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ABSTRACT

In this paper, we show how the formalism of the Volterra series can
be used to represent the nonlinear Moog ladder filter. The analog
circuit is analyzed to produce a set of governing differential equa-
tions. The Volterra kernels of this system are solved from sim-
ple algebraic equations. They define an exact decompositionof
the system. An identification procedure leads to structurescom-
posed of linear filters, sums and instantaneous products of signals.
Finally, a discrete-time realization of the truncated series, which
guarantees no aliasing, is performed.

1. INTRODUCTION

Most of the analog audio devices used in electro-acoustic music
have been simulated in numerous softwares thanks to digitalim-
plementations. Nevertheless, many musicians still preferoriginal
devices rather than their digital versions. One of the main reasons
is that analog circuits involve nonlinearities, responsible for per-
ceptible characteristic distortions. Even for weak nonlinearities,
the distortion is progressively activated with respect to the signal
amplitude so that playing on the dynamics makes the sound “live”.
Including such phenomena in audio implementation is difficult to
tackle since nonlinearities naturally creates aliasing.

In this paper, we show that the Volterra series formalism canbe
used to represent weakly nonlinear analog audio devices as input-
output systems, from which efficient digital implementations can
be deduced. Volterra series define exact representations ofsuch
systems on given amplitude ranges. If the equations which govern
the circuit are differential, each kernel of the series is deduced in
the Laplace domain from simple algebraic equations. One kernel
isolates a sub-system attached to a monomial nonlinearity of order
n and monitors the exact associated sub-dynamics. In practice,
even a low order truncated version of the series yields realistic
distortions while it allows to overcome the problem of aliasing. In
order to concentrate on the method rather than a “new complex
circuit”, we choose to consider a well-known and deeply-studied
circuit, the Moog ladder filter [1, 2, 3, 4].

The paper is structured as follows. In section 2, the analog cir-
cuit of the Moog ladder filter is recalled and analyzed to produce a
set of governing differential equations. This nonlinear differential
system is re-casted, for dimensionless variables. Section3 intro-
duces the Volterra series and some of their fundamental properties.
Section 4 establishes the equations satisfied by the Volterra kernels
of the Moog ladder filter: first in § 4.3 for a one stage filter, second

in § 4.3 for a four-stages filter, third in § 4.3 for the complete Moog
ladder filter with a loop. Analytic expressions of these kernels are
detailed for the ordersn = 1, 2, 3. Section 5 presents a low-cost
numerical simulation in the time domain: in § 5.1, the kernels are
identified as structures composed of linear filters, sums andin-
stantaneous products of signals in the continuous time-domain; a
state-space representation is given in § 5.2; a digital implementa-
tion is derived in § 5.3 such that the pole mapping of the linear part
is exact and the aliasing due to the nonlinearities is rejected. The
validity of the approximated structure is discussed in section 6.
Finally, conclusions are given in section 7.

2. ELECTRONIC CIRCUIT AND NONLINEAR
DIFFERENTIAL EQUATIONS

2.1. The Moog ladder filter circuit

The Moog ladder filter is a circuit composed of a driver and a cas-
cade of four filters involving capacitorsC and differential pairs of
NPN-transistors (see Figure 1).

2.1.1. Transistors

The NPN-transistors (see Figure 1a) are configured such thatthe
base currentsIB can be neglected. Indeed,IB = IC/β with β >
100 so thatIE = IC + IB ≈ IC . Moreover, the PN-junction BE
is governed by

IC = IE = Is

h

e
VB−VE

VT − 1
i

≈ Is e
VB−VE

VT , (1)

where the thermal voltage isVT = kT/q ≈ 25.85 mV and the sat-
uration current isIs ≈ 10−14 A for the temperatureT = 300 K,
and wherek = 1.38 10−23 J/K is the Boltzmann constant, and
q = 1.6 10−19 C is the electron charge.

