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ABSTRACT

Automated removal and extraction (isolation) of percussive sounds
embedded in an audio signal is useful for a variety of applications
such as speech enhancement and for music processing effects. A
novel method is presented to accomplish both extraction and re-
moval of beats, using an adaptive filter based on the LMS algo-
rithm. Empirical evaluation is undertaken using computer gener-
ated music with a mix of natural voice and repeating drum, and
shows that the efficacy of the system is robust to different sound
processing techniques such as non-linear distortion and tempo jit-
ter.

1. INTRODUCTION

Extraction and removal of percussive sounds from musical record-
ings are two different things; the former requires that only the beats
be left after the audio signal processing, and that the user of such
a “beat-extractor” wishes the extracted beats to be undistorted rel-
ative to those beats used to create the original musical piece. Beat
removal, on the other hand, implies that the user is not concerned
whether the beats themselves are recoverable from the audio mix.
In the latter case, it is the non-percussive sounds which are of in-
terest. The motivations for either objective are varied. An example
is as an effect for reproduction of pre-recorded music, such as live
DJ performances where a percussive beat from one musical piece
can be mixed with the non-beat component of a second piece. An-
other use is for audio engineering to “fix” a recording which has
already been mixed to two-channels, yet the engineer wishes to
keep only the drum part of the mix, or everything BUT the drum
part. A third use of such a beat extracting or removal device is for
music production using samples from prerecorded music; a very
common phenomenon in modern popular music.

2. SYSTEM OVERVIEW

The system architecture for the new beat extractor/ remover is de-
scribed in figure 1. The musical input signal is first processed by a
rhythmic feature analyser. The function of this device is to extract
timing data about percussive events in the musical piece, classi-
fying the sound into onsets and time intervals. Analysis of beat
for music with strong percussive content relies on finding the local
maximum in the power spectra envelope [1, 2], and can be used
with measures of either auto-correlation [1] or outputs from res-
onant filters [3] to determine inter onset interval. A hierarchical
representation of rhythmic patterns can be extracted to give the
basic pulse-rate (the tactus) and higher structural levels such as
bar-length [4]. However, the exploratory discussion of the system

presented here is concerned only with identification of the basic
(foot-tapping) pulse, which in the foregoing experiment was iden-
tified manually from a single channel of computer-generated mu-
sic.
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Figure 1: System overview.

Once the basic pulse has been identified, a scaled dirac train
is created which is defined as a single sample value of unity at the
start of each beat. The delay (τ ) on the input signal (i.e. to create
signal y(n)) ensures that the onset time is not critical; the onset es-
timate could be up to τ samples earlier than the actual onset time:
the adaptive filter can compensate for such timing discrepancies
with non-minimum phase filter coefficients. Such inaccuracy may
be caused by a noisy energy-envelope threshold-based system, or
a “true-event” time which occurs between samples. Effect of such
timing jitter in the estimation of onset time on system performance
is investigated later.

The basic goal of the system is to filter the dirac train so as
to minimize the difference signal (measured as the mean-square
energy difference) between it and the input audio signal; hence
the adaptive filter coefficients are updated according to the Least
Means Square (LMS) algorithm [5]. The premise of this is that the
percussive musical sounds which occur at the dirac event times are
caused by the same musical source. This is valid for computer-
generated music such as techno, though to ensure that the timings
for the dirac train correspond to percussive events from the same
instrument an analysis of the local percussive event must be under-
taken; feature extraction methods for accomplishing this, such as
using harmonic analysis, are suggested in [6]. A major assumption
is that time-varying non-percussive events (such as voice) will be
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different on each identified transient, so the filter will not adapt to
model these and the filtered dirac train (signal ŷ(n)) will resemble
a train of just the percussive sounds.

The convolution of the dirac train signal u(n) with the M -
length adaptive filter h gives signal ŷ(n):

ŷ(n) =

M−1X
k=0

x(n − k)hk

= xT (n)h.

(1)

Where:
x(n) = [x(n), x(n − 1), ..., x(n − M + 1)]T ,
h = [h0, h1, ..., hM−1]

T .
It is this filtered dirac signal ŷ(n) which approximates the beat
occurring at the same time as the dirac impulse; hence this signal
can be considered the “extracted” percussive events.

