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ABSTRACT

For interactive sound synthesis, we would like to change the shape
of a finite element model of an instrument and rapidly hear how
the sound changes. Using modal synthesis methods, we would
need to compute a new modal decomposition with each change
in the geometry, making the analysis too slow for interactive use.
However, by using modes computed for one geometry to estimate
the frequencies for nearby geometries, we can hear much more
quickly how changing the instrument shape changes the sound.
In this paper, we describe how to estimate resonant frequencies
of an instrument by combining information about the modes of
two similar instruments. We also describe the balance between
computational speed and accuracy of the computed resonances.

1. INTRODUCTION

With fast computers and modern techniques, we can synthesize
realistic instrumental sounds in real time. The goal of the work we
describe here is to design realistic instruments in real time. That
is, we would like to know precisely how changing the shape of
an instrument, or the materials that make up the instrument, will
change the instrument’s sound.

In modal synthesis, the motion of an instrument is expressed
as a combination of modes, each of which oscillates independently
of the others. To use modal synthesis, though, we must first com-
pute a partial eigenvalue decomposition of the system matrices.
This eigenvalue problem is relatively expensive, but we only need
to compute the decomposition once for a given instrument. How-
ever, the eigenvalues and eigenvectors depend strongly on the in-
strument’s shape. Therefore, to design new instrument shapes with
standard modal analysis, we would need to recompute the modes
for each new design – a prohibitively expensive step for an interac-
tive tool. Our goal in this paper is to show how to quickly estimate
the modes of a new instruments from the modes of one or more
similar instruments.

This paper describes one method that can be used to predict
how the eigenvalues and eigenvectors will move when the geome-
try changes. The method exploits properties of parameter-dependent
linear systems by tracking an invariant subspace as modifications
are made. Using this method, one avoids recomputing modes
while still providing an accurate representation of the timbre of an
object. The results show very high accuracy for moderate changes.
Moreover, our algorithm runs in a modest linear time for standard
finite element discretizations.

1.1. Mathematical preliminaries

For a system of n degrees-of-freedom (DOFs), the governing equa-
tions of motion are a set of n coupled ordinary differential equa-
tions of second order. The solution of these equations becomes
complicated when the size of the system is large or when the forc-
ing functions of the system are non-periodic. In such cases, it is
convenient to express the deformation of the object as linear com-
binations of normal modes of the system. Such a transformation
uncouples the equations of motion into a set of n uncoupled differ-
ential equations. In this form it is trivial to solve for the vibration
of an object under various loading conditions.

Even when the motion of the object is large, or other nonlinear
behaviors occur that violate the assumptions of modal superposi-
tion, the techniques presented in this paper can be used to build
the basis that captures object motion [1], [2]. As such, this paper
provides a general technique for approximating modal parameters
as objects undergo shape change. It is used to aid in modal decom-
position and is applied before excitation and modal superposition
are performed.

The canonical system of equations resulting from discretiza-
tion using the finite element method is as follows:

Mü+ Cu̇+Ku = f(t) (1)

where M is the matrix representing the distribution of mass in the
system, C is a measure of damping and K is the stiffness matrix.
This equation expresses the balance of forces generated by the ac-
celeration, velocity and displacement of the object. In this form the
equations are coupled and thus the solution involves manipulation
of these large system matrices.

Alternatively, modal analysis seeks to decouple this system
into single degree-of-freedom (DOF) oscillators. Without damp-
ing, the procedure for uncoupling these equations is straight for-
ward using the general eigenvalue decomposition Kx = λMx.
However, with damping, decoupling these equations requires some
assumptions to be made [3]. Normally proportional damping is as-
sumed such that:

C = α1M + α2K (2)

Substituting this expression back into Equation 1, we have:

M(ü+ α1u̇) +K(α2u̇+ u) = f(t) (3)

This is the general form of the system before eigendecomposition.

1.2. Model reduction

The eigenvalue problem that we want to solve then is:

Ax = λBx (4)
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where A and B are the positive semi-definite symmetric stiffness
and mass matrices respectively (i.e. K andM ), and x is the vector
of nodal displacements of the mode with natural frequency λ =
ω2. One means of formulating approximate equations for freely
vibrating discrete systems is via the Rayleigh’s quotient:

λR =
x̂TAx̂

x̂TBx̂
(5)

where x̂ is an approximation to x [4]. The relative accuracy of
methods based upon this formulation results from the fact that
eigenvalues λ are stationary with respect to perturbations in the
elements of A,B, and the eigenvectors x. Thus, if a transforma-
tion for the n physical node displacements, x̂, into fewer (m < n)
generalized coordinates is available, say

x̂ = V y
n× 1 n×m m× 1

(6)

then the corresponding Rayleigh quotient becomes

λR =
yTV TAV y

yTV TBV y
. (7)