2.1.2. Driver

From (1), the ratioI1
J1

is I1
J1

= e
−

U0
VT (see Figure 1b). Moreover,

I1 + J1 = Ic (2)

I1 − J1 = Ic
I1/J1 − 1

I1/J1 + 1
= −Ic tanh

U0

2VT

(3)
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Figure 1: Circuits: (a) NPN transistor, (b) driver, (c) one-stage
filter, and (d) four-stages Moog ladder filter.

2.1.3. One-stage filters for k=1,2,3,4

From (1), the ratios
Ik+1

Jk+1
are

Ik+1

Jk+1
= e

−
Uk
VT (see Figure 1c).

Moreover,
Ik+1 = Ik + ik (4)

Jk+1 = Jk − ik (5)

The sum and the difference of (4) and (5) yield

Ik+1 + Jk+1 = Ik + Jk

`

= I1 + J1 = Ic

´

(6)

Ik+1 − Jk+1 = Ik − Jk + 2ik (7)

Now, the differential pair of transistors yields

Ik+1 − Jk+1 = Ic

Ik+1/Jk+1 − 1

Ik+1/Jk+1 + 1
= −Ic tanh

Uk

2VT

(8)

and the capacitor law yields

ik = C
dUk

dt
(9)

2.1.4. Four-stages filter and loop

Rewriting the terms of (7) fork = 1, 2, 3, 4 thanks to (3), (8) and
(9), leads to the voltage equations

− Ic tanh
Uk

2VT

= −Ic tanh
Uk−1

2VT

+ 2C
dUk

dt
. (10)

In practice, the Moog ladder filter includes the circuit in Figure 1d,
a voltage input which controlsIc, some voltage adders, and a loop
with a controlled feedback gain [1], [5, p46]. This feedbackwrites

U0 = Uin − 4r U4 (11)

whereUin is the input andr ∈ [0, 1] controls the feedback gain.

2.2. Dimensionless model

A dimensionless version of the problem is given by

1

ωc

duk

dt
+ tanh uk = tanhuk−1, k = 1, 2, 3, 4, (12)

with u0 = uin − 4r u4, (13)

whereωc = Ic/(4CVT ), uk = Uk/(2VT ) anduin = Uin/(2VT ).
In this paper, parametersωc andr are supposed quasi-constant

so that the global system is quasi-stationary. Nevertheless, the
method presented below could be adapted to non-stationary prob-
lems, using non-stationary Volterra series [6, 7].

3. INTRODUCTION TO VOLTERRA SERIES

3.1. Definitions and notations

A system is described by a Volterra series of kernels{hn}n∈N∗

for inputs |u(t)| < ρ if the outputy(t) is given by the multi-
convolutions

y(t) =

+∞
X

n=1

Z

Rn

hn(τ1 , . . ., τn) u(t−τ1). . .u(t−τn) dτ1 . . .dτn , (14)

whereρ is the convergence radius of the characteristic function

ϕh(x) =

+∞
X

n=1

‖hn‖1x
n, (15)

and‖hn‖1 =
R

Rn |hn(τ
1
, . . ., τn)|dτ

1
. . .dτn is theL1-norm ofhn.

{hn}u(t) y(t)

Figure 2:System represented by Volterra kernels.

For a causal system,hn are zero forτk < 0. Their mono-
lateral [8, (29.1.2)] Laplace transforms are denoted with capital
lettersHn(s1, . . ., sn). For stable systems, the kernelsHn are ana-
lytic for sk,ℜe(sk) > 0.
Notation: These systems are usually represented with their ker-
nels, either in the time domain{hn} as displayed in Figures 2 and
3 , either in the Laplace domain{Hn} as displayed in Figure 4.
Remark 1: Volterra series embed systems described by: (a) linear
filters (hn = 0 for n ≥ 2) ; (b) instantaneous nonlinear func-
tions y = h(u) with h(0) = 0 which admits a series expansion
h(u) =

P+∞
n=1 αnun; (c) their various combinations (sum, prod-

uct, cascade, as detailed in § 3.2).
Remark 2: For the case (b), the (convolution) kernels are given by
hn(t1, . . ., tn) = αnδ(t1, . . ., tn) in the time domain (δ denotes the
Dirac distribution), and by the constant functionsHn(s1, . . ., sn) =
αn in the Laplace domain.
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Figure 3:Sum (a), product (b), and cascade (c) of two systems.

