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ABSTRACT

This paper presents a real-time algorithm for the synthesis of reed
instruments, taking into account nonlinear losses at the first open
tonehole. The physical model on which the synthesis model re-
lies on is based on the experimental works of Dalmont et al. who
have shown that for high pressure levels within the bore, an air jet
obeying the Bernoulli flow model, hence acting as a nonlinear re-
sistance, is created at the open end of the bore. We study the effect
of these additional losses on the response of the bore to an acous-
tic flow impulse at different levels and on the self oscillations. We
show that at low frequencies, these nonlinear losses are of the same
order of magnitude than the viscothermal linear losses and modi-
fie the functioning of the whole instrument. For real-time synthesis
purposes, a simplified algorithm is proposed and compared to the
more accurate model.

1. INTRODUCTION

Many works have been devoted to the physical study and the mod-
eling of toneholes in woodwind instruments (see e.g. [1] and [2])
and digital resonator models including toneholes (see e.g. [3] and
[4]) have been proposed for the real-time simulation of these in-
struments. These synthesis models describe toneholes, or more
generally the “open termination” of an instrument as a passive lin-
ear element of the resonator which can then be fully characterized
by its input impedance or by the linear relationship between the
wave variables. Experimental studies S]] have shown that for high
levels of acoustic pressure and flow within the bore of the instru-
ment, nonlinear effects may appear, mainly due to the formation
of a dissipative air jet at the open end, comparable to the one re-
sponsible of the birth of self oscillations at the mouthpiece level.
While impedance measurements are done at low acoustic pressure
and flow levels, pressure levels within the bore are very high un-
der normal playing conditions and the nonlinear behavior of the
termination can probably no longer be ignored.

In this paper, in order to quantify the relative weight of these
nonlinear additional losses with respect to the classical, linear, vis-
cothermal losses, we propose a real-time oriented synthesis model
of clarinet-like instruments taking into account a nonlinear termi-
nation. The physical model is based on the experimental works of
Dalmont [5] and the synthesis model is a modified version of the
model presented in [6].

The paper is organized as follows. The physical model of a
nonlinear dissipative termination is first presented. A time domain
digital model, and a simplified version are then proposed. It is then
shown that the nonlinear termination has a significant role on the
response of the bore. Finally, the self oscillations of a full instru-
ment model are studied and comparison is made between the clas-

sical linear model and the two nonlinear models proposed, show-
ing that a very simple algorithm is able to reproduce the behaviors
observed on a more complicated one. The nonlinear termination
is shown to modify significantly the functioning and the timbre of
the instrument.

2. BORE MODEL

The physical model on which is based the synthesis model is first
summarized. Two digital formulations are presented and the effect
of the nonlinear termination on the bore response is studied on the
most accurate one.

2.1. Physical model

A perfectly cylindrical resonator is considered. One assumes lin-
ear propagation within the bore.

The wavenumber is denoted k(w) and includes propagation
delay, dispersion and dissipation corresponding to viscothermal ef-
fects. It is classically given by [[7] :

w J 3/2 1/2

Rw) =7 = new

e = % is the characteristic impedance of the bore, S = TR? is

the input surface of the bore and 7 is given by:

=gt (7 (2 1)

~ Re/? Co

R is the radius of the bore: R = 7.1072 in the clarinet case.
Typical values of the physical constants, in mKs units, are: ¢ =
340,1, = 41078, 1, = 5.6.107%, C,,/C, = 1.4.

2.1.1. Linear bore model

If the radiation impedance at the open end is taken into account
only as a length correction, the acoustic pressure ps(t) at the end
of the bore vanishes, and the input impedance of the bore, which
is the ratio between the Fourier transforms (denoted with capital
letters) of the acoustic pressure pe(t) and acoustic flow u.(t) at
the mouthpiece level is classically expressed by:

= jZ.tan(k(w)L) (1)

where L is the total length of the bore, including the length correc-
tion corresponding to the radiation impedance.
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2.1.2. Nonlinear bore model

When nonlinear losses at the open end are considered, the input
impedance is not well defined. Indeed, according to Dalmont [5],
the nonlinear termination of the open end of the bore is defined in
the time domain by:

ps(t) _ |vs (2)]
o) = (0.640.1) = = Ze, )

where v, (t) is the mean acoustic velocity, averaged on the radiat-
ing surface S; and Z.: = pc/S; is the characteristic impedance
corresponding to the radius r; of the open end. The coefficient
(0.6 £ 0.1) has been determined experimentally.

