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ABSTRACT
This paper provides a detailed description of the spectral analy-
sis front-end of a melody extraction algorithm. Our particular
approach aims at extracting the sinusoidal components from the
audio signal. It includes a novel technique for the efficient com-
putation of STFT spectra in different time-frequency resolutions.
Furthermore, we exploit the application of local sinusoidality cri-
teria, in order to detect stable sinusoids in individual FFT frames.
The evaluation results show that a multi resolution analysis im-
proves the sinusoidal extraction in polyphonic audio.

1. INTRODUCTION

The presented approaches to sinusoidal identification are part of
a melody extraction algorithm, which aims at the transcription of
the predominant voice out of polyphonic real-world music. The
most relevant melody information can be found in the sinusoidal
components of the audio signal, thus it is very desirable to divide
the signal into a deterministic signal component plus noise [1, 2].
Only partials which originate from periodic sound are processed
further. This way we particularly reduce the computational cost
of our pitch estimation method, which strongly depends on the
number of peaks to be analysed.

Often, sinusoidal extraction methods, which are designed to
work with monophonic audio or artificial test signals, fail to pro-
duce satisfactory results with polyphonic audio signals. The pre-
sented approaches are adapted to the specific demands of this chal-
lenging task and – consequently – will also be validated against the
melody extraction results.

Another problem we address, is the choice of the proper time-
frequency resolution of the spectral analysis method. If the spec-
tral representation exhibits constant frequency resolution, almost
no change in frequency is observed for the low fundamental of
an frequency-modulated tone, but vivid dynamics are noted for
its higher harmonics. To cover fast signal changes, we have to
increase the analysis bandwidth, but at the same time we have to
maintain an adequate discrimination of concurrent sounds. A solu-
tion to this conflict lies in analysis methods which provide a more
ore less logarithmic frequency scale.

Unfortunately such techniques are often computationally ex-
pensive, so the Fast Fourier Transform remains the tool of choice
in time-critical applications. In need of good frequency resolu-
tion, long FFT windows have to be applied – accepting a distorted
spectrum for faster changing signal components. In practice, lo-
cal sinusoidality criteria for the detection of sinusoids often fail
in high frequency bands, because they depend on the shape of the
spectral window function. The same is true for the estimation of
the instantaneous frequencies and magnitudes. Masri presented a

method for the identification of non-stationary sinusoids for well
defined types of spectral distortion, but in real-world signals the
frequency modulation will not follow such idealised trajectories
[3].

A good compromise is a multi-resolution analysis based on the
FFT algorithm. A prominent example is the application of a mul-
tirate filter bank in combination with the FFT used by Goto [4].
Another straight forward idea is the calculation of the FFT with
different window lengths, resulting in different time-frequency res-
olutions. Essentially the multi-resolution FFT (MR FFT) is an ef-
ficient implementation of this idea.

2. MULTI-RESOLUTION FFT

Given a sequence of data samples x[n] the Short Time Fourier
Transform is defined as Xl[k]:

Xl[k] =

M−1X
n=0

x[n + lL] · w−kn
N ,

l = 0, 1, ... and k = 0, 1, ..., N − 1

(1)

where
N is the number of STFT points
L is the time advance of the data frame (hop-size)
M is the size of the data frame
l is the number of the data frame
k is the frequency bin number
wN is the N th primitive complex root of unity

The values of N , L and M are the control parameters of
the STFT, which determine certain characteristics of the spectro-
gram representation: the spacing of the discrete time-frequency
grid of the spectrogram depends on the sampling rate fs, the
number of STFT points N and on the time advance of the data
window L, which is also called hop-size. The grid spacing is
determined by ∆fgrid = fs

N
and ∆tgrid = L

fs
.