The delayed input audio signal y(n) is then subtracted from
the filtered dirac train ŷ(n) to give the error signal e(n):

e(n) = y(n) − ŷ(n). (2)

If the adaptive filter coefficients match the actual percussive event
at the time of the dirac pulse, then the percussive event would be
totally canceled from the original input signal. Hence, under such
optimal filter conditions the error signal can be considered to have
the percussive events removed (i.e. the percussive events which
have the same onset time as the dirac pulse).

The adaptive filter is adjusted over time so as to decrease the
error signal level. This goal is formally expressed as a “perfor-
mance index” or “cost” scaler J , where for a given filter vector
h:

J(h) = E
˘
e2(n)

¯
, (3)

and E {·} is the statistical expectation operator. The requirement
for the algorithm is to determine the operating conditions for which
J attains its minimum value. This state of the adaptive filter is
called the “optimal state” [5].

When a filter is in the optimal state, the rate of change in the
error signal level (i.e. J) with respect to the filter coefficients h
will be minimal. This rate of change (or gradient operator) is an
M -length vector ∇, and applying it to the cost function J gives:

∇J(h) =
∂J(h)

∂h(n)
. (4)

The right-hand-side of the last equations are expanded using par-
tial derivatives in terms of the error signal e(n) from equation (3):

∂J(h)

∂h(n)
= 2E


∂e(n)

∂h(n)
e(n)

ff
. (5)

Updating the filter vector h from time sample (n − 1) to time
(n) is done by multiplying the negative of the gradient operator
by a constant scaler and the filter update (i.e. the steepest descent
gradient algorithm) is:

h(n) = h(n − 1) +
α

δ + xT (n)x(n)
x(n)e(n)

with
0 < α < 2.

(6)

δ is a regularization constant to ensure against computational er-
rors when the power estimate of the input signal is too low (this
update version is called the Normalized LMS algorithm [5]).
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(a) Time-domain plot.
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Figure 2: Details of input test stimulus. The mono mix used in the
simulations was created by the summation of a voice and a drum
track. The drum beat was created electronically from a single sam-
ple of a kick drum repeated at regular intervals.

Besides the massive increase in computational efficiency of
implementing the filter-update and signal filtering in the frequency
domain (requiring 5 FFT’s per iteration; i.e. for every M in-
put samples), the performance of the frequency-domain and time-
domain NLMS algorithm are equivalent [7]. The overlap-save
technique was used (as described in [7]) with an overlap factor
of two (performance was not significantly affected by an increase
in overlap). In the filter update, the time-domain constraint (to en-
sure against “wrap-around” errors when M is less than the length
of the actual impulse response) was affected so as to weight later
coefficients less than early ones; a modification known as the “ex-
ponential step” (ES) algorithm [8]. This ensures an exponential
decay of the extracted beat. Furthermore, a parallel multi-filter
approach was implemented whereby three simultaneous filters ran
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with different update (α) parameters [9]; this allowed for fast ini-
tial convergence (subjectively, performance stabilized after 1 or 2
iterations) and robustness to sudden changes in envelope from new
sounds.

3. ELECTRONIC VALIDATION

3.1. Test stimuli

For this exploratory investigation of the proposed system, a sim-
ple test stimulus was created by the summation of a sung voice
and kick-drum train, as shown in figure 2. The drum sound was a
typical decaying techno bass-drum sample (14000 samples long),
and was repeated at intervals of 21900 samples (i.e. 121 beats
per minute). The voice tempo was synchronized with the drum.
As can be seen from the spectral analysis, the two musical instru-
ments overlap in frequency (within 5-10 dB) for nearly two octaves
centred about 500 Hz.