It is worth noting that equation (2) corresponds to a classical
Bernoulli flow model since it can be rewritten as p (t) = 3 pv3 (t)
by considering the (—) sign in (0.6 & 0.1) and assuming that after
the dissipation of the jet created by the hole, the pressure outside
the resonator is zero. Hence, for the sake of simplicity and for
synthesis purposes, we shall assume that the surface .S; at the open
end corresponds to the surface of the first open tonehole and can
be smaller than the surface S of the resonator. Such an approxi-
mation, which considers that the equivalent length of a resonator
corresponds to the distance between the mouthpiece and the first
open tonehole and ignore the resonator characteristics after the first
open tonehole seems relevant in the context of this study.

From equation (2), one obtains in terms of pressure and flow
variables:

ps(t) = afus(t)|us(t) )
674
CSt
a nonlinear resistance which is proportional to the absolute value
of the acoustic flow.

In order to take into account these nonlinear losses in the bore
model, we consider the classical transmission line equations be-
tween the input and the output of the bore:

where o = . Equation shows that the open end acts as

{ P, — Z.U, = e *WE(p, — Z.U,) @

P+ Z Uy = e KL (P, + 7.U.)

2.2. Digital model

In order to propose a time domain digital formulation of the system
of equations (ﬁb the propagation described by e 7*() L s first
approximated by:

oIk IL Bo LD )
1—apz7t
where z = e%, F. is the sampling frequency and D =

E (%) The coefficients 5y and oy are calculated according
to 6] and correspond to the propagation over a length L.

In order to be able to collect versions of ps and u, delayed
by D, that are required for the computation of p. with the first
equation of system (@), the second equation of system (@) is written
as:

(Ps + ZoUg)e MO = 72K (p, L 7.0.)  (6)

which yields:
Bo

1—aiz7?

Bo

-D
Ps Zc s) =\ 7
2= (Ps+Z.Us) (1_0“271

2 PV (P.+Z.U.)
@)

thus:
(Ps+ ZUs) (1 —onz™ )2 ™" = Bo(Pe + ZUe)z 2P (8)

Using the same approximation of propagation and losses, the
first equation of system (@) becomes:

Bo

1—aiz!

P.— Z.U. = 2 P(P, — Z.Uy) )

yielding:
(P. — Z U1 —anz™ 1Y) = Bo(Ps — ZUs)z~ P (10)

In the time domain, the digital equivalent of system (@) be-
comes:

ps(n — D)+ Zeus(n — D) = au[ps(n — D — 1)

+ Zeus(n — D — 1)] + Bo[pe(n — 2D) + Zeue(n — 2D))

pe(n) = Zete (n) + au[pe(n — 1) — Zeue(n — 1)

+ Bolps(n = D) = Zeus(n — D))

an
In order to integrate this resonator model in a full instrument
model including a reed and a nonlinear coupling at the entrance of
the resonator, we use the dimensionless variables defined by [8]:

- - U . . .

Pe,s = Peys and te,s = Z.—2% where pu is the static beating-
bm pm

reed pressure.

This change of variables leads to:

ps(n — D)+ as(n— D) =a1[ps(n—D — 1)
+ds(n— D —1)] + Bo[pe(n — 2D) 4 te(n — 2D)]
Pe(n) = tic(n) + c1[Pe(n — 1) — tie(n — 1)]
+ Bolps(n — D) — ts(n — D)]
12)
In the same way, a dimensionless coefficient corresponding to
(0.6 £0.1)pn S*
pc2 Sz’
With this change of variables, the instantaneous nonlinearity at
the open end of the bore corresponding to equation (3) becomes:

the nonlinear losses « is defined: & =

ps(n — D) = asign(as(n — D))as(n — D) (13)
From the first equation of system (T2) and equation (T3), the

value of 4s(n — D) can be obtained analytically by solving the
equation:

@ sign(iis(n — D))ai(n — D)+ ds(n — D) — Vo =0 (14)

where:

Vi =ai(fs(n — D — 1)+ a@s(n — D — 1))

. _ s)
+ Bo((e(n = 2D) + te(n — 2D))

By considering successively the cases @s(n — D) > 0 and
Us(n — D) < 0, since sign(@s(n — D)) = sign(ps(n — D)) =

sign(Vs), @s(n — D) is finally given by:

. —144/14+14 sign(ffs)df/s
ts(n — D) = sign(Vs) 5% (16)

At any time sample n, the process leading to the calculation
of the output p.(n) from any arbitrary input . (n) consists in the
sequential calculation of:
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V, with equation

[ ]

e s(n — D) with equation

e p.(n — D) with equation

e p.(n) with the second equation of system

It is worth noting that the case of a linear termination corre-
sponds to assume that Vn, ps(n) = 0 and 4s(n — D) = V;

2.3. Simplified digital model

For the sake of simplicity and computational efficiency, we seek
a digital resonator model that uses as few physical variables as
possible and requires as less computation power as possible, while
keeping the most important features of a more sophisticated model.
As a first simplification, we seek an approximation that allows to
remove the variables ps and @5 of the whole scheme.