The grid spacing is not necessarily the time and frequency res-
olution we obtain from the spectrogram. The frequency resolution
(the ability to distinguish two closely spaced frequencies from the
original input signal) and also the time resolution is determined by
the sampling rate, the size of the data window M and also by the
shape of the window function, which will not be under considera-
tion here. The resolution is given by ∆f = fs

M
and ∆t = M

fs
.

If we use zero-padding, the frequency resolution is smaller
than the spacing between the frequency bins, because the used data
frame is smaller than the number of STFT points (M <N ). If we
use overlapping data frames (L<M ), the time resolution does not
increase, but nevertheless more STFT frames are included on the
time axis. The additional information is obtained by interpolation.
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The MR FFT determines the different resolutions by changing
the data frame size M only. The hop-size L, the number of STFT
points N and – in consequence – the spacing of the time-frequency
grid remain unchanged among the different spectrograms.

The basic idea of the MR FFT is derived from the fact, that the
summation operation is associative, thus we are allowed to split
summations into simpler sums. In a reformulation of equation (1)
(for clarity with M = N ), we split the original sum with length
N into N/L sums of length L (hop-size). Hereafter we can again
sum the partial sums, and the result is of course the same:

Xl[k] =

N−1X
n=0

x[n + lL] · w−kn
N

=

N
L
−1X

c=0

(c+1)L−1X
n=cL

x[n + lL] · w−kn
N .

(2)

The inner sum in equation (2) can be expressed as a (time-shifted)
zero-padded STFT of the data sequence xc[n]:

Xc[k] =

N−1X
n=0

xc[n] · w−kn
N , k = 0, 1, ..., N − 1, (3)

with

xc[n] =


x[n + lL], for cL ≤ n < (c + 1)L;

0, elsewhere;

where c is a circular counter related to the data frame number l by
c = l mod N

L
.

This transform can be computed by an FFT algorithm. The re-
sulting complex Fourier coefficients are stored in a circular buffer
of the dimension [N/L, kmax], since one elementary transform is
used in N/L calls of the MR FFT method and only up to kmax

frequency bins may be of interest for the subsequent analysis.
The FFT spectra Xc[k] form the basis of the MR FFT: all

different resolutions can be calculated as a summation of the ele-
mentary transforms. Summing up to N/L neighboring elementary
transforms increases the frequency resolution from fs/L to fs/N
with the increasing number of summands r. In order to comply
with the condition for windowing in the frequency domain (see
section 2.1), the number of summands r is restricted to certain val-
ues, because the fraction N/M = N/(rL) has to be an integer
value. For example, if N = 2048 and L = 256, the sum of r =
1, 2, 4, 8 elementary transforms is possible – resulting in four dif-
ferent spectrogram resolutions with M = 256, 512, 1024, 2048.

While the magnitudes of the summed spectrograms are imme-
diately valid, the phase of the complex Fourier coefficients has to
be corrected in order to make windowing in the frequency domain
possible. The phase error is due to the time-shift of the data which
introduces a phase shift in the frequency domain according to the
shifting theorem of the DFT:

x[n + L]
N

X[k] · wkL
N . (4)

The angle of the phase shift is dependent on the frequency of the
designated frequency bin k and the circular counter c, which is re-
lated to the data frame number l as defined in (3). Fortunately this
effect can be cancelled by multiplying the phase-shifted spectrum
X∗

r [k] with a twiddle factor as follows:

Xr[k] = X∗
r [k] · w−k cmin,rL

N , r = 1, 2, 4, ..., N/L, (5)

where r is the number of summed elementary transforms Xc[k]
and cmin,r is the circular counter index of the smallest frame number
lmin,r of the summed elementary transforms:

cmin,r = lmin,r mod
N

L
. (6)

