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ABSTRACT
The Chamberlin and Zölzer filter structures run a risk, albeit

small, of requiring a large value for one of their tuning coeffi-
cients, which may lead to performance issues. A simple modifi-
cation leads to alternative structures that place an absolute bound
on that coefficient while retaining the signal flow topology. The
modified structures also affect the pole distribution. In the case of
the Chamberlin structure, the changes upon modification can be
interpreted as favorable.

1. BACKGROUND

1.1. The Chamberlin and Zölzer Filter Structures

Chamberlin, in [1], outlines a versatile filter structure based on em-
bedded digital integrators. Zölzer, in [2], attributes this structure in
a slightly modified form to a prior publication by N. G. Kingsbury.
Also in [2], Zölzer makes an intuitive leap from the Chamberlin
and Kingsbury works that results in a filter structure that bears his
name.

Figure 1 presents the signal flow graph of the Chamberlin filter
structure. The Kingsbury structure is virtually identical save that
the input node is at a different location. In this paper, the filter
structure will herein be called the Chamberlin structure.
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Figure 1: The Chamberlin filter structure.

The transfer function that the Chamberlin structure generates
is

HC(z) =
N(z)

1− (2− f2 − f · q) · z−1 + (1− f · q) .z−2
(1)

where N(z) is a linear combination of node-specific transfer func-
tion numerators within the filter structure, which is beyond the
scope of this paper.

Figure 2 presents the signal flow graph of the Zölzer filter
structure. The structure depicted in the figure is slightly differ-
ent from that presented in Zölzer’s publication but results in an
identical transfer function denominator.
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Figure 2: The Zölzer filter structure.

The transfer function that the Zölzer structure generates is

HZ(z) =
N(z)

1− (2− f3 − f · q) · z−1 + (1− f · q) .z−2
(2)

where N(z) is a linear combination of nodes as in (1).

1.2. Advantages

The Chamberlin filter structure can conveniently render several
useful transfer functions simultaneously, such as highpass, low-
pass, bandpass, and allpole [1], a trait that is also true of the Zölzer
structure. In addition, the tuning coefficient f maps approximately
to the tuning frequency parameter and the coefficient q maps ap-
proximately to the reciprocal of the Q parameter of the resulting
poles.

Both filter structures offer a favorable distribution of poles
when their coefficients are quantized. Figure 3 shows the pole
distribution of the Chamberlin filter when f and q are quantized
in linear steps. Figure 4 shows the pole distribution of the Zölzer
filter with equivalent coefficient quantization. The pole distribu-
tion plots are more amenable to tuning with logarithmically scaled
frequency and Q parameters [2] [3].

2. LIMITATIONS

In order to tune these filter structures to any stable transfer func-
tion, a formula to determine valid tuning ranges, based on reflec-
tion coefficient calculation, is given in [4]. Applying this formula
to the Chamberlin structure, the following relations for f and q
must apply for stability.

0 < f < 2 ∧ 0 < q <
4− f2

2f
(3)

The relation (3) implies that, as coefficient f approaches zero,
the value of coefficient q can become quite large, with no absolute
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Figure 3: Linearly quantized pole distribution of the Chamberlin
structure.
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Figure 4: Linearly quantized pole distribution of the Zölzer struc-
ture.

bound. To illustrate, Figure 5 shows the value of q for a 10-octave
tuning range ending at Nyquist ×20.48 kHz /24 kHz and a range
of Q from 1/32 to 32.
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Figure 5: Value of coefficient q for the Chamberlin structure.

An inspection of Figure 3 and Figure 4 above shows that the
Chamberlin structure has significantly lower pole density near Nyquist
(−1 on the complex plane), whereas the Zölzer structure is more
able to fill that void.

The Zölzer structure has the following relations for f and q to
insure stability.

0 < f < 22/3 ∧ 0 < q <
4− f3

2f
(4)

Similar to (3), the relation (4) implies that the upper range of q
is essentially boundless. However, Figure 6 shows that the Zölzer
structure is less susceptible to q growth over the same tuning range.
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Figure 6: Value of coefficient q for the Zölzer structure.

While the wide range of the q parameter is clearly problematic
for a fixed point implementation of these filter structures, a high
level of q raises the signal level at the input node relative to the
other summation nodes, which can raise the noise level at the input
node regardless of whether fixed point or floating point math is
utilized. Note that quantization noise generated at the summation
nodes feeding the delays will eventually be multiplied by the q
coefficient in the recursive network.

3. MODIFICATION

A simple modification to the above filter structures can help al-
leviate the above limitations. As illustrated in Figure 7, the −f
multiplier can be moved against the signal flow within the recur-
sive loop to yield a −f multiplier from the rightmost delay and
a −fq multiplier from the other delay. Figure 7 depicts what is
herein called the Modified Chamberlin filter structure.

