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ABSTRACT

In a previous work we presented a system for transcribing spoken
rhythms into a symbolic score. Thereafter, the system was ex-
tended to process the vocal stream in real-time in order to allow a
musician to use it as a voice-driven drum generator. Extensions to
this work are the following. First we achieved a study of the sys-
tem classification accuracy based on typical onomatopoeia used
in western beat boxing, with the perspective of building a gen-
eral supervised model for immediate use. Also, we want the user
to be able to generate expressive rhythms, beyond the symbolic
drum representation. Thus we considered a class-specific map-
ping of continuous vocal stream descriptors with either effects or
synthesis parameters of the drum generator. The extraction of the
symbolic drum stream is implemented in the BillaBoop VST Core
plug-in. The class-specific mapping and the sound synthesis are
carried out in Plogue Bidule1 framework. All these components
are integrated into a low-latency application that allows its use for
live performances.

1. INTRODUCTION

We present an application for generating expressive drum rhythms
controlled by voice. The aim of this work is to develop a sys-
tem able to reduce the gap between the user and a device, namely
keyboard, drum pad or GUI, in order to generate on-the-fly syn-
thetic rhythms using samples or some synthesis techniques. This
is relevant as many musicians have just an intuitive experience of
performing rhythm and can not easily communicate to a computer
a beat they have in mind. Furthermore, in both non-western music,
recent western urban genres and electronic music, the oral tradition
of music and especially rhythm is predominant. In this paper, we
are interested in western beat-boxing signals, that refer to a recent
urban tradition. In recent works we built a system able to achieve
on-the-fly vocal hits categorization into 3 drum sounds (namely
Bass drum, Snare Drum, and Hi Hat), but the percussive vocabu-
lary was restricted to [Poo, Tch, Tss] utterances. Indeed, typical
beat boxing signals cover a wider range of utterances, and refer
not only to acoustic instruments, but also to synthesized sounds or
vocal utterances. We believe that by taking into account a wider
variety of examples, despite the noise added to the training data,
we can improve the overall robustness of the system. Thus, a train-
ing set was built based on tutorial recordings performed by the beat
box performer TyTe, available on his website2. A taxonomy of the
vocal sounds that were collected is presented in Section 4.

1www.plogue.com
2www.humanbeatbox.com

The other issue raised by this work is that even though each
percussive event was perfectly segregated and transcribed, the re-
sulting drum score would lack of information describing how the
performer has modulated the produced sounds, a crucial point of
oral performance expressiveness. Thus, a representation of oral
percussion expressive effects (e.g. energy or centroid variation)
has to be defined and effective computational methods to track
them have to be used. In our case the voice would act as a drum
trigger, but would also be able to control different aspects of the
triggered sounds. The expressive class-specific mapping can be
applied either to each one of the synthesizers parameters or to
drum-specific effect controls. We present the different components
of the system: descriptors generator, onset/offset detector, event
segregation component, class-specific descriptors mapper, and fi-
nally drum generator. Figure 1 shows how theses components are
integrated in order to provide a three drum output stream from a
monophonic input. Note that the components that appear inside
the dashed square belong to the BillaBoop Core, implemented as a
VST plug-in, while the outer elements are implemented in Plogue
Bidule.

Based on these ideas the outline of this paper is the following.
In section 2 we present some work related to percussive voice anal-
ysis, drum sounds identification, and voice-controlled instruments.
Section 3 presents onset detection and descriptors extraction tech-
niques that meet the real time criteria, section 4 gives details about
the training data used to build the classification model and then
deals with supervised machine learning techniques that are used
to process this data, section 5 presents the implementation of the
whole system. Finally the results are discussed and work direc-
tions are given in section 6.