3.2. Interconnection laws

LetN∗ denote the strictly positive integers. The kernels{Hn}n∈N∗

of the systems in Figures 3a, 3b, and 3c are given respectively
by [9, p. 34,35]

Hn(s
1
, . . ., sn) = Fn(s

1
, . . ., sn) + Gn(s

1
, . . ., sn), (16)

Hn(s
1
, . . ., sn) =

n−1
X

p=1

Fp(s1
. . ., sp)Gn−p(s

p+1
, . . ., sn), (17)

Hn(s
1
, . . ., sn) =

n
X

p=1

X

(i1,. . .,ip)∈I
p
n

Fi1(s
1
, . . ., s

i1
). . .Fip(s

i1+ . . . + ip−1+1
, . . ., sn)

. Gp(s1
+ . . .+s

i1
, . . . , s

i1+ . . . + ip−1+1
+ . . .+ sn) (18)

whereI
p
n =

˘

(i1 , . . ., ip) ∈ (N∗)p s.t.i1+ . . . + ip = n
¯

. Note that
I
p
p is the singleton {(1,. . .,1)} and thatIp

n = ∅ whenp > n.
The radii of convergence are such thatρh ≥ min(ρf , ρg) for

the cases (a,b) andρh ≥ min
`

ρf , ϕ−1
f (ρg)

´

for the case (c).

4. VOLTERRA KERNELS OF THE MOOG LADDER
FILTER

4.1. Kernels of a single stageF

Let {Fn}n∈N∗ be the unknown kernels of a single stage filter with
input uk−1 and outputuk. They describe the dimensionless sys-
tem (12) which corresponds to the circuit in Figure 1c, for a given
k. Let {Tn}n∈N be the coefficients of the series expansion of
tanh. They are given byT2p = 0 for p ∈ N, T1 = 1, T3 = −1/3
and, more generally, byT2p−1 = (−1)p−12(22p − 1)B2p/(2p)!
for p ≥ 1 whereBn denotes thenth Bernoulli numbers (see [8,
(4.5.64)]). According to the remark 2 in § 3.1, the coefficients
Tn also define the constant kernels{Tn} of the systemy(t) =
tanh

`

u(t)
´

, in the Laplace domain.
Now, we describe (12) through a block diagram involving the

Volterra kernels{Fn} and{Tn} which define the null-system de-
tailed in Figure 4, where

Q1(s1
) =

s1

ωc

(19)

defines to the linear operator1
ωc

d
dt

in the Laplace domain. The
kernels of this null-system can be derived from the interconnection
laws (16) and (18). Writing that the kernels of the null system are
zero yields, forn ∈ N

∗,

Fn(s
1
, . . ., sn)Q1(s1

+ . . . + sn) +
n

X

p=1

X

(i1,. . .,ip)∈I
p
n

Fi1(s
1
, . . ., si1). . .Fip (s

i1+ . . . + ip−1+1
, . . ., sn)Tp = Tn.(20)

uk−1 uk

1
ωc

d uk

dt

− tanh(uk−1)

tanh(uk)

{Fn}

{−Tn}

{Tn}

Q1
0

Figure 4:Canceling system forF .

The first term in (20) represents the cascade{Fn} → Q1 in Fig-
ure 4. It is derived from (18) in which only the term withp = n is
not zero. The second term represents the cascade{Fn} → {Tn}.
Note that the indexp = 1 is associated toFn(s

1
, . . ., sn)T1 while

the indexesp ≥ 2 only involveFk with k ≤ n − 1. The second
member stands for{−Tn}. Equation (20) rewrites, forn ∈ N

∗,

Fn(s
1
, . . ., sn) = [T1 + Q1(s1

+ . . . + sn)]
−1 .

