
Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

MULTICHANNEL SIGNAL REPRESENTATION IN PWGLSYNTH

Mikael Laurson, Vesa Norilo

Centre of Music and Technology
Sibelius Academy, Helsinki, Finland

{laurson|vnorilo}@siba.fi

ABSTRACT

This paper gives an overview of one of the most important features
in our synthesis language called PWGLSynth. We will concentrate
on how to represent visually multichannel signals in a synthesis
patch. PWGLSynth synthesis boxes support vectored inputs and
outputs. This scheme is useful as it allows to construct compound
entities which are used often in sound synthesis such as banks,
parallel structures, serial structures, etc. PWGLSynth provides a
rich set of tools that allow to manipulate vectors. For instance
vectors can mixed, modulated, merged, or split into sub-vectors.

1. INTRODUCTION

In sound synthesis it is essential to be able to represent complex
flow of sound signals in a compact and comprehensible manner.
One important abstraction mechanism is to combine several par-
allel signals into one multichannel signal that can be manipulated
by the user as one entity. Thus it should be possible to create, ini-
tialize, delete, connect and disconnect a multichannel entity with
one simple operation. Furthermore these operations should have
a simple and uniform syntax that would allow to build complex
synthesis patches that are both easy to understand and to maintain.

Although sound synthesis has already a fairly long history,
synthesis environments that have appropriate multichannel ab-
straction mechanisms have only recently been appearing. Early
textual implementations in the Music-N tradition have mostly
dealt with mono signals. Some exceptional modules that have
multichannel properties, such as a panning module, were typically
found only at the output of an instrument definition. The lack of
appropriate abstraction mechanisms obviously restricts severely
the user in more complex cases. These restrictions are perhaps
even more pronounced in visual synthesis environments result-
ing in patches that tend to become crowded and confusing when
dealing with multichannel cases.

During the 90s the textual synthesis language SuperCollider
[1] introduced a powerful "Multi channel expansion" property,
which allows to use multichannel operations in a systematic way.
This scheme resulted in an expressive system where patch defini-
tions can be extremely compact and flexible.

This paper gives an introduction to our synthesis environment
PWGLSynth [2][3] with an emphasis on the multichannel repre-
sentation of signals. PWGLSynth is an integral part of our visual
Lisp-based programming environment called PWGL [4] which is
specialized in computer assisted composition, analysis and sound
synthesis. Although our system has been influenced by SuperCol-
lider our approach is quite different as we aim to represent patch
definitions visually. The aim is to develop a system where by intro-
ducing appropriate abstraction mechanisms, such as multichannel

representation of signals, visual definitions can become as eco-
nomic and compact as it is the case in some of the state-of-the-art
textual synthesis languages.

The rest of this paper is organized as follows. First we in-
troduce the main concepts in our visual system and give some ex-
amples on how to define patches that deal both with ‘traditional’
mono signals and vectored signals. Next we go over to a more
detailed discussion and introduce some important vector manipu-
lation modules. The final section shows how multichannel oper-
ations are used in conjunction with our copy-synth-patch scheme
that has been used extensively in our work related with physics-
based instrument models [3].

2. BASIC VISUAL ENTITIES

A PWGLSynth patch is a is a graph structure consisting of boxes
and connections. Boxes, in turn, can be categorized in two main
box types from a synthesis point of view. The first box type con-
sists of ordinary PWGL boxes. These boxes can be found at the
leaves of a synthesis patch and they are typically evaluated once
before the synthesis patch is run. A special case of this category
are sliders which can dynamically change the current value while
the synthesis is running. The second box type consists of boxes,
marked with an ‘S’ , that represent synthesis boxes that are used
for the actual sample calculation. ‘S’ boxes support vectored in-
puts and outputs. Mono signals are only a special case where the
vector length is equal to 1. A synthesis patch always contains a
special ‘S’ box, called ‘synth-box’, at the root of the graph, which
represents the output of the sample calculation. This output can
either be sent to audio converters in real-time, or the output can be
written to a file.

Figure 1 shows a simple sine wave oscillator with vibrato con-
trol. The patch contains four sliders for real-time control and four
‘S’ boxes. This basic example operates only with mono signals.

The next patch example is more complex and it demonstrates
how multichannel signals are represented in our system. The patch
is based on vectored ‘S’ boxes (Figure 2). The patch gives also a
visual clue that helps to distinguish between mono signals (vector
length is equal to 1) and vectored signals. The connections be-
tween vectored boxes are drawn using a thicker line width and a
stipple pattern that contains holes.

The vector length is specified by the inputs at the leaves (i.e.
inputs which are not connected to a ‘S’ box) of the patch. These in-
puts can be Lisp expressions (typically lists) or slider-banks which
allow a separate real-time control of each individual vector ele-
ment. If the lengths at the inputs differ, then the shortest vector
determines the current vector length. In Figure 2 the vector length
is equal to 4, because the inputs of the ‘sine-vector’, ‘impulse-
vector’, and ‘reson-vector’ contain lists or sliders with 4 elements.