The transfer function that the Modified Chamberlin structure
generates is

HMC(z) =
N(z)

1− (2− f2 − fq) · z−1 + (1− fq) · z−2
(5)

where N(z) is a linear combination of node-specific transfer func-
tion numerators within the filter structure. Applying the modifi-
cation depicted in Figure 7 to the Zölzer filter structure results in
what will be called the Modified Zölzer filter structure. The trans-
fer function that it generates is

HMZ(z) =
N(z)

1− (2− f3 − fq) · z−1 + (1− fq) · z−2
(6)
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Figure 7: Multiplier modifications resulting in the Modified Cham-
berlin filter structure.

3.1. The Modified Chamberlin Filter Structure

The modified filter is still tuned with two coefficients, which are
called f and fq in this paper, but the role of fq as opposed to q
is slightly different. To illustrate this difference, Figure 8 shows
the pole distribution of the Modified Chamberlin structure using
the same quantization step size as that for Figure 3. Comparing
the two figures indicates that the Modified Chamberlin structure
retains the advantage of higher pole density towards DC while
compensating for the Chamberlin structure’s low pole density at
Nyquist.
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Figure 8: Linearly quantized pole distribution of the Modified
Chamberlin structure.

The following relation must apply for the Modified Chamber-
lin structure to render a stable transfer function.

0 < f < 2 ∧ 0 < fq <
4− f2

2
(7)

Plugging in the valid range of f into the range of fq shows that the
value of fq cannot exceed 2 (also note that the z−2 terms of the
modified transfer function denominators (5) and (6) cannot have
their absolute values exceed unity in order for the denominator to
remain in the stability triangle). Figure 9 shows the value of fq
for the same tuning parameters as in Figure 5 and Figure 6. As
compared to the Chamberlin structure in Figure 5, the range of the
fq coefficient is considerably smaller than that of q. This aids in
fixed point coefficient storage (note that both f and fq can fit in
the range of a traditional unsigned fixed point data word) and in
lowering the relative level at the input node, which can improve
the overall noise performance.
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Figure 9: Value of coefficient fq for the Modified Chamberlin
structure.

3.2. The Modified Zölzer Filter Structure

Applying the modification to the Zölzer filter structure yields less
dramatic changes in performance. Figure 10 shows the pole dis-
tribution of the Modified Zölzer structure using the same quanti-
zation step size as that for Figure 4 and Figure 8. A comparison
of Figure 10 with Figure 4 indicates that the two distributions are
similar with the Modified Zölzer distribution having lower overall
density than the Zölzer structure. Comparing Figure 10 with Fig-
ure 8 can make a case that the Modified Chamberlin structure out-
performs the Modified Zölzer structure in pole distribution under
coefficient quantization, which cannot be made when comparing
the nonmodified versions of the two structures.
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Figure 10: Linearly quantized pole distribution of the Modified
Zölzer structure.

The following relation must apply for the Modified Zölzer
structure to render a stable transfer function.

0 < f < 22/3 ∧ 0 < fq <
4− f3

2
(8)

The value of the fq tuning coefficient for the Modified Zölzer
structure is identical to the fq coefficient for the Modified Cham-
berlin structure, given in Figure 9 (note that the z−2 terms of the
modified transfer function denominators (5) and (6) are equivalent
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and depend solely on fq). As the nominal range of q in the Zölzer
structure is of lower magnitude than that of its Chamberlin coun-
terpart, the noise improvement of the Modified Zölzer structure
over the Zölzer structure is not as significant.

4. CONCLUSIONS

This paper offers for consideration a simple modification to the
Chamberlin and Zölzer filter structures. This modification is of-
fered not as a replacement to the two structures but as an alterna-
tive design that may aid in issues that involve a large value of the
coefficient q. The q coefficient in the established structures has no
absolute bound, though in most tuning circumstances the coeffi-
cient value is not large in magnitude. In the case where the value
of q is large, performance issues may arise regardless of whether
fixed point or floating point math is employed in the filter imple-
mentation.

The Modified Chamberlin and Modified Zölzer filter struc-
tures replace the coefficient q with a coefficient called fq, which
represents the product of f and q in the established structures. The
absolute upper bound of fq is 2 in all stable tuning configura-
tions. The pole distribution of the modified structures is different
from that of their canonical counterparts. The pole distribution of
the Modified Chamberlin structure can compare favorably to that
of the Chamberlin structure. It is unlikely that the pole distribu-
tion of the Modified Zölzer structure can be considered preferable.

The modified filters do not affect the signal flow topology of the
structures, which retains most, if not all, of the advantages of the
established structures outlined in [1] and [2].
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