For that purpose, equations (12[) and @D modelling propagation
in both directions are written in the following way:

l—ajiz

P, —ZU, = —2 . .=P(P, — Z.U.,)

l—ajz

{ —bo__ PP+ Z.U,) = —2 1 272P(P. + Z.U.)

a7
—Lto__>72D js a first order digital filter modelling the
2
propagation over a length 2L. It replaces the filter (%)
appearing in equation (7) modelling the propagation over a length
2L as the product of two filters corresponding to the propagation
over a length L.

In order to remove the variables ps and u, delayed of (D + 1)
in the first equation of system (I7), we assume a1 = ai. This
means that the rate of frequency variations of the losses are as-
sumed to be similar for the propagation over a length L (deter-
mined by the value of a1) and over a length 2L (determined by
the value of a1). By counterpart, the coefficient 3y is changed into
a coefficient Boqp in order to keep the height of the first impedance
peak the frequency of which is -5, which requires:

4L
ﬁOap 2 bO
= 18
1—0,1271 1—a1£*1 ( )
where # = e’® and @ = 31 » Which yields:
Boup = \/bo\/l — 2a1c08(@) + a? (19)

With these modifications and dimensionless variables, the sys-
tem of equations (T7) becomes:

bo(Pe(n — 2D) + @e(n — 2D)) =
Boap (Ps(n — D) + tis(n — D))
Pe(n) = tic(n) + a1(pe(n — 1) — te(n — 1))
+Boap(Ps(n — D) — ts(n — D))

(20)

Using the same calculation as the one of the previous sub-
section, the first equation of system (20) provides analytically the
value of @s(n — D):

5 . ~ _BOap + \/ﬂgap + 4 Sign(f/s)ﬁ()apdf/s
@is(n — D) = sign(V;) ousds
ap

ey

where V; is defined by:
Vi = bo(pe(n — 2D) + Gie(n — 2D)) (22)

As a second approximation, the nonlinear losses coefficient
& is assumed to remain small. This allows a second order series
expansion of equation (ZI) which leads to:

2
is(n — D) ~ Vs _5 sign(V;) Vs . (23)

ﬂOCLP BOap

This finally yields the following computation scheme express-
ing pe(n) with respect to @e(n), pe(n — 2D) and @.(n — 2D):

Vi = bo(pe(n — 2D) + dic(n — 2D))

V =a1[pe(n —1) — Ge(n — 1)]
. -4 - 24
Vet 2 sign (V) =272 @Y
/BOap

Pe(n) = te(n) +V

2.4. Role of the nonlinear termination on the bore response

In order to study the role played by the nonlinear termination, we
consider a transient flow excitation of the form: we(t) = A (¢)
and computes with the most accurate nonlinear model p.(n) for
several values of A\, as well as the ratio of the Fourier transforms
of p. and u.. For these examples, the output radius r; is assumed
to be smaller than the bore input radius R: 7 = ?.

Figures (T)) and (@) show respectively the first two reflections
of the impulse response and the ratio of the Fourier transforms
of the dimensionless pressure and flow: Zeq(w) = gzéz; in the
linear case and in the nonlinear case, with A = 10~°. With such
a small value of ), the effects of the nonlinear termination are not
significant, and Z.q(w) corresponds to the input impedance of the

bore (linear case).

Time

Figure 1: First two reflections of the impulse response. A = 107°.
Solid line : nonlinear case. Dotted line: linear case. Nonlinear
and linear cases are exactly superimposed.