DAFX-283

http://cmt.siba.fi/
mailto:laurson@siba.fi

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

Figure 1: A simple mono signal patch with some real-time sliders.

Thus the patch in Figure 2 can be interpreted as follows. A
bank of 4 resonators (“reson-vector’) is excited with a bank of 4
impulse generators (“impulse-vector’). The frequency input of the
‘impulse-vector’ box is controlled with a slider-bank, and the am-
plitudes of the impulses are controlled with a bank of sine wave
oscillators (“sine-vector’). The slider-bank input of the ‘freq’ input
of the ‘impulse-vector’ is of special interest as it allows to control
in real-time the frequency of each impulse generator individually.
The other inputs of the ‘reson-vector’ box (i.e. frequencies, ampli-
tudes, and bandwidths) are given as static Lisp lists, each contain-
ing 4 elements. The output of the ‘reson-vector’ box is connected
to a ‘accum’ box that accepts as input any vectored signal and
mixes it to a mono signal (thus the final output is a mono signal).

The patch example in Figure 3 demonstrates how the PWGL
environment can be used to calculate input values for vectored ‘S’
boxes. The two first inputs, ‘low’ and ‘high’, of the ‘randi-vector’
box contain special PWGL shorthand expressions, ’(14*(0.995))’
and ’(14*(1.005))’, for generating lists (here we get 2 lists of 14
elements consisting of the values 0.995 and 1.005). The third input
of the ‘randi-vector’ box, called ‘freq’, is connected to an ‘inter-
polation’ box, that returns a list of 14 values (the result of inter-
polating values from 5.0 to 20.0). Thus the vectored output of the
‘randi-vector’ has 14 elements which are fed to the first input of a
‘mul-vector’ box. The second input of the latter box is connected
to a standard PWGL ‘value-box’ that returns a list of 14 frequency
values (only the first values are visible in the figure). The out-
put of the ‘mul-vector’ box consists of 14 frequency values where
each value is individually modulated by an interpolating random
number generator. This output is connected to the ‘freq’ input of
a ‘reson-bank’ module. Like ‘reson-vector’ given in the previous
example, ‘reson-bank’ is a bank of resonators. The first input is
different, however, as it accepts only a mono signal (here a sim-
ple impulse) instead of a vectored input. The other inputs of the

Figure 2: A bank of 4 resonators that are excited by a bank of
impulse generators.

‘reson-bank’ module, amplitudes and bandwidths, are lists of 14
values (again only the beginning values are visible). Finally, the
output of the ‘reson-bank’ box is mixed to a mono signal with a
‘accum’ box, exactly as was done in the previous example.

3. VECTOR MANIPULATION

In this section we discuss some of the synthesis modules that allow
to manipulate vectors. In the simplest case arithmetic operations
can be applied either to two vectors, or to a mono signal and to
a vector. Figure 3 gave already an example of this kind of a box,
where the ‘mul-vector’ box multiplied its input vectors resulting in
a vector of modulated signals. Similar boxes, called ‘add-vector’
(see Figure 5), ‘sub-vector’, and ‘div-vector’, allow to add, sub-
tract and divide input vectors.

Vectors can be combined to a single vector using a box called
‘combiner’, that can have an arbitrary number of inputs. A typ-
ical application of this box is when the user wants to combine
several mono boxes so that the resulting vector can be fed to a
vectored box. Thus in Figure 4 a ‘combiner’ box combines two
mono random number generators, and the resulting vector is fed
to an ‘impulse-vector’ box. This vector is in turn mixed to a mono
signal resulting in a stream of 7 impulses per second where every
seventh impulse is strongly accented (see the first ‘freq’ input of
the ‘impulse-vector’ box containing the list ‘(1 7)’).

Our next example shows how vectors can be split into sub-
vectors by using the ‘indexor’ box (Figure 5). This box has 3 in-
puts, ‘vector’, ‘index’, and ‘len’. The starting point is a bank of
29 resonators. The vectored output is split into two sub-vectors
so that vector elements 0-15 (the indexing starts from 0) form the
first sub-vector (see the ‘indexor’ box to the left), and the remain-
ing elements form the other sub-vector (the ‘indexor’ box to the
right). After this both sub-vectors are mixed to 2 mono signals,
which are in turn fed to 2 spatialization boxes, called ‘vbap2d’.
A ‘vbap2d’ box implements a 2-dimensional version of the Vec-

DAFX-284

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

Figure 3: A bank of 14 resonators where the frequencies are mod-
ulated by a bank of interpolated random number generators.

tor Base Amplitude Panning (VBAP) algorithm [5]. Here the first
input is panned in a 2-dimensional space according to the second
input, called ‘azim’. The third input defines the speaker configu-
ration to be used by the system. This input has 4 speaker positions
and thus the patch results is a 4-channel output.