"

Tn

−
n

X

p=2

Tp

X

(i1,. . .,ip)∈I
p
n

Fi1(s
1
, . . ., si1). . .Fip (s

i1+ . . . + ip−1+1
, . . ., sn)

#

.(21)

This yields recursive algebraic equations: for eachn, the second
member of (21) is a finite sum composed of kernelsFik

which
have been yet computed sinceik < n. The kernels forn = 1, 2, 3
are given by,

F1(s1
) = [T1+ Q1(s1

)]−1 =

»

1 +
s
1

ωc

–−1

(22)

F2(s1 , s2) = 0, (23)

F3(s1
, s

2
, s

3
) = T

3

ˆ

1−F1(s1
)F1(s2

)F1(s3
)
˜

F1(s1
+s

2
+s

3
).(24)

Thus, including the nonlinear effect in the application requires to
consider the kernels at least untiln = 3.

4.2. Kernels of a complete four-stages filterF4

Let {F k
n}n∈N∗ denote the kernels of the cascade ofk systems

{Fn}n∈N∗ . The kernels{F 4
n} are derived from (18) in two steps:

first, the cascade of{Fn} and{Fn} yields{F 2
n}; second, that of

{F 2
n} with {F 2

n} yields{F 4
n}.

As F2(s1, s2) = 0, this leads to, forn = 1, 2, 3,

F 2
1 (s

1
) =

ˆ

F1(s1
)
˜2

, (25)

F 2
2 (s

1
, s

2
) = 0, (26)

F 2
3 (s

1
, s

2
, s

3
) = F3(s1

, s
2
, s

3
)F1(s1

+s
2
+s

3
)

+F1(s1
)F1(s2

)F1(s3
)F3(s1

, s
2
, s

3
), (27)
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and for the second step,

F 4
1 (s

1
) =

ˆ

F 2
1 (s

1
)
˜2

=
ˆ

F1(s1
)
˜4

, (28)

F 4
2 (s1 , s2) = 0, (29)

F 4
3 (s

1
, s

2
, s

3
) = F 2

3 (s
1
, s

2
, s

3
)F 2

1 (s
1
+s

2
+s

3
)

+F 2
1 (s

1
)F 2

1 (s
2
)F 2

1 (s
3
)F 2

3 (s
1
, s

2
, s

3
)

=

3
X

k=0

ˆ

F1(s1)
˜kˆ

F1(s2)
˜kˆ

F1(s3)
˜k

.F3(s1
, s

2
, s

3
)
ˆ

F1(s1
+s

2
+s

3
)
˜3−k

. (30)

4.3. Kernels of the Moog ladder filterL with a loop

Let{Ln}n∈N∗ be the kernels of the four-stages filter with the loop,
fed by the inputuin and with outputu4. They describe the dimen-
sionless system (12-13) which corresponds to the circuit inFig-
ure 1d. This system is such that the block diagram in Figure 5
defines the null system. In this block diagram, the kernels ofthe

uin −u4u0

u4

u4{Ln} −4r {−F 4
n}

0

Figure 5:Canceling system forL.

sub-system inside the gray box are4r Ln(s1, . . ., sn) + δ1,n where
δ1,n denotes the Kronecker symbol (δ1,n=1 if n=1 andδ1,n=0
otherwise). Writing from (18) that the cascade of this system with
{F 4

n}n∈N∗ is {Ln}n∈N∗ yields
n

X

p=1

X

(i1,. . .,ip)∈I
p
n

ˆ

δ1,i1− 4rLi1(s1 , . . ., si1)
˜

. . .