Figures (3) and (@) show the same computations for A = 0.5.
The effects of the nonlinear termination are clearly visible. In par-
ticular, the damping of the first reflection is much more important
than in the linear case and the peaks of Z.q(w) are smaller than in
the linear case. It is worth noting that opposite to the case of linear
losses (taken into account by a radiation impedance) that become
significant at high frequencies, the nonlinear losses are significant
at low frequencies. This suggests that, depending on the flow level
in the mouthpiece, the nonlinear termination may modify the func-
tioning of the whole instrument.
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Figure 2: Fourier transform of the response to a Dirac excitation.
A = 107°. Solid line : nonlinear case. Dotted line: linear case.
Nonlinear and linear cases are exactly superimposed.
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Figure 3: First two reflections of the impulse response. A = 0.5.
Solid line : nonlinear case. Dotted line: linear case.

3. FULL INSTRUMENT MODEL

In this section, the modifications of the functioning of the instru-
ment induced by the presence of the nonlinear termination are
studied. For that purpose, we first recall the classical physical
model of the nonlinear coupling between the reed and the bore.

3.1. Physical model

The physical model describes first the dimensionless displacement
x(t) of the reed with respect to its equilibrium point by:

idQI(t) gr dz(t)
w?  dt? wy dt

+a(t) = pe(t) (25)

where w, = 27 f, and ¢, * are respectively the circular frequency
and the quality factor of the reed.

The opening of the reed channel S, (¢) is expressed from the
reed displacement by:

Sr(t) =01 — v +x(t)) x ((1 =y +z(t))

where © denotes the Heaviside function. Its role is to keep the
opening of the reed channel positive by cancelling it when 1 — v+
z(t) < 0. The parameter ¢ characterizes the whole embouchure
and is proportional to the square root of the reed position at equi-
librium H. The dimensionless parameter v is the ratio between
the blowing pressure p,, and the static beating reed pressure pas
defined by: prr = pu Hw?, where i, is the mass per unit-surface
of the reed.

40

Amplitude
n w
o o

-
o
T

SN

0
0 100 200 300 400 500 600
Frequencies (Hz)

Figure 4: Fourier transform of the response to a Dirac excitation.
A = 0.5. Solid line : nonlinear case. Dotted line: linear case.

The nonlinear characteristics is based on the stationary Bernoulli
equation and links the acoustic flow (the product between the open-
ing of the reed channel and the acoustic velocity) to the pressure
difference between the bore and the mouth of the player. It is given
by:

te(t) = Sr(t)sign(y — pe(t)) V|7 — Pe(t)] (26)

These equations are discretized according to the schemes pre-
sented in [6]]. The third part of the full digital model is made of the
bore, the two digital models of which have been presented in the
previous section. The way the nonlinear bore models have been
written makes their use straightforward in our synthesis scheme.
The external pressure is computed by the time derivative of the
output flow @ (t).

3.2. Results

In this part, both the role of the nonlinear termination and the rel-
evance of the simplified nonlinear bore model are studied.

In the following examples, the output radius r; is: r = %.
The value of the parameter ¢ is: { = 0.34. The reed resonance
frequency is 2200H z and the reed quality factor is 0.4. Accord-
ing to the values of the physical parameters, the weight & of the

nonlinear termination is: & = 0.113.

3.2.1. Steady-state oscillations

Figure [5] shows one period of the steady state oscillations of the
pressure (top) and the flow (bottom) of a sound generated with a
constant value of v = 0.42. Though the blowing pressure is small,
the effect of the nonlinear termination appears clearly.

Figure [6]shows the ratio of the Fourier transforms of the pres-
sure and flow in the mouthpiece corresponding to v = 0.42. The
linear case, displayed in dotted line, corresponds to the input impe-
dance of the bore. The nonlinear cases, displayed in solid line and
dashed line, exhibit a strong lowering of the first peak (about two
times smaller) and a smaller lowering of the second peak. Again,
though the blowing pressure is small, the effect of the nonlinearity
is clearly visible.

Both in the time and frequency domains, the difference be-
tween the accurate nonlinear model and the approximated nonlin-
ear model is very small.

Figure [7| shows one period of the steady state oscillations of
the pressure (top) and the flow (bottom) of a sound generated with
a constant value of v = 0.56. For this blowing pressure which
is above the beating-reed pressure corresponding to v = 0.5, the
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Figure 5: Top: mouthpiece pressure. Bottom: mouthpiece flow
(v = 0.42). Dotted line : linear case. Solid line : accurate model.
Dashed line: approximated model.
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Figure 6: Ratio of the Fourier transforms of the mouthpiece pres-
sure and flow (v = 0.42). Dotted line : linear case. Solid line :
accurate model. Dashed line: approximated model.

effects of the nonlinear termination produce an important modifi-
cation of the acoustic flow.