2. RELATED WORK

In [1], the proposed system segregates the vocal input stream into
a four drum score that can be edited in order the generate sample
triggered drum rhythms, and is extended in [2] to achieve real-
time three drum rhythm generation. In [3, 4], a system for on-the-
fly segmentation using state of the art onset detection techniques
is presented. In [4] a first real-time categorization using the sin-
gle spectral centroid feature of the first detected frame is used,
which allows some live beat box control application. Finally, KT-
DrumTrigger3 is a VST plug-in dedicated to extracting drum sym-
bolic information from the audio stream. Its categorization process
can be seen as semi-automatic because the user has to tune several
analysis parameters in order to obtain the desired system behav-

3www.koen.smartelectronix.com/KTDrumTrigger
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Figure 1:Overview of Billaboop system.

ior. Among all the works listed above the main aim is to obtain
a symbolic rhythmic score without considering other aspects of
the oral percussive signal. On the other hand some works con-
sider the real-time tracking of continuous expressive features of
the voice without taking into account events segregation. Kantos4

is a commercial vintage synthesizer that can be controlled by the
voice or any other acoustic signal. The user can edit the mapping
between extracted acoustic features to some synthesis parameters.
[5] uses novel descriptors that track [wah-wah] utterances in the
vocal stream in order to drive a wah-wah effect.

3. DESCRIPTORS EXTRACTION AND ONSET/OFFSET
DETECTION FOR PERCUSSIVE VOICE SIGNALS

In this section we present descriptors extraction and onset/offset
detection components. We focus in this paper on voice percussive
signals which are a bandwidth-limited and monophonic. Thus we
designed a fast and simple component for this kind of source. In
particular, we assumed that only one drum instrument could be
triggered at the same time.

3.1. Descriptors

First, the input sound is analyzed frame by frame, and descriptors
are computed in the time and frequency domain (after having per-
formed a Fast Fourier Transform on the triangular-windowed tem-
poral frame). We report here the descriptors which are used, but
due to the lack of space, we do not present all of them formally.
We refer to [6] for a detailed review. The only temporal descriptor
we use is Zero Crossing Rate, which is calculated as the rate the

4http://www.antarestech.com/products/kantos.html

signal changes sign over the frame duration. The other descriptors
we center on are extracted in the frequency domain. First, High
Frequency Content is the weighted area of the spectrum between
100 and 10000 Hz, which gives an increasing weight to increasing
frequencies and lets high frequency variations be detected easily.

HFC =

k10000X

k=k100

k|X(k)| (1)

Spectral Centroid refers to the center of gravity of the spectrum,
and is defined as:

Centroid =

N−1X

k=0

kfs

N

|X(k)|
PN−1

k=0 |X(k)|
(2)

Spectral Roll-off, is the frequency in Hz for which 85% of the
spectrum energy is contained below. It can be used to distinguish
between harmonic and noisy sounds. On the other hand, as a re-
sults of a statistical analysis of the spectral data of the training
recordings, we define three perceptual energy bands for vocal per-
cussive sounds.Elow stands for the spectral energy between 100
and 2000 Hz,Emed refers to the spectral energy between 2000 and
6000 Hz, andEhigh between 6000 and 10000Hz. These energies
are defined as follows:

E(band) =

kupfreqX

k=klowfreq

|X(k)|2 (3)

where the indexesupfreq andlowfreq represent lower and upper
band frequencies. For a given frequencyf , we computekf , index
of the spectral bin corresponding tof in equation(1),(2),(3) as
follows:

kf = dfN

fs
e (4)

whereN is equal to the number of points in the FFT, andfs is the
sample rate frequency. Finally we define to overall energy between
100 and 10000 Hz,Etot = Elow + Emed + Ehigh

3.2. Onset detection

Most of state of the art onset detection algorithms are based on
multi-band processing using psychoacoustic knowledge. A com-
parision of such algorithms can be found in [7]. We implemented
an onset detection algorithm based on spectral variations between
the former frame and the current one. We focus on two spectral
variation features, namely High Frequency Content variation and
overall Band Energy variation. They are defined as follows:

∆HFC[n] =
HFC[n] − HFC[n − 1]

HFC[n − 1]
(5)

∆BandEnergy[n] =

P
bands ∆Eband[n]

Etot[n]
(6)

where, for each of the three defined bands, we have:

∆Eband[n] =
Eband[n] − Eband[n − 1]

Eband[n − 1]
(7)