Making λR stationary to arbitrary variations in the m elements of
y yields the reduced eigenproblem

V TAV y = λRV
TBV y. (8)

We can view this reduction as imposing n−m constraints on the
original system thus giving the following result using the Cauchy
Interlace Theorem

λ(i) ≤ λ
(i)
R ≤ λ(j+n−m) j ≤ m. (9)

Thus all the λR are contained between λ(i) and λ(n) and the ap-
proximations become exact for m = n.

The essence of the reduction scheme lies in the definition of
the transformation matrix V . Some researchers have used matrices
comprised from vectors that span a Krylov subspace [5], [4]; we
choose to use a matrix that is made from exact modal vectors [6].

2. METHODS

For most systems, only the first few natural frequencies and asso-
ciated natural modes greatly influence the dynamic response, and
the contribution of higher natural frequencies and the correspond-
ing mode shapes is negligible. If only the fundamental natural
frequency of the system is required, the Rayleigh method can be
used. However, if a small number of lowest natural frequencies of
the system is required, the Rayleigh-Ritz method can be used.

The Rayleigh-Ritz method then, can be considered an exten-
sion of the Rayleigh method [7]. In the Rayleigh-Ritz method,
the shape of deformation of the continuous system, v(x) is ap-
proximated using a trial family of admissible functions that satisfy
some geometric boundary condition of the problem:

v(x) =

nX
i=1

ciφi(x) (10)

where ci are unknown constant coefficients and φi are the known
trial family of admissible functions. The functions can be a set of
assumed mode shapes, polynomials, or eigenfunctions.

The accuracy of the method depends on the value of n and the
choice of trial functions φi(x) used in the approximation. By using
a larger n, the approximation can be made more accurate, and by
using trial functions which are close to the true eigenfunctions, the
approximation can be improved.

2.1. Approximations from a subspace

Let s denote a geometric parameter. For a given finite element
model, we have a generalized eigenvalue problem:

(K(s)− λ(s) ∗M(s))u(s) = 0, (11)

where K(s) is the stiffness matrix of the system and M(s) is the
mass matrix at the given state of the geometry, and λ(s) and u(s)
are an eigenvalue and its corresponding eigenvector for the system.

If w(s) is accurate to O(h) as an estimate for u(s), then

µ(s) = (w(s)∗K(s)w(s))/(w(s)∗M(s)w(s)) (12)

is accurate to O(h2) as an estimate for λ(s). This is the accuracy
boost we want to utilize.

Suppose that we have computed eigenpairs (λ(s0), u(s0)) and
(λ(s1), u(s1)), and now want to compute the pair (λ(s2), u(s2)).
Then we can use the initial approximation µ(s) drawn from a
Rayleigh-Ritz approximation on the pencil:

(U∗K(s2)U,U
∗M(s2)U) (13)

where U = [u(s0), u(s1)] (or if several of the lowest eigenvalues
are desired then simply replace u(s0) with u1(s0), u2(s0), ... and
u(s1) with u1(s1), u2(s1), etc.).

If the step size isO(h), then the error in approximating ui(s2)
by extrapolating through ui(s0) and ui(s1) should beO(h2) – the
approximation is good through the linear term – and the eigen-
value approximation should be O(h4). More generally, if you use
invariant subspaces computed at k points, you should get O(hk)
accuracy in the eigenvector, and a correspondingO(h2k) accuracy
in the computed eigenvalue.

Therefore, by building a basis from n eigenvectors sampled at
k locations in parameter space, we can predict the same n eigen-
vectors and the corresponding eigenvalues at nearby points. In
essence, by looking at a couple of steps, we can capture the be-
havior of the eigenvectors rotating as the geometry changes and by
solving a smaller eigenproblem, we can reduce the time to com-
pute the original system in order to determine a subset of eigenval-
ues and eigenvectors.