ˆ

δ1,ip− 4rLip(si1+ . . . + ip−1+1
, . . ., sn)

˜

.F 4
p (s

1
+ . . .+s

i1
, . . . , s

i1+ . . . + ip−1+1
+ . . .+ sn) = Ln(s

1
, . . ., sn), (31)

so that, forn = 1, 2, 3,

L1(s1
) =

ˆ

1 − 4rL1(s1
)
˜

F 4
1 (s

1
), (32)

L2(s1 , s2) = 0, (33)

L3(s1
, s

2
, s

3
) = −4r L3(s1

, s
2
, s

3
)F 4

1 (s
1
+s

2
+s

3
)

+
ˆ

1 − 4r L1(s1

˜ˆ

1 − 4r L1(s2
)
˜

.
ˆ

1 − 4r L1(s3
)
˜

F 4
3 (s

1
, s

2
, s

3
). (34)

Finally, the kernels are given by

L1(s1
) = R(s

1
) F 4

1 (s
1
), (35)

L2(s1
, s

2
) = 0, (36)

L3(s1
, s

2
, s

3
) = R(s

1
)R(s

2
)R(s

3
) F 4

3 (s
1
, s

2
, s

3
)

. R(s
1
+s

2
+s

3
), (37)

with R(s) =
ˆ

1 + 4rF 4
1 (s)

˜−1
. (38)

5. SIMULATION

5.1. Identifying structures composed of filters, sums and prod-
ucts

The Volterra kernels of order 1 given in (22), (28) and (35) cor-
respond to standard linear filters. Those of order 3 given in (24),

(30) and (37) are sums of terms with general expression

A1(s1)B1(s2)C1(s3)D1(s1+s2+s3).

From (18), each term defines an elementary system of order 3 pre-
sented in Figure 6, whereA1, B1, C1 andD1 are linear filters. For

u y

A1

B1

C1

D1

Figure 6:Elementary system of order 3.

instance, in (24),F3 can be decomposed into two elementary sys-
tems as in Figure 3a: one corresponds toA1 = B1 = C1 = 1 and
D1 = T

3
F1 and is the cascade of an instantaneous cube power

and the filterT
3
F1 whereT

3
= −1/3; the second corresponds to

A1 = B1 = C1 = F1 andD1 = −T
3
F1 and is the cascade of a

filter F1, an instantaneous cube power and the filter−T
3
F1.

Thus, by identification, (22-24), (28-30) and (35-37) lead to
the structures given in Figures 7, 8 and 9 for the third order struc-
tures ofF1, F4 andL, respectively. Note that third order approx-
imations of (12-13) would involve instantaneous loops whereas
these structures have no loops and yield realizable systemscom-
posed of causal linear filters, sums and products in the time do-
main. The structureL3 makes the resonant filterR(s) appear

u0 u1

v1 w1

y
F3

F3

T
3
F1

F1

.3 .3

Figure 7:Third-order structureF3 of the systemF .

u0 u1 u2 u3 u4

v1 v2 v3 v4

w1 w2 w3 w4

y
F4

3

T
3
F1F1F1 F1

F1F1F1 F1

.3.3 .3.3 .3

F4
3

Figure 8:Third-order structureF4
3 of the systemF4.

only through an encapsulation of the four-stages systemF4
3 . This

corroborates the remark given in [5, p.51] even for the thirdorder
nonlinear case: the loop does not modify the low-pass properties
of the filter.

Indeed, controlling the resonance (Q-factor) through the feedback-
gain r modifies the filterR but does not affect the structureF4

3
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uin u0 u4

w4
w5

y
L3

R

R

F4
3

L3

Figure 9:Third-order structureL3 of the systemL.

since the cut-off pulsationωc is controlled throughIc but notr.
Now, the filterR is resonant but has not a low-pass behavior. Bode

diagrams forr∈
n

0, 1
3
, 2

3
, 1

o

are displayed in Figure 10.
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´
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Figure 10:Bode diagrams ofR for r = 0 (−), r = 1
3

(◦), r = 2
3

(∗) andr = 1 (△).