2.1. Windowing in the frequency domain

It is obvious that we cannot use time domain windowing with the
MR FFT. But rather than applying the window in the time domain,
we always have the option to perform frequency domain window-
ing, because the transform of a product is equivalent to the convo-
lution of the two corresponding transforms. Admittedly, convolu-
tion is a time consuming operation, and it is only an alternative if
the discrete spectrum of the window function is a short sequence
of convolution coefficients. Fortunately some common windows
have this desired property. The temporal weightings of interest
have the general form:

h[n] =

M/2X
m=0

(−1)mam cos

»
2π

M
mn

–
= a0 − a1 cos

„
2π

M
n

«
+ a2 cos

„
2π

M
2n

«
−

a3 cos

„
2π

M
3n

«
+ ..., n = 0, 1, ..., M − 1,

(7)

and
M/2X
m=0

am = 1,

where M is the size of the data window and am are real constants
[5]. Since the most important windows of this form have am 6= 0
only for small m, equation (7) is reduced to a few terms.

For any K nonzero coefficients am, the continuous spectral
window function H(ω) consists of a summation of 2K − 1
weighted Dirichlet kernels:

H(ω)=

M/2X
m=0

(−1)m am

2

»
D

„
ω− 2π

M
m

«
+ D

„
ω+

2π

M
m

«–
,

(8)
where D(ω) is the Dirichlet kernel as given in

D(ω) =
“
+j

ω

2

” sin
`

M
2

ω
´

sin
`

1
2
ω

´ . (9)

The Dirichlet kernel is implicitly available through the STFT with
a rectangular window. So for the discrete case and if M = N
equation (8) simplifies as indicated in:

X[k]|win =

M/2X
m=0

(−1)m am

2
(X[k −m] + X[k + m]),

k = 0, 1, ..., N − 1.

(10)

That is the reason why these windows are especially useful for fre-
quency domain windowing, because they can be described by a
short (2K − 1) sequence of convolution coefficients. For exam-
ple the Hann and Hamming windows possess only three nonzero
coefficients, the Blackman window five:
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• Hann: a0 = 0.5, a1 = 0.5

• Hamming: a0 = 0.53836, a1 = 0.46164

• Blackman: a0 = 0.42, a1 = 0.5, a2 = 0.08

Other windows of this form with very good sidelobe behavior are
described in [5].

Yet, we have to pay attention to the fact that equation (10) only
holds for the special case M = N . In order to apply frequency
windowing to the transform of zero-padded data we have to refine:

X[k]|win =

M/2X
m=0

(−1)m am

2

„
X

»
k−m

N

M

–
+ X

»
k+m

N

M

–«
k = 0, 1, ..., N − 1.

(11)

The term m N
M

in (11) must be an integer, because we only know
the Fourier coefficients X[k] at discrete bin locations k. Hence
the number of possible spectrogram resolutions is reduced to a sub
set by the condition ( N

M
= N

rL
) ∈ N, where r is the number of

summed elementary transforms.

2.2. Algorithmic Complexity

The algorithmic complexity of an N -point FFT is usually quan-
tified as CFFT = O(N log N), yet, if we use overlapping FFT
windows only hopsize L new data samples are processed within
one FFT frame.

While the computation of the MR FFT elementary transforms
Xc[k] has also complexity CFFT per L samples, the additional ef-
fort depends on the required frequency range of the distinct spec-
trogram resolutions. If we compute all MR FFT spectrograms up
to the highest frequency bin kmax, we have to perform

`
N
L
−1

´
kmax

complex additions (due to the summation of the elementary trans-
forms), plus kmax complex multiplications for every spectrogram
resolution. Furthermore, we require additional storage for the in-
termediate results and the twiddle factors. If we compute the mul-
tiple resolutions (including zero padding) using the standard FFT,
the computational cost is CFFT multiplied with the number of res-
olutions. If a Hann window is applied to a real data sequence of
length N in the time domain, N real multiplies have to be per-
formed. In the frequency domain, the computational complexity
can be identified as 6kmax real multiplications and 3kmax complex
additions .