2.2. Expected behavior

Instead of solving the entire eigenvalue problem, we will be mak-
ing approximations to the solutions by projecting onto the sub-
spaces formed by analyzing nearby shapes. We can measure how
well our method approximates the true eigenvectors of the sys-
tem by measuring the angle between the actual and approximated
eigenvectors [8], [6], [9]. One can approximate the angle by:

‖ sinψ‖ ≤ ‖r(y)‖
gap(θ)

(14)

where θ = y∗Ay is the Rayleigh quotient given by projection of
the matrixA onto the vector y. The residual r(y) = Ay−yθ mea-
sures how well the vector y approximates an eigenvector. Also
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the gap(θ) = min|λi[A] − θ| over all λi 6= αi measures how
well-separated a given eigenvalue is. This result combines several
important facts. Firstly, it says that the larger the gap between an
eigenvalue and the neighboring eigenvalues in the same spectrum,
the better the approximation one can make to its eigenvector. The
next fact is more straightforward; it states that the better the vec-
tor y acts like a solution to the eigenproblem Ax − λx = 0, the
better it approximates an eigenvector. From these results we know
that systems with repeated or tightly clustered eigenvalues will be
a problem, and we will give an example on the effect of approxi-
mation techniques on these systems in Section 3.2. However, for
general parameter dependent matrices, we can see that approxima-
tion using projections onto a subspace show promise.

We will try the Rayleigh-Ritz technique on several examples
to see how well we can approximate the spectrum after modifica-
tions to the geometry.

3. RESULTS

We tested the usefulness of this approach on a variety of exper-
iments. The geometries tested do not represent full instruments
per-se, but instead are arbitrary shapes that can be formed using
the parametric method described in [10]. We use these shapes for
examination of the method.

For each geometry, we used a linear shell finite element for-
mulation as described in [11]. Each element consists of four nodes
each with six degrees-of-freedom. We use shells to make the ax-
isymmetric example easier to visualize. However this method can
be used with any geometric discretization that can be defined para-
metrically, including solid models.

3.1. Separated spectrum

First, we examined a shell whose curvature is defined by four con-
trol points as shown in Figure 1. The large dots indicate the points
modified directly and the smaller dots represent the points which
are interpolated using cubic B-spline interpolation to define the
curve. By changing the location of these control points, we change

Figure 1: Parametric curve.

the geometry parametrically.
The control points define a curve which is then revolved by

a small amount around the z-axis to form the geometry shown
in Figure 2. We use this geometry to highlight one aspect of the

method that occurs when the curve is revolved all the way around
the z-axis.

Figure 2: Simple shell model.

We examined changing a 1m tall by 0.5m radius shell’s out-
ermost radius by 10cm, 1cm, and 1mm and examined the error in
eigendecomposition. We considered using only one sample point
in parameter space, s, and examined the accuracy in prediction of
the Ritz values. The results show prediction errors of 1% for the
smallest step size and 100% for the largest step size. As expected,

Figure 3: Error for different size h. One sample point.

smaller changes in geometry allowed for better prediction of the
new eigensolution. In each of the plots, we consider the first n
non-zero eigenvalues.

Next, we examined using two sample points. Figure 4 shows
the results for the different step sizes. As expected, using more
points in parameter space increased the accuracy of the predic-
tions. In fact, the accuracy of the two-subspace version is almost
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Figure 4: Error for different size h. Two sample points.

twice as many digits as the one-subspace version which agrees
with the theoretical bounds in Section 2.2.

Figure 5 shows that using two subspaces versus one also gives
much faster convergence. Notice how the two point version has
a steeper slope than the one point version, following the expected
O(h2k) convergence, (where k is the number of points).

Figure 5: Error for different size h. Two sample points.

We also investigated using a larger subspace. So instead of us-
ing the first 50 eigenvectors, we used the first 100. Figure 6 shows
how using more eigenvectors from each of the two subspaces im-
proves the estimate of the eigenvalues.

We also confirmed that the error is proportional to the size of
the object, i.e. making a 10cm change in a 1000cm object should
produce smaller errors than the same absolute change to a 10cm
object. By examining Figure 7, we can see when that the error is
proportional to the size of the object, as expected.

Figure 6: Error for h = 10cm. Larger subspaces.

3.2. Repeated eigenvalues and other difficulties

As we would expect for a model with a high degree of rotational
symmetry, our test problem exhibits many repeated eigenvalues.
For an eigenvalue with multiplicity m, we cannot uniquely iden-
tify m mode shapes. Even for nearly-symmetric objects, the mode
shapes associated with a cluster of eigenvalues can vary wildly
under small perturbations. Only the m-dimensional invariant sub-
space spanned by all the shapes for the eigenvalue cluster is uniquely
defined.