In equations(5),(6),(7), n stands for the index of the actual frame
while n-1 is the index of the former frame. The onset detection
algorithm outputs a state variable which can be equal tosilence,
onset, or steady-state. It proceeds as follows:
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if(onset-state = silence):
if(DeltaHFC > DeltaHFCThr AND
DeltaBandEnergy > DeltaBandEnergyThr):

onset-state = silence;
end

end
if(onset-state = onset):

compute_label();
onset-state = steady-state;
end

if(onset-state = steady-state):
if(DeltaHfc<-DeltaHFCOffThr):

onset-state = silence;
end

end

if(onset-state = steady-state):
output_descriptors_map();

else: output_descriptors_zeros();
end

return onset-state;

In this algorithmDeltaHFCThr, DeltaBandEnergyThr, and fi-
nally DeltaHFCOffThrare thresholds defined by the user in or-
der to modify attack and release sensibilities of the onset detec-
tor. Also, notice that we included in the algorithm the methods
compute-label, output-descriptors-map, andoutput-descriptors- ze-
ros. The first one is used to perform the event segregation task and
is discussed in the next section, while the two latter are used to
perform the class-specific mapping, that is, ifonset-stateequals
steady-state, the descriptors are computed and are given as output
of the VST Core plug-in, otherwise, zeros are given as output (See
Section 5).

4. A SUPERVISED MODEL FOR EVENT SEGREGATION

The event segregation task has to be performed with the following
restrictions: we focus on only 3 target classes, namely Bass Drum,
Snare Drum, and Cymbal. The classification task only consider
early descriptors of the hits to be classified, that is, the first frame
peaked by the onset detector. Obviously, this task cannot be com-
putationally expensive in order to meet the real-time restrictions.
Furthermore, we look at models that can be easily translated into
C programming language in order to be integrated into the system.

4.1. Collecting TyTe beat box training data

Defining an ontology of oral percussive sounds is a difficult task,
because even restricting our study to western beat boxing signals,
a wide range of sounds that are not formally defined is used in
the performances. New sounds are introduced by successive per-
formers and added to the cultural pool. As a first attempt, we
collected sounds provided in the beat box tutorials provided by
TyTe, a professional beat boxer. We report in Table 1 part the ter-
minology of the drum sounds that can be found in this tutorial.
Three subsets containing different vocal hits categories were cho-
sen, and each one was labeled with a target class. In some cases
sounds that do not refer to the same instrument (e.g. Splash Cym-
bal and Closed Hi-Hat) are labeled with a same class, here Cymbal.

Bass Drum Dry Kick, Classic Kick, 808 Kick, Roll Kick
Snare Drum Classic Snare, Brushed Snare, 606 Snare, 909

Snare, 808 Snare, Cough Snare, 808 Snare
Roll, 808 Rimshot Snare

Cymbal Splash Cymbal, Brushed Cymbal, Fast Hi-
Hat, Slow Hi-Hat, Open Hi-Hat, Closed Hi-hat

Table 1: A subset of the vocal hits categories present in the training
set with their assigned labels

C4.5 C4.5 w/boost C4.5 w/bag
77.85 79.64 81.71

Table 2: 10 fold Cross Validation results of the data for the TyTe
data set

Actually, among the presented sounds, some refer to acoustic in-
struments (e.g. Dry Kick), others refer to drum synthesizers (e.g.
606 snare), or are more directly related to the vocal aparatus (e.g.
Cough Snare).

For each of these categories, some examples are available as
isolated sounds, but for most of them the vocal hits of a given
category are present in short beat box excerpts, involving differ-
ent sounds. We prefer to study vocal hits that come from a vocal
rhythm because the data is closer to real-world situations than the
data that comes form isolated sounds. Consequently, we labeled
manually each of the collected vocal hits. We collected a total of
321 vocal drum sounds, namely 132 hits for Bass Drum, 80 hits
for Snare Drum, and 109 vocal hits for Cymbal. The descriptors
used for the training vectors are those presented in subsection 3.1.
exceptEtot because we do not want to build a segregation model
sensitive to the loudness of the hits.