2.3. Implementation

Our approach to sinusoidal extraction has been successfully im-
plemented in a melody extraction algorithm. For audio data sam-
pled at fs = 44.1kHz, we employ a Multiresolution FFT with
N = 2048 and L = 256, resulting in four distinct spectrogram
resolutions. While the best time resolution of 5.8 ms is obtained
with the elementary transform (M = 256), the highest frequency
resolution is achieved by the summation of all elementary trans-
forms (M =2048) and amounts to 21.5 Hz. The spectrogram with
the most accurate frequency representation is used in the low fre-
quency region, or to be exact, in the first six critical bands of the
Bark scale. Accordingly, every other resolution covers five crit-
ical bands up to the maximum frequency fmax = 5000 Hz, i.e.
kmax = 232.

3. SINUSOIDAL IDENTIFICATION

Since sinusoidal components of the audio signal contain the most
relevant information about the melody, a sinusoids plus noise anal-
ysis is performed on the spectral data. The underlying idea of this
technique is, that an audio signal can be divided into stable par-
tials originating from periodic sound and a noise component [1].
Only partials which (probably) result from a deterministic signal
are used for further melody analysis; stochastic components are
neglected.

The most common criterion for detecting a sinusoid is the
spectral peak. While peak picking is very robust against noise and
distortion and also works in dense spectra, it produces a high num-
ber of false positives due to spurious peaks. That is why additional
criteria are employed; for example the continuity of sinusoidal tra-
jectories over time, or the concordance of the extracted sinusoidal
components with harmonic patterns [1].

Since the explicit identification of continuous sinusoidal tra-
jectories is not a precondition for our frame-wise pitch estimation
method, we aim to identify sinusoidals by distinct spectral features
in one frame alone.

3.1. Estimation of Instantaneous Frequency and Magnitude

There are many methods for the estimation of the instantaneous
frequency (IF) and magnitude from Fourier coefficients. Keiler
and Marchand compared some of the most popular ones in [6].
They found that methods which are in some way based on the
phase information of the FFT give the best results regarding fre-
quency resolution. This property is extremely important for the
analysis of polyphonic music.

We apply the well-known phase vocoder method proposed by
Flanagan and Golden for the IF extraction and compute the in-
stantaneous frequency fi[k] from the phase difference ∆φ[k] of
successive phase spectra as follows [7]:

fi[k] = (k + κ[k])
fs

N
, (12)

with:

κ[k] =
N

2πL
princarg

»
φl[k]− φl−1[k]− 2πL

N
k

–
,

where princarg is the principal argument function mapping the
phase to the ±π range. The bin offset κ denotes the deviation of
the partial’s IF from the bin frequency expressed in the unit bin. If
the estimated bin offset of a peak is less than±1/2, we can say that
the instantaneous frequency of the peak corresponds to the bin fre-
quency. In order to estimate valid IF over a range of frequency bins
with the phase vocoder method, the use of overlapping STFT win-
dows (or zero-padding) is required, because otherwise the phase
difference between frames might exceed 2π. The maximum bin
offset which can be computed with this method is N

2L
.

The instantaneous magnitude of the sinusoidal peak is esti-
mated from the local maximum |X[k]| and its bin offset κ[kpeak]
as follows:

Apeak =
1

2

|X[k]|
WHann

`
N
M

κ[kpeak]
´ , (13)

where WHann is the Hann window kernel:

WHann(κ) =
1

2

sinc
`

M
N

πκ
´

1−
`

M
N

κ
´2 .
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3.2. Bin Offset Criterion

Charpentier proposed a sinusoidality criterion for speech process-
ing in [8], which is derived from local characteristics of the phase
spectrum, or more precisely, the instantaneous frequencies of
neighboring frequency bins. By using a local criterion we avoid
including restrictive assumptions about the harmonic structure of
the signal and leave the observation of the temporal continuity to
a processing level subsequent to the pitch estimation.