The sensitivity of the mode vectors does not, on its own, im-
ply that our method will behave poorly in the presence of repeated
eigenvalues. If every vector in the invariant subspace for a clus-
ter of m eigenvalues can be approximated well by some vector in
the projection basis U , then we expect Rayleigh-Ritz approxima-
tion with U to produce a cluster of m eigenvalues near the orig-
inal eigenvalues, and a corresponding subspace which is a good
approximation to the true invariant subspace. However, the single-
vector Lanczos iteration we use to find mode shapes sometimes
fails to find a complete basis for each invariant subspace. When
this occurs, we can overlook some of the eigenvalues and eigenvec-
tors that we would like to capture in our projection space. When
this occurs, the missing mode shapes represent a significant failure
in our method.

For example, when analyzing the 1m high by 1m radius ax-
isymmetric geometry shown in Figure 8 we found very large er-
rors. Figure 9 shows the degeneracy that arises using a very ax-
isymmetric geometric formulation.

We were able to resolve the some of the eigenvalues more ac-
curately with a larger subspace, but not the eigenvalues at the be-
ginning of the spectrum (see Figure 10).

The large errors at the beginning of the spectrum are not ex-
pected on their own, however when examining the eigenvalues we
can see that the large errors can be attributed to the rapid change in
eigenvectors for even a small perturbation. Figure 11 shows how
the principle angles between the subspaces at two iterations can be
very large for even small modifications.

In fact we found that the higher number of repeated eigen-
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Figure 7: Error for different sized objects.

values, the worse the overall approximations. Figure 12 shows
a geometry similar to Figure 8 but with 4 radial slices, and Fig-
ure 13 shows the error in eigenvalue approximations using this ge-
ometry. Figure 14 shows a geometry with 8 radial slices, and Fig-
ure 15 shows the error in eigenvalue approximations on this model.
Figure 16 shows a geometry with 16 radial slices, and Figure 17
shows the resulting error in eigenvalue approximations. These re-
sults leads us to believe that more radial slices creates more blocks
of symmetry in the system matrix, thus making it harder it is to
approximate the motion of the eigenvectors.

We know two methods to address the difficulty of completely
resolving the the invariant subspaces corresponding to repeated
eigenvalues. The first method is to use a block version of the stan-
dard Lanczos algorithm [6]. Unlike the ordinary Lanczos itera-
tion we use, block Lanczos iteration can find an invariant subspace
for an eigenvalue in a single step, provided the block size is the
same or greater than the multiplicity of the eigenvalue. The second
method is the radial decomposition technique described in [10],
which uses analytical knowledge of the symmetry group leading
to the multiple eigenvalue in the first place.

Another source of problems is when a structure is much stiffer
in some directions than in others. For example, our shell struc-
ture is much less resistant to out-of-plane bending than to in-plane
compression. A vector that represents pure bending motion for one
geometry may represent a mixture of bending and in-plane com-
pression in a nearby geometry, so that a Rayleigh-Ritz approxi-
mation based on that vector will overestimate the frequency at the
new geometry.

3.3. Performance

The speedup gained by using this method over traditional reanaly-
sis is the difference between modest linear and super-linear com-
puting time once the initial k samples have been computed. Fig-
ure 18 shows the speedup using this method over using reanalysis
for increasing resolution of the object shown in Figure 2.

Figure 8: Axisymmetric shell model.

4. CONCLUSIONS

The aim of this investigation is to determine if our tracking method
method can be used to predict the changes in the frequency spec-
trum of an object as parametric changes are made. The results of
these experiments show that for moderate changes, it is possible
to avoid recomputing the eigendecompositions in order to resolve
the resonant frequencies of interest.

By exploiting the properties of the system matrices, we have
a bound on the errors produced using different step sizes. For an
interactive design tool, this would mean that the software could
alert the user when errors above a given threshold have been made
and signal the need for a full reanalysis.

For systems with many repeated eigenvalues, such as axisym-
metric systems, it is more beneficial to use analysis techniques that
will handle the multiple eigenvalue problem.

This investigation demonstrates that for interactive design ap-
plications, it is beneficial to track the spectrum for moderate changes
in geometry to avoid computing a partial eigendecomposition. By
using this method, we can maintain a moderate linear time algo-
rithm with increasing system size.
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Figure 11: Cosine of angle between subspaces at two different
steps.

Figure 12: Whole bell geometry, 4 planes of symmetry.

Figure 13: Error for different size h. 4 planes of symmetry.

Figure 14: Whole bell geometry, 8 planes of symmetry.
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Figure 15: Error for different size h. 8 planes of symmetry.

Figure 16: Whole bell geometry, 16 planes of symmetry.

Figure 17: Error for different size h. 16 planes of symmetry.

Figure 18: Time to compute new spectrum.
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