5.2. State-space representation

In this section, linear filters involved in the structureL are re-
shaped into state-space representations

dx(t)

dt
= A x(t) + B u(t) (39)

y(t) = C x(t) + D u(t) (40)

which define stationary linear systems withP inputsu, Q outputs
y and the statex of dimensionN . The vectorsu, y andx have
dimensionsP ×1,Q×1, N×1, respectively. The matricesA, B,
C andD have dimensionsN ×N , N ×P , Q×N andQ×P ,
respectively.

5.2.1. Cascade of four filtersF4
1

The cascade of four linear filtersF1 with one inputuF = u0

and four outputsyF = [u4, u3, u2, u1]
t (see Figure 8) admits the

representation (39-40) with the statexF = yF and

AF = ωc

2

6

4

−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1

3

7

5
, (41)

BF = ωc

ˆ

0 0 0 1
˜t

, (42)

CF = I4, (43)

DF =
ˆ

0 0 0 0
˜t

, (44)

whereI4 denotes the4×4 identity matrix.

5.2.2. FilterR

The filterR defined in (38) with one inputuR and one outputyR

admits the representation (39-40) with the state
xR =

ˆ

x,dx/dt, d2x/dt2, d3x/dt3
˜t

and

AR =

2

6

6

4

0 1 0 0
0 0 1 0
0 0 0 1

−ω4
c (1+4r) −4ω3

c −6ω2
c −4ωc

3

7

7

5

, (45)

BR =
ˆ

0 0 0 1
˜t

, (46)

CR =
ˆ

−4 r ω4
c 0 0 0

˜

, (47)

DR = 1. (48)

5.2.3. Linear processing

The linear part of the Moog ladder filter corresponds to the upper
stage of Figure 9, that is, the cascade of the filterR and the linear
four-stage filterF4

1 . It admits a state-space representation, with
uL = uin, yL = [u4, u3, u2, u1, u0]

t,
xL =

ˆ

u4, u3, u2, u1, x,dx/dt,d2x/dt2, d3x/dt3
˜t

, and

d xL(t)

dt
=

»

AF BF .CR

04,4 AR

–

xL(t) +

»

BF .DR

BR

–

uL(t), (49)

y(t)=

»

I4 04,4

01,4 CR

–

xL(t) +

»

04,1

DR

–

uL(t). (50)

5.2.4. Processing of order 3

This part is composed of the intermediate and the lower stages in
Figures 8-9. The intermediate stage is nonlinear but memoryless.
It computes

v =
ˆ

(u3)
3− (u4)

3, (u2)
3− (u3)

3, (u1)
3− (u2)

3, (u0)
3− (u1)

3˜t
.

(51)
The lower stage is a cascade of four linear filtersF1 with adders,
a gainT3 = −1/3 and a linear filterR. It admits a state-space
representation withuNL =v, yNL = w5, and
xNL =

ˆ

w, dw/dt, d2w/dt2, d3w/dt3, w4, w3, w2, w1

˜t
where

w is involved in the state-space representation ofR, and

d xNL(t)

dt
=

»

AR BR.
ˆ

T3, 0, 0, 0
˜

04,4 AF

–

xNL(t) +

»

04,4

ωcI4

–

uNL(t)

(52)

yNL(t)=
ˆ

CR DR.
ˆ

T3, 0, 0, 0
˜˜

xNL(t) (53)

5.3. Digital simulation without aliasing and results

The state-space representation ofL3 is given by equations (49-
53). The digital implementation of its linear parts is very standard.
Methods such as bilinear or backward difference transformsand
even redesigned versions ofL1 have been deeply studied in [2].
Another way to preserve important features such as theexact pole
mapping with(r, ωc) consists in deriving the exact free-regime dy-
namics from the solution of (39), namely,x(t) =

R t

0
exp

`

A(t −

τ )
´

.B.u(τ )dτ + exp
`

At
´

.x(0) so that, denotingxn = x(nT )
for the sampling periodT ,

xn+1 = exp
`

AT
´

.xn+

Z (n+1)T

nT

exp
`

A(tn+1−τ )
´

.B.u(τ )dτ.