Figure([8]shows the ratio of the Fourier transforms of the pres-
sure and flow in the mouthpiece corresponding to v = 0.56. Com-
pared to the linear case (dotted line), the nonlinear cases (solid line
and dashed line) exhibit a drastic lowering of the first peak (about
three times smaller) and an important lowering of the second peak.
For such a blowing pressure, the effect of the nonlinearity is very
important.

As it was the case for a smaller blowing pressure, the differ-
ence between the accurate nonlinear model and the approximated
nonlinear model is not noticeable, showing that for synthesis pur-
poses, the second order series expansion of the flow proposed in
equation is sufficient.

3.2.2. Increasing blowing pressure

In this example, the sound duration is 1.5s. On this duration,
the dimensionless blowing pressure -y increases linearly from 0.4
(around the self-oscillation threshold) to 0.95 (around the complete
closure of the reed channel and stop of the self-oscillations).
Figure [9] compares the envelopes of the external pressure in
the linear (left) case and the nonlinear (right) case. The nonlinear
case is computed with the most accurate algorithm. The average
sound level is smaller in the nonlinear case than in the linear case.
While the sound level is continuously increasing in the linear case,
one can observe that after an increasing phase, it decreases in the
nonlinear case. Indeed, the synthesis shows that the output flow
reaches a saturation level while the external pressure, correspond-

0.15F A 4
01l ’,/’\> /// “"‘,‘

0.057// ]

Figure 7: Top: mouthpiece pressure. Bottom: mouthpiece flow
(v = 0.56). Dotted line : linear case. Solid line : accurate model.
Dashed line: approximated model.
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Figure 8: Ratio of the Fourier transforms of the mouthpiece pres-
sure and flow (v = 0.56). Dotted line : linear case. Solid line :
accurate model. Dashed line: approximated model.

ing to the time derivative of the output flow, exhibits a decreasing
spectral richness.

Time Time

Figure 9: External pressures corresponding to a linear increase
of the blowing pressure. Left: linear case. Right: nonlinear case
with accurate model.

Pictures [I0] and [TT] show respectively the spectrogram of the
external pressure in the linear case and in the nonlinear case. The
vertical axis is frequency, from 0 to 4k H z and the horizontal axis
is time, in seconds. It can be noticed that the birth of the funda-
mental frequency happens at the same time on both pictures. In the
nonlinear case, the raising of the harmonics occurs later than in the
linear case. The behavior of the even harmonics (coming from the
mouthpiece flow, since the mouthpiece pressure contains very few
even harmonics due to the impedance relationship) is significantly
different: for small values of -, the level of the amplitudes of the
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even harmonics compared to that of the odd harmonics is higher
in the nonlinear case than in the linear case. While the low order
even harmonics keep a nearly constant level on the whole duration
of the sound in the linear case, they first increase, then decrease
until a minimum and increase again in the non linear case. It can
be noticed that the time for which the even harmonics are mini-
mum depends on their ranks; harmonic 2 has its minimum around
t = 1.1s while harmonic 12 has its minimum around ¢ = 0.8s.

‘We point out that “usual” playing conditions correspond to the
first 0.5s of the sound and that from a perceptual point of view, the
most noticeable difference between the linear and nonlinear case
is the balance between odd and even harmonics.
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Figure 10: Spectrogram of the external pressure corresponding to
the linear case and a linear increase of the blowing pressure.
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Figure 11: Spectrogram of the external pressure corresponding to
the nonlinear case and a linear increase of the blowing pressure.

4. CONCLUSION

Confirming the results of Atig [2] and extending them to the case

of frequency dependant bore losses and reed with mass, it has been
shown that the introduction of nonlinear losses modifies signifi-

cantly the role of the bore at low frequencies, hence affecting the
functioning and the timbre of the instrument.

The work presented in this paper constitutes a first step to-
wards a simple, dynamic nonlinear tonehole model extending the
results presented in [9]. Moreover, during attacks consisting in a
sudden burst of the blowing pressure, the effect of the nonlinear
termination may modify the features of the transient.

Despite its simplicity and low computation cost, the simplified
nonlinear model provides results fully similar to those of the more
accurate model and seems applicable to the case of more complex
bore geometries since it only adds to the resonator model a nonlin-
ear function of the time-delayed variables at the mouthpiece level
thanks to the removal of the variables at the open end level.

Sound examples are available at:
http://www.Ima.cnrs-mrs.fr/~guillemain/DAFX06/dafx06.htm
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