To investigate the effect of non-linear distortion on the sys-
tem response, two common audio-processing techniques were ap-
plied to the mono mix; compression and reverberation. The dy-
namic compression algorithm applied an increasing gain to low-
level sounds with a 2:1 ratio (quite an extreme case of compres-
sion), with a 20 ms attack time and 40 ms release time. Rever-
beration was artificially simulated using a commercially available
processor with a reverberation time of 2.6 seconds. The RMS-
averaged energy for the processed stimuli were matched with the
original mono mix. It was expected that any non-linear distortion
would reduced the efficacy of the system, creating a mismatch be-
tween the adaptive filter and the time-variant percussive sound (i.e.
the optimal filter condition would also be time variant).

Furthermore, to simulate the effect of inaccuracies in the pulse
event timing analysis system, the true beat-onset time (which was,
of course, known a priori when the beat-track was created) was
randomized by adding a gaussian-shaped noise process with a
mean of zero and a variance of 0-100 samples (a kind of timing
jitter).

3.2. System output response

As can be seen from the time-domain signal outputs in figure 3,
the extracted drum beat and voice signal were very similar to the
original input signals. Subjectively, the extracted bass-drum was
distortion free after a single iteration. However, the extracted voice
signal (or rather, the input signal with the drum-beat removed) had
noticeable distortion artifacts. This was partly due to the exponen-
tial window smoothing which forced the adaptive filter coefficients
to decay to zero faster than the actual decay of the drum beat (com-
pare the drum envelope in the lower two plots of figure 3). Distor-
tion was also noticeable at repeating intervals related to the block
size length caused by high energy narrow-band resonances in the
voice. Further work is needed to “fine-tune” the algorithm so that
the power-estimate analysis used in the filter update has a memory
which can account for such sudden resonances.

Considering an optimal solution set of filter coefficients h and
a current set of filter coefficients ĥ then the magnitude of the dif-
ference or mismatch between the two can be expressed as a simple
dimensionless quantity ξ called the misalignment [10]:

ξ =

˛̨̨˛̨̨
h − ĥ

˛̨̨˛̨̨
||h|| , (7)
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Figure 3: 1.8 second snippet of original voice and drum input sig-
nals and extracted output signals.

where ||·|| denotes the two-norm of a vector. In the new system, h
is really the actual percussive event (i.e. the optimal solution) and
ĥ is the adaptive filter coefficients (i.e. the approximated beat).
In this study, the optimal solution is know a priori- they are the
individual beats used to create the drum channel.

As can be seen in figure 4, the non-linear processing of the
original mono mix signal reduced the system performance (as
measured in terms of misalignment). This was expected, though
it should be noted that the subjective degradation in performance
was not noticeable for the case when artificial reverb was added,
and that for the processing involving compression the extracted
drum channel was also subjectively undistorted.
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Figure 4: Misalignment for different non-linear audio processing
techniques applied to the original mono mix.

Figure 5 shows the degree of robustness of the system to a jitter
in the estimated beat-onset detector. For a given variance σ, 16%
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of the event timings (i.e. the sample time of a given dirac pulse)
will be later or earlier than the true event time by σ samples. Sub-
jectively, the extracted drum and voice signals were undistorted if
this variance was below 50 samples. This is still a relatively low
tolerance (a 1/16th note inter-event for a 120 BPM beat is 1300
samples), and to accomplish such a necessary beat-tracking ac-
curacy for live (rather than computer-generated) music would be
difficult.
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Figure 5: Effect of event timing jitter on misalignment. Different
curves show magnitude of jitter: the variance (in samples) for a
normal distribution centred about the actual event timing.

4. CONCLUSION

A novel application of adaptive filters for the purpose of extrac-
tion and removal of percussive sounds from music recordings has
been presented. The proposed system relies on a rhythmic analy-
sis device which extracts event timings for the percussive sounds
and creates a dirac train with the pulse located at the percussive
event onset time. The dirac train is then filtered with an adaptive
filter updated according to the NLMS algorithm and the filtered
signal approximates the percussive event. The system was tested
with a computer-generated musical signal created from a repeating
bass-drum and a sung voice. Subjective audition and electronic

measurement of the extracted drum signal shows very promising
effectiveness. However, distortion artifacts are larger in the non-
percussive audio output channel which suggests the system is bet-
ter suited for beat extraction rather than beat removal.
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