Using the sinusoidality criterion suggested by Charpentier we
can verify a given spectral peak1 at bin k by the two conditions:

κ[k] ≤ 1

2
(14)

and:
(fi[k] ≈ fi[k − 1]) ∧ (fi[k] ≈ fi[k + 1]). (15)

Equation (15) may be expressed in terms of the bin offset κ:

κ[k] ≈ κ[k ± 1]± 1. (16)

For sinusoidal peaks with a stationary frequency and ampli-
tude these conditions hold, but for the most noisy peaks they do
not. Since we cannot expect that all sinusoids are ideally station-
ary, we allow some error in the actual implementation considering
peaks with:

κ[k] < 0.7 (17)

and:
|κ[k]− κ[k ± 1]∓ 1| < 0.4 (18)

as sinusoidal.

3.3. Weighted Bin Offset Criterion

While Charpentier’s criterion works very well with monophonic
audio, we face a more challenging situation within polyphonic au-
dio, where we find a higher number of concurrent harmonics and
additional noise through percussive instruments. Effectively, the
phase spectrum is more distorted and the calculated IF are often
not very reliable. This is especially true for Fourier coefficients
with a weaker magnitude – often close to the minima of the spec-
tral window function. That is why we have to relax the bin offset
criterion further. Hence, the estimated frequency error (the dif-
ference between instantaneous frequencies of two frequency bins)
is weighted according to the instantaneous magnitude Apeak of the
sinusoid and the respective magnitude of the neighboring Fourier
coefficients |X[k ± 1]|:

|κ[k]− κ[k ± 1]∓ 1| < 0.4
Apeak

|X[k ± 1]| . (19)

Furthermore, the IF of the sinusoidal peak may deviate more from
the corresponding bin frequency:

κ[k] < 0.7(r + 1) , (20)

where r is the MR FFT resolution parameter.

1Within a specific MR FFT resolution a spectral peak can only be veri-
fied if the neighboring bins are of the same resolution. Hence the different
resolutions must overlap by one bin.

3.4. Masking Criterion

Unlike the before-mentioned criteria the masking criterion is a
method to exclude non audible peaks – sinusoidal or not – from
further processing. We use a very simplified implementation of si-
multaneous and temporary masking, which by far does not reach
the complexity of models used in modern lossy audio coders, as
for example the AAC codec 2 [9].

Simultaneous masking is a property of the human auditory
system where certain maskee sounds are not audible in the pres-
ence of concurrent masker sounds. The spread masking across
critical bands is very basically modeled as triangular spreading
function SF(z) with slopes of +25 and−10 dB on the normalised
Bark scale:

SF(z) =

(
1025z/20 , for z ≤ 0

10−10z/20 , for z > 0
(21)

The resulting approximate spread spectrum function SSF[i] is
computed with a resolution of 1/3 Bark, so that the critical band
partition index i corresponds to the Bark value z with z = i/3.

Temporal masking is the characteristic of the auditory system
where the masker sound makes inaudible other sounds which are
present immediately preceding or following the stimulus. We only
take into account the much more pronounced effect of forward
masking (masking that obscures a sound immediately following
the masker) which is computed as given in:

TS[i] = 0.4 TSa[i] + 0.6 TSb[i] , (22)

with:

TSa[i]← ta TSa[i] + (1− ta) SSF[i] and
TSb[i]← tb TSb[i] + (1− tb) SSF[i].

The parameters ta and tb are time constants which determine the
exponential growth and decay of TSa[i] and TSb[i]:

ta = 0.5∆tgrid/5ms and tb = 0.5∆tgrid/70ms.