4.2. Decision Tree Algorithms

As pointed out in the introduction, the data which is used to train
the model is rather noisy, because the sounds to be labeled with
the same class can be produced with different vocal effects. Tree
induction algorithms build a IF-ELSE tree model by selecting at
each node the most relevant attribute in a divide and conquer man-
ner. This algorithm is well known for the efficiency of its pruning
process and because it handles noisy data accurately. We compare
the results of C4.5, C4.5 with boosting, and C4.5 with bagging.
Other supervised algorithms were tested, but are not reported here
due to the lack of space.

4.3. Classification results

Table 2 presents 10-fold cross validation results of the TyTe data
set presented above. We compare the classification accuracy of
C4.5, C4.5 with boosting , and C4.5 with bagging . The results ap-
pear to be encouraging compared with the baseline of 33%, how-
ever they need to be improved if we want to obtain a system able
to analyze automatically all the percussive vocabulary of TyTe in
real-time. Improvements are discussed in the last section.

5. IMPLEMENTATION

First, the components described in Section 3 and 4 are integrated
into the BillaBoop VST Core plug-in. We used as a basis the im-
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plementation presented in [5]. Through the VST interface, the
user can adjust onset detection thresholds (namelyDeltaBandEn-
ergyThr, DeltaHFCThrandDeltaHFCOffThr). We implemented
the segregation components using a C translation of the C4.5 de-
cision tree induced in the Weka Framework5. We show in Figure
2 how the VST Core and the class-specific mapping components
communicate.

Figure 2:A Possible layout in Plogue Bidule.

The layout organization is the following. First, the incoming
stream (here form Sigmatel sound card driver), goes to Billaboop
VST. Here descriptors extraction, onset detection and event seg-
regation tasks are achieved. Billaboop VST plug-in outputs the
extracted symbolic information using the multi-channel audio out-
put in the following way. Output ports 1 to 3 output 0s and 1s
according to the current performed drum. For instance, a 1 is on
the first output if the state issteady-stateand the label is BD, 0
otherwise. Output port 4 to 6 contain descriptors of the vocal hit
during onset and steady state (here Centroid and Roll-off), other-
wise they output 0s. Port 1 to 3 goes to separateMidi Note Creator
modules. Here Bass Drum and Hi-Hat are triggered withBoboche
Sampler, while the Snare Drum is controlled by an analogue syn-
thesizer. Ports 5 and 6 contain continuous descriptors values , the
Centroid is mapped to theSnare SynthCutoff synthesis param-
eter viaSnareMapmodule, while the Roll-off is mapped to the
Moog VCFResonance parameter processing the Cymbal sample
via CymbalMapmodule. Note that the links between mappers out-

5www.cs.waikato.ac.nz/∼ ml/weka/

puts and generator or effects do not appear in Bidule interface. The
latency due to the hop size is 11 ms using a 1024 samples frame
size with an overlap of 50%. Adding the latency of the Edirol FA-
101 sound card we use (10 ms), we obtain 21 ms. Obviously, we
should also add the processing time of the BillaBoop VST Core
and the Plogue Bidule Host, which were not evaluated at the time
of writing this paper. Nevertheless, the whole response time is fast
enough to let the user interact naturally with the system.

6. DISCUSSION AND CONCLUSIONS

We designed and presented the components of a real-time appli-
cation for expressive voice-driven drum generation. Although at
early stages of implementation, the system already provides en-
couraging results and stimulating experiments, that are of inter-
est for the design of future musical interfaces. Nevertheless, the
choice to make onset detection and classification in one analysis
frame is a strong constraint, and enhancing the accuracy of system
for this setting may be a hard task. Further work includes a formal
evaluation of both onset detection and classification components
for different settings and performers. We also want to increase the
amount of descriptors to be included in our model. For instance,
descriptors derived from [5] concentrating on slope integrals of
perceptually relevant frequencies of speech seems promising, but
the information of more than one frame will be needed. We believe
that if we reach these goals an expressive interface for the vocal
percussive performer can be designed. The system and sound ex-
amples are available on: www.iua.upf.es/∼ahazan/BillaBoop.
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