(54)
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Finite dimensional approximations ofu(t) =
P

n∈Z
unh(t−nT )

with h(t) = sin(πt)/(πt) will yield digital filters. As a low order
example, the approximationh1(t)=

`

1− |t|
T

´

1[−T,T ](t) leads to

xn+1 = exp
`

AT
´

.xn + B1.un+1 + B0.un, (55)

whereB1 = TE1(T ) − E2(T ), B0 = E2(T ) with E1(t) =

T−1
R t

0
exp

`

A(T − τ )
´

Bdτ and E2(t) =
R t

0
E1(τ )dτ . The

outputyn is computed from (40). The approximation due toh1

means that the exact system is fed with a modified input with
spectrum TF[u](f) [sinc(Tf)]2 rather than TF[u](f), where TF
denotes the Fourier transform and[sinc(Tf)]2 = TF[h1](f).

Now, the aliasing due to the cube powers in (51) can be re-
jected by encapsulating the digital system with an oversampling
process at the input and an under-sampling process at the out-
put. Here, the oversampling factor is3. This factor improves the
approximation due toh1 since[sinc(ξ)]2 decreases from0 dB at
ξ = 0 to only−0.8 dB atξ = 1/6 rather than−7.8 dB atξ = 1/2.

Results are presented in Fig. 11 for a sum of 2 square waves
(437Hz, 443Hz) with a linear attack (0.5s) and a linear decay
(0.3s). Parameters areωc = 2πfc with fc = 1500Hz, r = 0.15
andT = 1/44100s.
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Figure 11:Spectrograms and signals ofuin 7→ u4 + w5 = yL3
.

6. DISCUSSION

The validity of the third order structure is conditioned by that of the
series expansion oftanh(u). Typical valid ranges for orders 1, 3
and 5 are|u|<0.5, |u|<0.75, |u|<1. Compared to Fig.7, a(2N+
1)-order structureF2N+1 involvesN+1 elementary filtersF1 and
also instantaneous operators (powers, products, sums). Moreover,
structuresF4

2N+1 andL2N+1 are built fromF2N+1. Now, a way to
improve the validity for a fixed order2N+1 consists in modifying
coefficientsT2k+1 (1 ≤ k ≤ N ) so that they minimize a distance
betweentanh(u) and its(2N+1)-order polynomial approximation
P2N+1(u), globally on au-range rather than nearu = 0. This will
introduce some ripples onP2N+1(u) but which do not affect the
global behavior if sufficiently small (in particular,P2N+1(u) must
preserve the sign oftanh(u) over the consideredu-range).

7. CONCLUSION

In this paper, the Volterra series have been used to model a weakly
nonlinear analog audio device. This formalism helps to transform

nonlinear differential systems (including loops) into an infinite set
of algebraic equations from which the Volterra kernels are de-
duced. Each kernel isolates a sub-system attached to a monomial
nonlinearity and monitors the exact associated sub-dynamics. In
practice, keeping the very first kernels suffices to capture the dis-
tortion in a significant amplitude range, which characterizes the
warmth of analog devices.

Structures which admits a realization in the time domain can
be deduced from the Volterra kernels. In this paper, for eachker-
nel, elementary and low-cost sub-systems have been identified,
but other systematic identification procedures are also available,
see e.g. [10]. Moreover, a truncated version of the series allows
to reject aliasing for digital implementations. In practice, using
lower oversampling factors can be sufficient, especially for natu-
rally low-pass systems.

This formalism also proves to be useful for solving weakly
nonlinear partial differential equations, see e.g. [11] for the non-
linear propagation in a brass.
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