Although the resulting masking threshold depends on the
tonality of the masker, our approach uses a constant masking
threshold M[i] which is 15 dB below the maximum between the
values of SSF[i] and TS[i]:

M[i] = max(SSF[i], TS[i]) · 1015/20. (23)

4. EVALUATION

4.1. Multiresolution FFT

Figure 1 shows a comparison of the analysis results obtained with
either the MR FFT or the FFT with constant frequency resolution.
Spectrogram (a) shows the FFT together with simple peak pick-
ing. The high number of spurious peaks is obvious. The number
of peaks is gradually reduced in spectrogram (b), which illustrates
the spectral peaks obtained by the MR FFT analysis. The decreas-
ing number of peaks for the high frequency regions is due to a
masking effect, which can be explained by the wider main lobe
of the spectral window function with decreasing frequency resolu-
tion. As a consequence we will of course loose selectivity in the

2The proposed masking model is optimized for sinusoidal peak identi-
fication and efficiency. It is not useful for encoding audio.
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(c) FFT: bin offset criterion
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(d) MR FFT: bin offset criterion

Figure 1: Comparison of spectral analysis using either FFT or MR
FFT.

higher frequency regions and concurrent signal components may
not be resolved. Besides the fact that the human auditory system
also has a limited, frequency dependent, resolution, the MR FFT
offers additional advantages.

This is especially true for the instantaneous frequency estima-
tion. If the signal’s frequency is changing in time an accurate mea-
surement of frequency should be as local as possible [10]. This
implies that the analysis window size should be as local as possi-
ble. There is always a trade-off between this claim and the wish
to discriminate concurrent signal components. In polyphonic mu-
sic, we find a mixture of voices in the low and middle frequen-
cies, while the harmonics of the leading voice dominate the higher
spectral bands [4]. Thus a good frequency resolution is required
mostly in the low frequency regions, where the harmonics exhibit
a quasi stationary frequency compared with the FFT filter band-
width. With increasing harmonic number frequency modulation
of the partials becomes more evident, so for higher harmonics the
stationarity criterion is often violated. The MR FFT analysis offers
the possibility to adapt the frequency resolution accordingly and
considerably improves the IF estimation for the higher frequency
regions.

Another advantage of the MR FFT lies in the improvement
of the sinusoidal detection. Whenever a sinusoid is not stationary
within one FFT frame, the corresponding spectral peak becomes
distorted. Since both the Charpentier bin offset criterion and the
weighted bin offset criterion require a more or less undistorted
phase spectrum, such sinusoidal peaks will not be identified. This
effect may be observed in spectrogram (c), which shows the appli-
cation of the Charpentier bin offset criterion on the ordinary FFT
spectrum. Indeed most of the unwanted spectral peaks disappear
in the lower frequency regions, but at the same time we observe
the deletion of high harmonics with a rapidly changing frequency.
Finally spectrogram (d) shows the sinusoidal identification based
on the MR FFT analysis, where high harmonics are correctly iden-
tified as deterministic partials. We see that the MR FFT accounts

for a significant improvement of the sinusoidal detection.

4.2. Sinusoidal Identification
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Figure 2: Analysis results for the distinct sinusoidality criteria us-
ing the MR FFT. Monophonic audio: figures (a), (c) and (e). Poly-
phonic audio: figures (b), (d) and (f).

Figure 2 allows us to compare qualitatively the analysis results
of the proposed criteria. All examples have been computed using
the MR FFT. The images on the left hand side show the results for
monophonic audio (the sung word ’history’). We see that all meth-
ods perform well on the monophonic example. However, the bin
offset criterion inspired by Charpentier’s method causes the low-
est number of false positives (peaks which have been erroneously
identified as sinusoidal). At the same time it maintains most of the
valid sinusoidal peaks. Clearly, this criterion is very suitable for
monophonic analysis – for example speech processing.

Yet, the task of melody extraction naturally implies the analy-
sis of polyphonic audio. The sinusoidal detection should not only
be quiet robust against noise and distortion, it should also give ad-
equate results for dense spectra consisting of many simultaneous
sounds, which for example can be found in many pieces of rock
music.