4. VECTORED SIGNALS COMBINED WITH THE
COPY-SYNTH-PATHC SCHEME

In our final section we discuss some more complex cases that com-
bine vectored signals with a copying scheme for patches [3]. One
problem with the system that was presented in the previous sec-
tions is that typically one needs box versions for both mono and
vectored cases (e.g. ‘sine’ and ‘sine-vector’). Next we introduce
a scheme that allows to combine any collection of mono or vec-
tored boxes. This collection can be copied and the output of the
result will be one or several vectored signals. We use for this pur-
pose a special box called ‘copy-synth-patch’ with 2 required in-
puts, ‘count’ and ‘patch’. A third, optional, input can be given for
a name string. A ‘copy-synth-patch’ box duplicates a patch con-
nected to the ‘patch’ input count times. The output of the box is
a vector having the length which is determined by the count input
(internally the system uses the ‘combiner’ box discussed above to
achieve this result).

Figure 6 gives a simplified overview of a guitar model that
copies a ‘string’ abstraction 6 times. Note that the upper part of the
figure shows only a part of the content of the ‘string’ abstraction.
The output of the ‘copy-synth-patch’ box is a 6-element vector that
is mixed to a mono signal by the ‘accum’ box.

Figure 4: Combining 2 impulse streams to excite a single res-
onator.

To demonstrate some of the possibilities when combining the
vectored-based approach with the copy-synth-patch scheme we
add to the output of the string abstraction a ‘vbap2d’ box with
a 4-channel speaker configuration (see the upper part of Figure
7). Note that as the output of the abstraction has changed from a
mono signal to a vectored one with 4 channels, the output of the
‘copy-synth-patch’ box is now a vector of 24 elements (6 strings
* 4 channels). In order to get a 4-channel output we mix the 24
element vector to a 4-element vector using a special vector manip-
ulation box called ‘accum-vector’. This box is a vectored version
of the ‘accum’ mixer box that has been used in the previous ex-
amples. The difference is that ‘accum-vector’ translates an input
vector internally to a matrix, where the number of columns is de-
termined by the second input, called ‘len’ (in our case equal to 4).
The number of rows is gained by dividing the number of elements
of the input vector by the ‘len’ input (in our case 24/4 = 6). After
this the box mixes all columns resulting in the final output vector.

5. CONCLUSIONS

This paper gave an overview of some multichannel capabilities of
our visual synthesis environment. The system can be used to effec-
tively to realize complex DSP oriented tasks such effects, reverbs
and filter banks. The scheme has also proven to be useful when
using it in conjunction with our copy-patch-scheme to realize in-
strument models.

A PWGL beta version that includes our synthesis environment
can be loaded from the following homepage:
http://www.siba.fi/PWGLhttp://www.siba.fi/PWGL

6. ACKNOWLEDGEMENTS

The work of Mikael Laurson and Vesa Norilo has been supported
by the Academy of Finland (SA 105557).

DAFX-285

http://www.siba.fi/PWGL

Proc. of the 9th Int. Conference on Digital Audio Effects (DAFx-06), Montreal, Canada, September 18-20, 2006

Figure 5: A bank of 29 resonators where the output vector is split
into two sub-vectors that are panned individually.

7. REFERENCES

[1] J. McCartney, “Continued evolution of the Super-Collider
real time environment,” in Proc. Int. Comp. Music Conf.
(ICMC’98), Ann Arbor, USA, 1998, pp. 133–136.

[2] M. Laurson and V. Norilo, “Recent developments in
PWSynth,” in Proc. Int. Conf. on Digital Audio Effects (DAFx-
03), London, UK, 2003, pp. 69–72.

[3] M. Laurson, V. Norilo, and M. Kuuskankare, “PWGLSynth:
A visual synthesis language for virtual instrument design and
control,” Computer Music J., vol. 29, no. 3, pp. 29–41, Fall
2005.

[4] M. Laurson and M. Kuuskankare, “PWGL: A novel visual
language based on common Lisp, CLOS and OpenGL,” in
Proc. Int. Comp. Music Conf. (ICMC’02), Gothenburg, Swe-
den, 2002, pp. 142–145.

[5] V. Pulkki, “Virtual source positioning using vector base ampli-
tude panning,” J. Audio Eng. Soc., vol. 45, no. 6, pp. 456–466,
June 1997.

Figure 6: A guitar model consisting of 6 strings. Top: part of the
‘string’ abstraction. Bottom: a ‘copy-synth-patch’ box duplicates
the ‘string’ abstraction 6 times.

Figure 7: A modified 4-channel guitar model that allows to pan
each individual string separately.

DAFX-286

	1 Introduction
	2 Basic Visual Entities
	3 Vector Manipulation
	4 Vectored Signals Combined With the Copy-Synth-Pathc Scheme
	5 Conclusions
	6 Acknowledgements
	7 References

