an experiment to classify about
200 mixed pairs of sounds (results given in Table 1).

For each case of the experiment, we take two mono sounds
and analyse each of them using the regular mono partial tracking
algorithm. This gives us the reference partial set of each sound.

Then, we perform binaural mixing of the two sounds at angles
-30◦and 30◦. We analyse the mix, and gather the stereo partials
in two sets according to their azimuth: one set that is closerto
-30◦and the other set that is closer to 30◦.

We then compare the new found sets to the reference sets. A
partial of an experimental set is consider to match a partialfrom
a reference set if the frequencies are within a 10 Hz range over
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the length of the common partials length. If there is a match,the
common length is then added to the score of the matching of the
experimental set to the reference set. Eventually, the scores are
divided by the total length of all the partials of the experimental
set, so that the results are given in percentage. Another wayof
putting it is that we measure the pourcentage of the partials(of a
given test set) corresponding respectively to the correct and erra-
neous reference partial sets in order to get the correctnessand error
percentage.

The sounds used for this experiment are sounds from the Iowa
database [13]. These are harmonic sounds recorded in a low-noise
environment. We have used sounds of Bassoon, Cello, Clarinet,
Flute, Oboe, Piano, Saxophone, Trombone and Trumpet, starting
at the same time in order to have a maximum time overlap. Notes
range from E3 to C6. The considered partials are below 6000 Hz
in order to avoid errors due to the ITD and ILD unreliability in the
model.

Table 1 gives the results of our experiment. The first column
shows the number of overlapping partials between the two refer-
ence sets, and the second column shows the number of cases it
occurred in. The third column gives the percentage of correctness,
that is the amount of partials that are matched from the experi-
mental set to the correct reference set. In the fourth column, the
error in percentage is given, that is the amount of partials that are
matched from the experimental set to the wrong reference set. In
both the third and fourth column, the standard deviation of the re-
sult is shown in parentheses. The final line shows the resultsover
all the tests.

Table 1 shows that this simple classification procedure leads to
very good results. The correctness is above 90% in all situations,
while the error stays quite low until four partials are overlapping.
We can see that, logically, the error raises as the number of over-
lapping partials increases. Indeed, the number of partialsthat can
be matched in both sets increases with the number of overlapping
partials, resulting in erroneous matches. In the case of more than 5
partials overlapping, we can see that the result is hardly meaning-
ful since the error reaches more than 30%.

The classification experiments we show here are quite simple.
However, the obtained results are sufficiently promising tocon-
clude that spatial cues have a positive impact over classification
and separation of sounds.

5. CONCLUSION

We have presented a method for coherent tracking of partialsin a
binaural context, along with a method to estimate the localisation
of the partial in the horizontal plane. The method allows thedetec-
tion of overlapping partials, and the classification of partials. The
next steps will be towards the use of these techniques as a gath-
ering tool for partials, while enhancing the estimation of azimuths
for higher frequency partials.
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