We have chosen a short excerpt from the file pop1.wav , which
is included in the ISMIR2004 melody contest test set3, to illustrate

3The ISMIR 2004 melody test set with reference transcriptions is avail-
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Voicing Voicing Raw Pitch Raw Chroma Overall
Detection False Pos. Accuracy Accuracy Accuracy

81.8% 17.3% 68.1% 71.4% 71.4%

Table 1: MIREX 2005 evaluation results.

the performance of the distinct sinusoidality criteria with poly-
phonic music. This piece of music exhibits a rather moderate de-
gree of polyphony, featuring a predominant singing voice and a
light accompaniment without percussion. Nevertheless, it reveals
the main drawback of the two phase dependent criteria: if two si-
nusoidals are very close to each other in frequency, the frequency
responses interfere and the sinusoidal peak will not be identified
due to a distorted phase. Even if the frequency estimate of the ac-
tual peak remains reliable, the estimated bin frequencies (or bin
offsets) of the neighboring bins are often more affected. This is
due to their weaker magnitude and of course they may be closer to
the disturbing sinusoidal.

This effect can clearly be noted in spectrogram (b), where the
harmonics in the lower frequency regions almost disappear. The
weighted bin offset criterion allows a bigger offset error for weaker
magnitudes – as we can see in spectrogram (d) the sinusoidal de-
tection is improved noticeable. This criterion was utilized in our
submission to the MIREX2005 Melody Contest (see section 4.3).
It proofed suitable for the extraction of the predominant voice from
musical audio with a moderate accompaniment, since the melody
line still can be reconstructed from the higher harmonics. How-
ever, the bass line as well as other accompanying instruments of-
ten cannot be extracted reliably, even if they can be easily discrim-
inated by human listeners.

Finally spectrogram (f) displays the most general solution to
sinusoidal identification, which is based on psychoacoustic mask-
ing principles. In comparison with the bin offset criteria the mask-
ing criterion produces a higher number of false positives. How-
ever, this criterion guaranties a robust identification of all kinds of
music and nonetheless significantly reduces the number of spectral
peaks.

4.3. MIREX 2005 Audio Melody Extraction Contest

The aim of the MIREX Audio Melody Contest is to evaluate dif-
ferent approaches to extracting the main melody from polyphonic
audio4. The MIREX 2005 dataset contains 25 phrase excerpts of
10-40 seconds length from different genres.

Our submission to the MIREX Audio Melody Contest used the
MR FFT analysis as described in section 2 together with the
weighted bin offset criterion introduced in section 3.3. Reaching
71.4% our algorithm has performed best on Overall Accuracy
with a significant difference to other submissions. Of course the
result should not be attributed to the spectral analysis front-end
alone, but at least we can say that an FFT-based analysis does not
contradict with a good melody extraction performance.

During the MIREX evaluation the execution time for the en-
tire melody analysis has been measured as approximately 20 times

able at http://www.iua.upf.es/mtg/ismir2004/contest/melodyContest/FullSet.
zip

4A detailed description of the MIREX 2005 evaluation procedure
and the results can be found online at http://www.music-ir.org/evaluation/
mirex-results/audio-melody/index.html

faster than real-time on an Intel R© Pentium R© 4 3.0 GHz CPU sys-
tem with 3 GB RAM – the fastest runtime among all ten submis-
sions. Despite this encouraging result, we want to emphasise that
the MIREX evaluation did not attach importance to the execution
time, and the measures should be recognised as rough indicators
for algorithm efficiency, if at all.

5. SUMMARY

The MR FFT has proved to be useful for the efficient analysis of
polyphonic audio – especially, if good frequency resolution as well
as good time resolution is needed. The multi-resolution approach
significantly improves the IF estimation and the detection of si-
nusoidal components by simple local sinusoidality criteria. As an
alternative to the phase dependent criteria we proposed a masking
criterion which is based on a very simple psychoacoustic model.
This criterion has proved robust in all kinds of polyphonic music.

The presented spectral analysis front-end successfully deals
with the the dynamics of the singing voice or a lead instrument, but
of course it can be applied to various problems in audio analysis.
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